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Parity-encoding-based quantum computing with Bayesian
error tracking
Seok-Hyung Lee 1, Srikrishna Omkar2, Yong Siah Teo1 and Hyunseok Jeong1✉

Measurement-based quantum computing (MBQC) in linear optical systems is promising for near-future quantum computing
architecture. However, the nondeterministic nature of entangling operations and photon losses hinder the large-scale generation of
graph states and introduce logical errors. In this work, we propose a linear optical topological MBQC protocol employing
multiphoton qubits based on the parity encoding, which turns out to be highly photon-loss tolerant and resource-efficient even
under the effects of nonideal entangling operations that unavoidably corrupt nearby qubits. For the realistic error analysis, we
introduce a Bayesian methodology, in conjunction with the stabilizer formalism, to track errors caused by such detrimental effects.
We additionally suggest a graph-theoretical optimization scheme for the process of constructing an arbitrary graph state, which
greatly reduces its resource overhead. Notably, we show that our protocol is advantageous over several other existing approaches
in terms of the fault-tolerance and resource overhead.
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INTRODUCTION
Photonic qubits are a promising candidate for quantum comput-
ing with advantages such as long decoherence time even at room
temperature. Among different encoding schemes, those of dual-
rail allow one to detect photon losses by counting the total
photon number and manipulate and measure single qubits via
linear optical elements and photodetectors1. A representative way
to achieve universal quantum computing in linear optical systems
is measurement-based quantum computing (MBQC)2,3 processed
by single-qubit measurements on a multi-qubit graph state. In
particular, a family of graph states called Raussendorf-Harrington-
Goyal (RHG) lattices4–6 permits universal fault-tolerant quantum
computing7–9.
The generation of RHG lattices, which is a significant challenge

for realizing fault-tolerant optical MBQC, can be done by
entangling multiple small resource states with fusions of types I
and/or II10. Both types of fusions are not ideal in linear optics
because of theoretical limitations and environmental factors such
as photon losses. Fusion success rates cannot exceed 50% without
additional resources11 for single-photon qubits, which is far too
insufficient to implement MBQC12. There exist several types of
approaches to overcome this shortcoming. Some examples
include (i) different types of encoding strategies with coherent
states13,14, hybrid qubits15,16, and multiphoton qubits17,18 that
significantly improve error thresholds and resource overheads18,
(ii) adding ancillary photons to boost the success rate of a type-II
fusion to 75%19,20, which enables MBQC with the renormalization
method21, (iii) redundant structures added to resource states to
replace a single fusion by multiple fusion attempts22–24, and (iv)
the use of squeezing for teleportation channels25 or inline-
processes26,27.
Previous studies frequently treated fusion failures with bond

disconnection28–30 or qubit removals12,15,18,21. However, to accu-
rately evaluate the performance of computing protocols, the
detrimental effects of nonideal fusions affecting nearby qubits
should be analyzed more rigorously. In this work, we study how

nonideal fusions corrupt stabilizers and how errors arising from
such corruption can be tracked during the generation of graph
states. Using a Bayesian approach and the stabilizer formalism, we
can now assign error rates with strong posterior evidence from
measurement data on certain qubits in the final lattice, thereby
enabling much more realistic error simulations and adaptive
decoding of syndromes.
We then propose a linear-optical fault-tolerant MBQC protocol

termed a “parity-encoding-based topological quantum computing
(PTQC),” which employs the parity encoding31 and concatenated
Bell-state measurement (CBSM)32. The protocol requires on-off or
single-photon resolving detectors, optical switches, delay lines,
and three-photon Greenberger-Horne-Zeilinger (GHZ-3) states
that can be generated deterministically using current technol-
ogy33. (A single-photon resolving detector discriminates between
zero, one, and more than one photons entering the detector.) We
analyze the loss-tolerance of the protocol while exhaustively
tracking the detrimental effects of nonideal fusions. The resource
overhead in terms of the number of required GHZ-3 states is also
investigated. To minimize it, we introduce a graph-theoretical
method for optimizing the process of constructing resource states,
which is generalizable for other MBQC schemes. By comparing
PTQC with three other known approaches using simple repetition
codes, redundant tree graphs, and single-photon qubits with
boosted fusions assisted by ancillary photons, we show that our
protocol is advantageous over these protocols in terms of the
photon loss threshold per component and the resource overhead.
We denote the four Bell states by ϕ±j i :¼ 0j i 0j i± 1j i 1j i and

ψ±j i :¼ 0j i 1j i± 1j i 0j i (normalization coefficients are omitted) and
call “±” its sign and “ϕ” or “ψ” its letter. An ideal Bell-state
measurement (BSM) entails the measurements of X⊗X and Z⊗Z
on two qubits, whose outcomes are addressed as its sign and
letter outcomes, respectively. We use the polarization of photons
as the degree of freedom to encode quantum information and
denote the horizontally (vertically) polarized single-photon state
by Hj i ( Vj i).
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For a given graph G of qubits, a graph state Gj i is defined as the
state stabilized by Sv :¼ Xv

Q
v02NðvÞZv0 (that is, Sv Gj i ¼ Gj i) for

each vertex v, where Xv and Zv are respectively Pauli-X and Z
operators on the qubit v and N(v) is the set of the vertices
connected with v. Gj i can be generated by placing a qubit
initialized as þj i :¼ Hj i þ Vj i on each vertex of G and applying a
controlled-Z gate on every pair of qubits connected by an edge in
G. However, since the direct implementation of a controlled-Z gate
for photonic qubits demands multi-photon interaction, linear
optical MBQC typically takes an approach to construct a graph
state by merging multiple small resource graph states via fusion
operations10,15,18,21–24,28–30,34.
Among the two types of fusions10, we only consider type II

because of two reasons: (i) A type-I fusion may convert photon
losses into unknown Pauli errors24, which is not desirable since
Pauli errors are generally harder to overcome than photon losses.
(ii) There are known fault-tolerant type-II fusion schemes for
encoded logical qubits, such as the one in Ref. 32. A type-II fusion is
done by measuring X⊗Z and Z⊗X on two qubits. In practice, it is
realized by applying the Hadamard gate on one of the qubits and
then performing a BSM on them. For two qubits (v1,v2), if
{v1}∪N(v1) and {v2}∪N(v2) are disjoint, the effect of a fusion on the
qubits is to connect (disconnect) every possible pair of
disconnected (connected) qubits, one from N(v1) and the other
from N(v2), up to several Pauli-Z operators determined by the BSM
outcome. These Pauli-Z operators are compensated by updating
the Pauli frame35 classically. This effect can be checked by tracking
stabilizers, as shown in the example of Fig. 1a. Here, the stabilizer
X1Z0X00Z10Z20 (colored in green) before the fusion is transformed
into msignX1Z10Z20 after the fusion, where msign∈{±1} is the sign
outcome of the BSM if the Hadamard gate is applied on qubit 0.
The other two stabilizers Z1X0Z00X10 (colored in purple) and
Z1X0Z00X20 that commute with the fusion can be transformed in
similar ways. Consequently, the marginal state on the unmeasured
qubits is equal to the merged graph state up to several Pauli-Z
operators, as presented in Fig. 1b.
We consider errors of qubits in the “vacuum” measured in the

X-basis, which occupies most of the area in the RHG lattice4;
thus, X-errors do not affect the results. Henceforth, every error
mentioned is a Z-error.

RESULTS
Bayesian error tracking for nonideal fusions
We now introduce the methodology to track the errors caused by
nonideal fusions. Let us revisit the example in Fig. 1, supposing

that the qubits are single-photon polarization ones and there are
no photon losses. Then a BSM can discriminate between only two
Bell states (say, ψ±j i) among the four without additional
resources36; see Fig. 2 for the scheme. The intact final state Cfj i
is obtained only when the BSM succeeds. When the BSM fails
(which is heralded), mlett is determined while msign is left
completely ambiguous. In other words, the respective posterior
probabilities that the input states are ϕþj i and ϕ�j i for the
obtained photodetector outcomes are equal, assuming that the
four Bell states have the same prior probability. This assumption
can be justified by the fact that the marginal state on qubits 0 and
00 before the fusion is maximally mixed; see Supplementary Note 1
for the proof. Therefore, we fix the value of mlett and randomly
assign that of msign. Then, the operator msignX1Z10Z20 , which is
originally a stabilizer of Cfj i, gives ±1 randomly when it is
measured after the failed BSM. Whereas, the other two stabilizers
mlettZ1X10 and mlettZ1X20 are left unperturbed. The key point is that
this situation is equivalent to a 50% chance of an erroneous qubit
1 in Cfj i in terms of stabilizer statistics. In other words, both
situations give the same statistics if the stabilizers of Cfj i are
measured; thus, every process in MBQC described with the
stabilizer formalism works in the same way.
Generally, a nonideal BSM gives one of the possible outcomes

and the posterior probability of each Bell state for the outcome
can be calculated with the Bayesian theorem, assuming equal
prior probabilities for all four Bell states. Accordingly, the Bell state
with the highest posterior probability is selected as the result of
the BSM, and the probability qsign (qlett) that the selected sign
(letter) is wrong can be obtained as well. These error probabilities
are “propagated” into nearby qubits in a way that the stabilizer
statistics are preserved. For example, if the fusion in Fig. 1 is
nonideal in such a way, it is equivalent to qubit 1 having an error
with probability qsign and qubits 10 and 20 having correlated errors
with probability qlett. We term a qubit with a nonzero error rate
“deficient.”
Additionally, if a qubit participating in a fusion is erroneous, this

error is propagated to the qubits on the opposite side. For
example, an erroneous qubit 0 in Fig. 1 induces an error in the
X0Z00 measurement, which is equivalent to erroneous qubits 10
and 20.
The above error tracking methodology can be utilized for

accurate and effective error simulations. The method can precisely

Fig. 1 Example of a type-II fusion. A type-II fusion is done by
measuring Z0X00 and X0Z00 on the two graph states. a Two stabilizers
(green and purple operators) become those of the resulting graph
state up to sign factors (the sign or letter outcome msign, mlett of the
BSM) after the fusion. b The final state is the depicted graph state,
where the presented Pauli-Z operators are applied.

Fig. 2 BSM scheme for single-photon polarization qubits. A BSM
uses three polarizing beam splitters (PBSs), 90∘ and 45∘ wave plates,
and four (A--D) photodetectors (single-photon resolving or on-off
detectors). A PBS transmits (reflects) photons polarized horizontally
(vertically). The scheme distinguishes ψ±j i: ψþj i if detectors (A, C) or
(B, D) detect one photon respectively and ψ�j i if detectors (A, D) or
(B, C) detect one photon respectively. If otherwise, it fails or detects
a loss, which can be distinguished by the total number of detected
photons provided that single-photon resolving detectors are used.
Two distinguishable Bell states can be chosen by putting or
removing wave plates appropriately before the first PBS.
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locate qubits affected by unsuccessful fusions, which is closer to
reality than simple bond disconnection or qubit removal. Since
unsuccessful fusions are now regarded as Pauli error sources, we
no longer need lattice deformation and the construction of
supercheck operators12,37. Instead, the error probabilities on
individual qubits are employed for decoding syndromes in an
adaptive manner (with decoders such as the weighted minimum-
weight perfect matching one), which may be particularly effective
if the probabilities are between 0 and 1/2 since regarding such
errors as just removal of qubits is a loss of information.

Building an RHG lattice
An RHG lattice can be built with two types of linear three-qubit
graph states called central and side “microclusters”21,28. The
process is composed of two steps (see Fig. 3): In step 1, a central
microcluster and two side microclusters are merged by two
fusions to form a five-qubit graph state named a “star cluster”
composed of one central qubit and four side qubits. In step 2, the
side qubits of star clusters are fused to form an RHG lattice.
Eventually, the lattice includes only the central qubits, which are
measured in appropriate bases for MBQC. For step 2, we consider
two options: (i) Star clusters with successful step-1 fusions may be
post-selected, or (ii) all generated star clusters are used regardless
of the fusion results. The locations of the Hadamard gates during
fusions (called “H-configuration”) may be chosen arbitrarily. Here,
we define two specific H-configurations: “Hadamard-in-center
(HIC)” and “Hadamard-in-side (HIS).” In the HIC (HIS) configuration,
the Hadamard gates in step 1 are applied on qubits in the central
(side) microclusters, as shown in Fig. 3. Whereas the Hadamard
gates in step 2 are arranged in the same pattern for both
configurations.
Nonideal fusions during lattice building render some central

qubits in the final lattice deficient, as shown in Fig. 3 when the HIC
configuration is used. When the HIS configuration is used, the
positions of qsign and qlett in the figure are swapped. Note that
errors in the side qubits are propagated to the nearest central
qubits after step 2. Correlation between the sign and letter errors
of a fusion, if any, can be neglected if the primal and dual lattices

are considered separately, since these errors respectively affect
primal and dual4 qubits (or vice versa).

Noise model
For analyzing the following linear optical quantum computing
protocols, we consider a noise model where each photon suffers
an independent loss with probability η, which arises from
imperfections throughout the protocol: GHZ-3 states (which are
initial resource states), delay lines, beam splitters, optical switches,
and photodetectors. We assume that noise that cannot be
modeled with photon losses such as dark counts is negligible.
Note that not only nonideal fusions but also photon losses in
central qubits, which are detectable by on-off detectors, may incur
deficiency. If the measurement outcome of a central qubit cannot
be determined due to photon losses, we select the outcome
randomly and assign an error rate of 50% to the qubit.

Parity-encoding-based topological quantum computing
We introduce the linear-optical parity-encoding-based topological
quantum computing (PTQC) protocol, where fusion success rates
are boosted by using multiphoton qubits for all qubits that
participate in fusions and single-photon polarization encoding is
used for central qubits. The parity encoding31 is employed for the
multiphoton qubits, which are fused by CBSM32. On-off or single-
photon resolving detectors are used as photodetectors, and GHZ-
3 states, which can be generated linear-optically38, are regarded as
basic resource states. The (n, m) parity encoding defines a basis as

0Lj i :¼ þðmÞ�� E�n
; 1Lj i :¼ �ðmÞ�� E�n

; (1)

where

± ðmÞ�� E
:¼ ð Hj i þ Vj iÞ�m ± ð Hj i � Vj iÞ�m: (2)

The Hilbert space has a hierarchical structure composed of three
levels: the lattice, block, and physical levels with respective bases
f 0Lj i; 1Lj ig, f ± ðmÞ�� �g, and f Hj i; Vj ig. In the original CBSM
scheme32, a BSM of a certain level is decomposed into multiple
BSMs of one level below. Our current CBSM scheme slightly differs
from the original one in the following two areas: (i) We consider
two types of photodetectors: single-photon resolving and on-off
detectors. A physical-level BSM can discriminate between a
photon loss and failure only if single-photon resolving detectors
are used. (ii) The letter outcome of a lattice-level BSM is obtained
by a weighted majority vote of block-level letter outcomes. See
the Methods section for details of the CBSM scheme and its
error rates.
For practical reasons, we consider generating “post-H” micro-

clusters (that is, the states obtained by applying several lattice-
level Hadamard gates on microclusters) directly from GHZ-3 states,
instead of generating microclusters first and then applying the
lattice-level Hadamard gates for the fusions. Figure 4a depicts the
central and side post-H microclusters for the HIC and HIS
configurations. A post-H microcluster can be generated up to
several physical-level Hadamard gates by performing physical-
level BSMs or fusions (referred to as “merging operations”)
between multiple GHZ-3 states according to a predetermined
“merging graph,” as shown in the example of Fig. 4b. Note that
the merging graph may be not unique for a post-H microcluster.
However, each merging operation has a low success rate of less
than or equal to 50%, which may lead to extensive usage of GHZ-3
states for generating a post-H microcluster successfully. Thus, the
generation process, which is determined by the merging graph
and the order of the merging operations, should be adjusted
carefully to minimize the resource overhead. To optimize the
merging order, our protocol utilizes a graph edge coloring
algorithm, based on the idea that merging operations for non-

Fig. 3 Lattice building process with microclusters. The orange
boxes indicate fusions. In step 1, side and central microclusters are
fused to form a star cluster. The locations of the Hadamard gates are
marked as “C” ("S'') for the HIC (HIS) configuration. In step 2, multiple
star clusters are fused to form an RHG lattice. The macroscopic
picture of step 2 in a unit cell of the lattice is depicted in the lower
right. The locations of the Hadamard gates are marked as orange
dots. The error probabilities of qubits assigned by one fusion in each
step for the HIC configuration are written in red, where qsign (qlett) is
the sign (letter) error probability of the BSM. Errors in the side qubits
remaining after step 1 (purple dashed squares) are propagated to
central qubits during step 2 (purple dashed arrows).

S.-H. Lee et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2023)    39 



adjacent edges can be performed simultaneously. See the
Methods section for details of the structures of post-H micro-
clusters, their generation, and the resource optimization problem.
For error simulations, we consider the logical identity gate with

the length T of 4d+ 1 unit cells along the simulated time axis,
where d is the code distance. All the fusion outcomes are sampled
from appropriate probability distributions, and the corresponding
error rates are assigned to individual central qubits according to
the process described earlier. These error rates are exploited when
decoding syndromes by the weighted minimum-weight perfect
matching in the PyMatching package39. The loss thresholds are
calculated by finding the intersections of logical error rates for
d= 9 and d= 11. See Supplementary Note 2 for the detailed
method of error simulations.
The resource overhead of PTQC is quantified by two quantities:

(i) the average number N�
GHZ of GHZ-3 states required per central

qubit and (ii) the average total number N pL of GHZ-3 states to
achieve a target logical error rate of pL for the logical identity gate
of T= d− 1. Both of them depend on the photon loss rate η. N�

GHZ
can be used to evaluate the resource overhead independently of
its error-correcting capability, while N pL reflects the comprehen-
sive resource overhead of actual computation. See Supplementary
Note 3 for the detailed method of resource calculations.
The simulation results of the loss thresholds and the resource

overheads (quantified byN 10�6 ) are respectively presented in Figs.
5a and 5b for the two types of photodetectors, the two options for
the post-selection of star clusters, and the two H-configurations.
Figure 5a shows that, if single-photon resolving detectors are
used, ηth reaches up to 8.5% (n= 5,m= 4, j= 2) when star clusters
are post-selected and up to 6.3% (n=m= 5, j= 3, HIC) when they
are not. If on-off detectors are used, ηth reaches up to 4.4%
(n= 5,m= 4, j= 1) when star clusters are post-selected and up to
3.3% (n= 5,m= 4, j= 1, HIS) when they are not. The post-
selection of star clusters increases the photon loss thresholds by
about 1–2%p. From Fig. 5b, it is observed that the protocol using
single-photon resolving detectors is most resource-efficient with
N 10�6 � 5 ´ 105 (n= 4,m= 3, j= 1, HIC) when star clusters are
post-selected and with N 10�6 � 1 ´ 106 (n=m= 4, j= 2, HIS)
when they are not. If on-off detectors are used, the protocol is

most resource-efficient with N 10�6 � 2 ´ 107 (n=m= 4, j= 2, HIC)
when star clusters are post-selected and with N 10�6 � 3 ´ 107
(n=m= 5, j= 2, HIC) when they are not. It is worth noting that,
compared to the protocol without the post-selection, the protocol
with it requires fewer GHZ-3 states to achieve a target logical error
rate. In other words, further fault-tolerance obtained by using only
successfully-generated star clusters leads to a positive overall
effect that surpasses the negative effect caused by the increase in
the number of required GHZ-3 states for one central qubit in the
final lattice.
Additionally, Fig. 6 presents the photon loss threshold as a

function of N�
GHZ for various parameter settings. Here, N�

GHZ is
calculated while fixing η to 0.01 or varying it as η= ηth/2. It shows
that at least about 400 GHZ-3 states are required per central qubit
for PTQC to work and more than 1000 GHZ-3 states are required
to achieve ηth ≿ 0.04. The explicit information of the data points
along the upper envelope lines in the left plot of Fig. 6a is listed in
Supplementary Table 1.

Comparison with other approaches
We now compare the PTQC protocol with three other known
approaches for linear optical quantum computing, which respec-
tively use (i) simple repetition codes, (ii) tree encoding, and (iii)
single-photon qubits with fusions assisted by ancillary photons.
Their detailed descriptions are as follows:

1. The approach of (i) that uses simple repetition codes and
multi-photon BSMs, which is called the multi-photon-qubit-
based topological quantum computing (MTQC) protocol,
was proposed in our previous work18. There, the photon loss
thresholds and resource overheads are analyzed in detail,
but a rigorous analysis of the effects of nonideal fusions like
that done for PTQC is lacking.

2. The approach of (ii) utilizes redundant tree structures on
graph states to replace a single fusion with multiple fusion
attempts. Among the related works22–24, Ref. 24 presents the
current most advanced version of the protocol where an
RHG lattice is constructed by entangling multiple GHZ-3
states like PTQC.

3. The approach of (iii) uses single-photon qubits with boosted
fusions assisted by ancillary entangled19 or unentangled
photons20. This approach has been widely studied in the
context of ballistic quantum computing21,28–30. In these
works, non-RHG lattices are considered except for Ref. 21;
however, RHG lattices should be used to enable a solid error
correction, as also mentioned in Refs. 28,30. Moreover, in
these works, the detrimental effects of failed fusions
corrupting nearby qubits are not treated comprehensively;
instead, they (except Ref. 21) regard a fusion failure as
removing the corresponding edge and mainly focus on
finding percolation thresholds. For the comparison, we
consider using the BSM scheme in Ref. 19 where a 2N−1-
photon GHZ state (for an integer N≥2) is used to suppress its
failure probability to 1/2N in the lossless case.

For the comparison, we suppose that each initial GHZ-3 state is
generated from single-photon sources by using the linear optical
scheme in Ref. 38. Each trial of the scheme requires six photons
and has a 1/32 chance of success (in the lossless case), which is
heralded. We also assume the same photon loss rate ηcomp

between components. Here, each component means a single-
photon source, beam splitter, switch, delay line (for the time
period required to process classical data for a switch), and
photodetector. The above two assumptions are made to impose
the same condition as the analysis of the tree-encoding protocol
in Ref. 24.
In Fig. 7, PTQC is compared with the above three approaches in

terms of the photon loss threshold per component as a function of

Fig. 4 Structure and generation of post-H microclusters for PTQC.
a Schematics of central and side post-H microclusters for PTQC with
the HIC and HIS configurations. The marks “HL” indicate the
locations of the lattice-level Hadamard gates. b Example of a
process generating a post-H microcluster from GHZ-3 states. Each
GHZ-3 state is represented by a triangle whose vertices indicate its
three photons. An orange line connecting two vertices and a mark
“H” next to a vertex respectively mean a fusion and Hadamard gate
performed on the photon(s). The graph of the triangles connected
with the orange lines is called a merging graph.
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N�
GHZ. N

�
GHZ is calculated at η= 0 to be consistent with Ref. 24. The

loss threshold per component is chosen as a measure instead of
the total loss threshold for a fair comparison between schemes
that have different numbers of components. See the Methods
section for the calculation methods. We note that the values for
the tree-encoding approach are those reported in Ref. 24, just with
the conversion of the resource measure.
Figure 7 shows a strong evidence that our PTQC protocol is

highly loss-tolerant and resource-efficient compared to other
approaches. The MTQC protocol and the single-photon-qubit
method cannot achieve high enough loss thresholds. The tree-
encoding method consumes 10–100 times more resources than
PTQC, although it has an advantage that higher thresholds can be
achieved if enough resources are provided.
We note several limitations of the above comparison:

(i) The assumption that the photon loss rate is the same
between different types of components is unrealistic. The
results may vary if realistic weights are considered.

(ii) Photons may have different overall loss rates depending on
their paths, but only the largest one (corresponding to the
longest path) is considered for simplicity of calculation.
Hence, the loss thresholds in Fig. 7 are actually their lower
bounds.

(iii) The lengths of delay lines are obtained under the
assumption of complete parallelization; namely, it is
assumed that actions that are not causally related can be
done in parallel. However, whether it is indeed possible

depends on the actual experimental system and architec-
ture.

(iv) We only consider noises that can be modeled with photon
losses. It is uncertain how much the results will change if
other types of noises (especially unheralded Pauli errors) are
introduced.

(v) The single-photon-qubit approach might be improved by
using the lattice renormalization method in Ref. 21, which is
not considered here. However, this method has a short-
coming that the renormalized lattice may be significantly
smaller than the original lattice; namely, about 203 photons
are consumed to generate one node21.

DISCUSSION
In this work we address the problem of overcoming the negative
effects of nonideal fusions and photon losses during linear-optical
measurement-based quantum computing (MBQC). We first
introduced a Bayesian methodology for tracking errors caused
by nonideal fusions during the construction of graph states, which
enables accurate and effective error simulations. We then
proposed the parity-encoding-based topological quantum com-
puting (PTQC) protocol that uses the parity encoding and
concatenated Bell-state measurement, which turns out to have a
high loss threshold of at most ~ 8.5%. Moreover, logical error rates
near 10−6 can be achieved using about 106 or fewer three-photon
Greenberger-Horne-Zeilinger states (GHZ-3) states in total when

Fig. 5 Simulation results for PTQC. The loss thresholds ηth (a) and resource overheads N 10�6 (b) are calculated for various parameters on the
encoding size (n, m), the type of detectors, the post-selection (PS) of star clusters, and the H-configuration. “SPRD” stands for single-photon
resolving detector. N 10�6 is calculated at η= 0.01. The values of j are chosen to maximize ηth and shown next to the data points in (a). The H-
configuration does not affect ηth when star clusters are post-selected.

S.-H. Lee et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2023)    39 



the photon loss rate is 1%, which outperforms other known linear
optical computing protocols18. It is worth noting that GHZ-3 states
can be deterministically generated using current techonology33.
We presented comprehensive and systematic methods to
construct a graph state from GHZ-3 states, including the graph-
theoretical algorithm that can minimize the resource overhead
efficiently.
Additionally, we investigated three other known approaches

that respectively use simple repetition codes, and tree encoding,
and single-photon qubits with fusions assisted by ancillary
photons. We presented evidence that PTQC is highly competitive
compared to others, as it exhibits high loss thresholds per
component relative to the amount of resources it consumes. For
instance, a loss threshold of ~ 0.35% per component can be
achieved by using ~ 104 GHZ-3 states per data qubit, which is at
least ~ 100 times resource-efficient than previous methods.
One may apply the Bayesian error tracking method to other

encoding schemes or decoding algorithms (such as the union-find
decoder40) to improve fault-tolerance or resource overheads. More
careful consideration of component-wise errors, including both
heralded photon losses and unheralded errors (such as dark
counts on photodetectors), shall give rise to more realistic
analyses. If type-I fusions are used for generating microclusters,
the resource overhead may be reduced at the cost of additional
Pauli errors, which will be worth investigating. Our protocol might

be enhanced by using other codes such as the Steane 7-qubit
code41 instead of the parity code. Resource analysis will be more
comprehensive if other factors such as the number of optical
switches or delay lines are considered. Our graph-theoretical
optimization scheme for generating graph states can be applied
to arbitrary graph states as well as microclusters for PTQC. It will
be interesting future work to investigate the resource reduction
effect of this scheme for various MBQC protocols or other
applications of graph states such as quantum repeaters. Lastly, our
methods may be generalized to fusion-based quantum comput-
ing42 that is attracting attention recently, or other MBQC protocols
such as the color-code-based one43.

METHODS
In this section, we describe the details of the PTQC protocol
including the CBSM scheme, the closed-form expressions of error
probabilities, the method to generate post-H microclusters, and
the resource optimization problem.

Bell states for the parity encoding
For the lattice, block, and physical levels of the (n, m) parity
encoding, the Bell states are respectively defined as

Φ±j i :¼ 0Lj i 0Lj i± 1Lj i 1Lj i;
Ψ±j i :¼ 0Lj i 1Lj i± 1Lj i 0Lj i;

�
(3)

ϕ±
ðmÞ

��� E
:¼ þðmÞ�� � þðmÞ�� �

± �ðmÞ�� � �ðmÞ�� �
;

ψ±
ðmÞ

��� E
:¼ þðmÞ�� � �ðmÞ�� �

± �ðmÞ�� � þðmÞ�� �
;

8><
>: (4)

ϕ±j i :¼ Hj i Hj i± Vj i Vj i;
ψ±j i :¼ Hj i Vj i± Vj i Hj i;

�
(5)

where 0Lj i, 1Lj i, and ± ðmÞ�� �
are defined in Eqs. (1) and (2). The Bell

states of each level can be decomposed into those of one level
below as follows:

Φ±j i ¼ 2�
n�1
2

X
l:evenðoddÞ�n

P ϕ�
ðmÞ

��� E�l
ϕþ
ðmÞ

��� E�n�l
� �

; (6)

Ψ±j i ¼ 2�
n�1
2

X
l:evenðoddÞ�n

P ψ�
ðmÞ

��� E�l
ψþ
ðmÞ

��� E�n�l
� �

; (7)

ϕ±
ðmÞ

��� E
¼ 2�

m�1
2

X
k:even�m

P ψ±j i�k
ϕ±j i�m�k

h i
; (8)

ψ±
ðmÞ

��� E
¼ 2�

m�1
2

X
k:odd�m

P ψ±j i�k
ϕ±j i�m�k

h i
; (9)

Fig. 6 Photon loss threshold ηth of PTQC as a function of the average number N�
GHZ of GHZ-3 states per central qubit. N�

GHZ is calculated at
η= 0.01 in (a) and η= ηth/2 in (b). The data points correspond to different parameter settings on the type of detectors, the post-selection (PS)
of star clusters, the encoding size, and the H-configuration, which are grouped by the first two factors. “SPRD” stands for single-photon
resolving detector. In (a), only data points with ηth > 0.01 are presented. The upper envelope for each of the groups is presented as a line. The
values of j are chosen to maximize ηth.

Fig. 7 Comparison of PTQC and three known approaches, in
terms of the photon loss threshold per component as a function
of N�

GHZ. The loss thresholds per component are obtained while
assuming the same photon loss rate between single-photon
sources, beam splitters, delay lines, switches, and photodetectors.
The values for the tree-encoding approach are those reported in Fig.
4b of Ref. 24. The value for the single-photon-qubit approach is
obtained by using the boosted BSM scheme of N= 4 in Ref. 19.
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where P½�� means the summation of all the permutations of the
tensor products inside the bracket. Therefore, a BSM can be
performed in a concatenated manner: A lattice-level BSM (BSMlat)
is done by n block-level BSMs (BSMblc’s), each of which is again
done by m physical-level BSMs (BSMphy’s). We refer to the sign
(letter) result obtained from a lattice-, block-, or physical-level BSM
as the lattice-, block-, or physical-level sign (letter), respectively.

Original CBSM scheme
We review the original CBSM scheme of the parity encoding in
Ref. 32. A BSMphy can discriminate between only two among the
four Bell states. Three types of BSMphy’s (Bψ, B+, and B−) are
considered, which discriminate between f ψþj i; ψ�j ig,
f ϕþj i; ψþj ig, and f ϕ�j i; ψ�j ig, respectively. Bψ can be implemen-
ted by the process in Fig. 2, which can be modified to implement
B+ instead by adding a 45∘ wave plate on each input line just
before the first PBS. If the 90∘ wave plate on the second input line
is removed in the setting for B+, B− is executed alternatively. A
BSMphy has four possible outcomes: two successful cases (e.g., for
Bψ, ψþj i and ψ�j i), “failure,” and “detecting a photon loss.” Failure
and loss can be distinguished by the number of total photons
detected by the photon detectors. Since two photons may enter a
single detector, it is assumed that single-photon resolving
detectors are used. Note that, even in the failure cases, either
sign or letter still can be determined. (For example, even if a Bψ
fails, we can still learn that the letter is ϕ.) On the other hand, if it
detects a loss, we can get neither a sign nor a letter.
A BSMblc is done by m-times of BSMphy’s. Each block is

composed of m photons, thus we consider m pairs of photons
selected respectively in the two blocks. The types of the BSMphy’s
are selected as follows: First, Bψ is performed on each pair of
photons in order until it either succeeds, detects a loss, or
consecutively fails j times, where j≤m− 1 is a predetermined
number. Then a sign s= ± is selected by the sign of the last Bψ
outcome if it succeeds or selected randomly if it fails or detects a
loss. After that, Bs’s are performed for all the left pairs of photons.
The block-level sign (letter) is determined by the physical-level

signs (letters) of the m-times of BSMphy’s. In detail, the block-level
sign is chosen (i) to be the same as s if the last Bψ succeeds or any
Bs succeeds, and (ii) to be the opposite of s if the last Bψ does not
succeed and any Bs fails. (iii) Otherwise (namely, if the last Bψ does
not succeed and all the Bs’s detect losses), the block-level sign is
not determined. The block-level letter is determined only when all
the physical-level letters are determined, namely, when no losses
are detected and all Bs’s succeed. For such cases, the block-level
letter is ϕ (ψ) if the number of ψ in the BSMphy results is
even (odd).
Next, a BSMlat is done by n-times of BSMblc’s. The lattice-level

sign is determined only when all the block-level signs are
determined; it is (+) if the number of (−) in the BSMblc results is
even and it is (−) if the number is odd. The lattice-level letter is
equal to any determined block-level letter. Thus, if all BSMblc’s
cannot determine letters, the lattice-level letter is not determined
as well.

Modified CBSM scheme for PTQC
In our PTQC protocol, we consider using either single-photon
resolving or on-off detectors. The CBSM scheme should be slightly
modified for this case.
Since failure and loss cannot be distinguished, a BSMphy now

has three possible outcomes: two successful cases and failure.
Consequently, in a BSMblc, Bψ’s are performed until it either
succeeds or consecutively fails j times. The way to determine the
block-level sign and letter is the same as the original scheme,
except that case (iii) when determining the sign no longer occurs.
The biggest difference from the original scheme is that the

determined sign and letter may be wrong. These error prob-
abilities are presented in the next subsection.
In a BSMlat, the lattice-level sign is determined from the block-

level signs by the same method as the original scheme, although
it may be wrong with a nonzero probability as well. On the other
hand, the lattice-level letter is not determined by a single block-
level letter unlike the original scheme; instead, we use a weighted
majority vote of block-level letters. The weight of each block-level
letter is given as w :¼ log½ð1� qblclettÞ=qblclett�, where qblclett is the
probability that the block-level letter is wrong. This weight factor
is justified as follows: Let Iϕ (Iψ) denote the set of the indices of
block pairs where the block-level letters are ϕ (ψ). Assuming that
the two lattice-level letters (Φ and Ψ) have the same prior
probability, we get
PrðΦjIϕ;IψÞ
PrðΨjIϕ;IψÞ ¼ PrðIϕ;IψjΦÞ PrðΦÞ

PrðIϕ ;Iψ jΨÞ PrðΨÞ ¼
PrðIϕ ;Iψ jΦÞ
PrðIϕ;IψjΨÞ

¼
Q
i2Iϕ

1�qðiÞlettð ÞQ
j2Iψ

qðjÞlettQ
i2Iϕ

qðiÞlett
Q
j2Iψ

1�qðjÞlettð Þ

¼ Q
i2Iϕ

1�qðiÞlett
qðiÞlett

. Q
j2Iψ

1�qðjÞlett
qðjÞlett

¼ exp
P
i2Iϕ

wðiÞ �P
j2Iψ

wðjÞ
 !

;

(10)

where qðiÞlett and w(i) are respectively the letter error probability and
the weight of the ith block. Note that the third equality comes from
the fact that a lattice-level Bell state is decomposed into block-level
Bell states of the same letter, as shown in Eqs. (6) and (7).

Error probabilities of a CBSM under a lossy environment
We here present the possible outcomes of a CBSM using either
single-photon resolving or on-off detectors and the corresponding
error probabilities (qsign, qlett). We denote x≔ (1−η)2, which is the
probability that a BSMphy does not detect photon losses. It is
assumed that the four Bell states have the same prior probabilities;
namely, the initial marginal state on qubits 1 and 2 before
suffering losses is the equal mixture of four lattice-level Bell states,
which is justified in Supplementary Note 1. For a BSMblc or BSMlat,
to avoid confusion, we use the term “outcome” to indicate the
tuple of the outcomes of the BSMphy’s constituting the BSMblc or
BSMlat, and use the term “result” to indicate one of the four Bell
states that gives the largest posterior probability under its
outcome. Note that the result of a BSM may be not determinis-
tically determined by its outcome; if multiple Bell states have the
same posterior probability, one of them is randomly selected as
the result.
The case using single-photon resolving detectors is analyzed in

Ref. 32 and we here review the contents to be self-contained. The
outcome of a BSMblc is included in one of the following three
cases: (Success) Both the sign and letter are identified if no losses
are detected and all the B±’s succeed. (Failure) Neither sign nor
letter is identified if no Bψ’s succeed and all B±’s detect losses.
(Sign discrimination) Only the sign is identified if otherwise. The
block-level sign (or letter) is selected randomly if it is not
identified. The probabilities of these cases are respectively

Success : ps ¼ 1� 2�ðjþ1Þ� �
xm;

Failure : pf ¼
Pj
l¼0

x
2

	 
lð1� xÞm�l;

Sign discrimination : psd ¼ 1� ps � pf:

8>>><
>>>:

(11)

For a BSMlat, let Ns (Nf) denote the number of successful (failed)
BSMblc’s. The lattice-level letter is identified if Ns≥1 (namely, if at
least one block-level letter is identified) and the sign is identified if
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Nf= 0 (namely, if all block-level signs are identified). Hence, the
outcome of a BSMlat is included in one of the following four
events:

S ðSuccessÞ : Ns 	 1 ^ Nf ¼ 0;

DL ðLetter discriminationÞ : Ns;Nf 	 1;

DS ðSign discriminationÞ : Ns ¼ Nf ¼ 0;

F ðFailureÞ : Ns ¼ 0 ^ Nf 	 1:

8>>><
>>>:

(12)

The sign and letter error probabilities (qsign, qlett) of the BSMlat

for each event are (0, 0) for S, (1/2, 0) for DL, (0, 1/2) for DS, and (1/2,
1/2) for F. The probabilities of the events are respectively given as

PS ¼ ð1� pfÞn � pnsd;

PDL ¼ 1� ð1� psÞn þ ð1� pfÞn � pnsd;

PDS ¼ pnsd;

PF ¼ ð1� psÞn � pnsd:

8>>><
>>>:

(13)

We now consider using on-off detectors for fusions. Each
outcome of a BSMblc is uniquely identified by a triple O= (r, s,U),
where r 2 Zjþ1 :¼ f0; � � � ; jg is the number of failed Bψ’s, s= ± is
the sign chosen by the successful (r+ 1)th Bψ (if r < j) or randomly
(if r= j), and U is an (m− r)-element tuple composed of “ϕ,” “ψ,”
and “f” (failure) indicating the outcomes of the BSMphy’s from the
(r+ 1)th to the the last. (If r < j, the first component of U is always
ψ, and the other components are determined by the Bs’s. If r= j, all

the components are determined by the Bs’s.) Let Ne(U) for
e∈ {ϕ, ψ, f} denote the number of e in U. Then a BSMblc outcome O
is included in one of the following j+ 3 events:

Sr :¼ fðr; s;UÞjNf ðUÞ ¼ 0g ð0 � r � jÞ;
F :¼ fðj; s;UÞjNf ðUÞ ¼ m� jg;
D :¼ O n F ∪

Sj
r¼0 Sr

h i
;

8>><
>>: (14)

where O is the set of all possible outcomes. Note that the events
Sr , F , and D correspond to success, failure, and sign discrimina-
tion when η= 0. For each event E in Eq. (14), its sign and letter
error probabilities qblcsign=lettðEÞ and the probability pE that the event
occurs are given as follows (see Supplementary Note 4 for their
derivation):

qblcsignðSrÞ ¼ 0; qblclettðSrÞ ¼ 1
2 � 1

2
x

2�x

	 
r
;

pSr
¼ 1

2 1� x
2

	 
r
xm�r ;

(
(15)

qblcsignðFÞ ¼ ð1�xÞm�j

1þð1�xÞm�j ; qblclettðFÞ ¼ 1
2 ;

pF ¼ 1
2 1� x

2

	 
j
1þ ð1� xÞm�j
h i

;

8><
>: (16)

qblcsignðDÞ ¼ 0; qblclettðDÞ ¼ 1
2 ;

pD ¼ 1�P
r
pSr

� pF :

8<
: (17)

Fig. 8 Physical-level graphs of post-H microclusters for PTQC. In (a), the physical-level graphs of post-H microclusters for the HIC and HIS
configurations are shown for PTQC with the (n, m) parity encoding. The squares (circles) correspond to lattice-level (physical-level) qubits,
among which black ones indicate that the lattice-level (physical-level) Hadamard gates are applied to the qubits on the graph state. A blue
dashed box indicates a group of recurrent subgraphs; that is, the structure in the box is repeated as many times as indicated, and if there is an
edge across the border of the box, it means that edges of the same pattern exist in each of the repeated structures. See (b) for an example. A
number inside a circle means a blue dashed box surrounding only the circle with the indicated repetition number, as shown in the example of
(c). If there is an edge between two blue dashed boxes or circles containing numbers, the full graph can be recovered just by expanding them
one by one. As an example, the full graph of the side microcluster of the HIS configuration for n=m= 2 is shown in (d).
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A possible outcome of a BSMlat corresponds to an n-tuple of
events composed of Sr (0 ≤ r ≤ j), F , and D, which can be
regarded as an independent event for the outcomes of the BSMlat.
The probability that an event E ¼ ðE1; � � � ; EnÞ occurs is

pE ¼
Yn
i¼1

pE i (18)

and the sign and letter error probabilities of E ¼ ðE1; � � � ; EnÞ are
respectively

qsignðEÞ ¼
1
2
� 1
2

1� 2qblcsignðFÞ
h iNF

; (19)

qlettðEÞ ¼ 1
2 þ 1

2

P
ðλ1;��� ;λnÞ2Zn

2

Qn
i¼1

qλii ð1� qiÞ1�λi
h i

´ sgn
Pn
i¼1

2λi � 1ð Þ log 1�qi
qi

� �
;

(20)

where NF is the number of F ’s in E, qi :¼ qblclettðE iÞ, and sgnðaÞ is a/
∣a∣ if a ≠ 0 and 0 if a= 0. See Supplementary Note 4 for their
derivation.

Generation of post-H microclusters
In this subsection, we first present the physical-level graphs of
post-H microclusters for PTQC and then describe the method to
generate them. A post-H microcluster, which is composed of three
lattice-level qubits or two of them and one photon (physical-level
qubit), can be regarded as a graph state of photons up to several
physical-level Hadamard gates. The graph of this graph state,
called the “physical-level graph” of the post-H microcluster, is
visualized in Fig. 8 for each post-H microcluster; see Supplemen-
tary Note 5 for their derivation. Here, the squares (circles) indicate
lattice-level (physical-level) qubits. If a square (circle) is filled with
black, it means that the lattice-level (physical-level) Hadamard
gate is applied on the qubit after the involved edges are
connected. Recurrent subgraphs are abbreviated as blue dashed
squares or circles with numbers; see Fig. 8b–d for the detailed
interpretation of these notations.
We now depict the ways to generate a specific post-H

microcluster from GHZ-3 states. We first describe a straightforward
method and then adjust or generalize it. The final method can be
summarized as follows:

1. Determine a merging graph G for the post-H microcluster
that we want to create by the algorithm presented below.
Each edge of G is labeled as either “internal" or “external."

2. For each vertex v in G, Prepare a GHZ-3 state GHZ3j iv .
3. For each edge e in G that connects v1 and v2, perform a BSM

(fusion) on two photons selected respectively from GHZ3j iv1
and GHZ3j iv2 if e is an internal (external) edge. The order of
the operations does not matter.

We define the “GHZ-l state” for an integer l≥3 by the state
GHZlj i :¼ Hj i�l þ Vj i�l . Note that it is a state obtained from a
graph state with a star graph (where the number of vertices is l) by
applying Hadamard gates on all the leaves of the graph; namely,

GHZlj i ¼ H2 � � �HlC
Z
12 � � � CZ

1l þj i�l : (21)

We refer to the first photon of the above expression as the “root
photon” of the state (which can be chosen arbitrarily) and the
other photons as its “leaf photons.”
If a BSM is performed on the root photon of a GHZ-l1 state and a

leaf photon of a GHZ-l2 state, the resulting state on the remaining
photons is a GHZ-(l1+ l2− 2) state. Thus, an arbitrary GHZ state
can be constructed by performing BSMs on multiple GHZ-3 states
appropriately. On the other hand, if a fusion is performed on two
leaf photons selected respectively from GHZ-l1 and GHZ-l2 states,
the resulting state is no longer a GHZ state, but it is a graph state

(up to some Hadamard gates) with a graph containing a vertex
with degree l1− 1, a vertex with degree l2− 1, and multiple
vertices with degree one. (The degree dv of a vertex v means the
number of edges connected to v.)
Combining the above facts, a post-H microcluster (or an

arbitrary graph state) with the physical-level graph G can be
generated from GHZ-3 states up to physical-level Hadamard gates
in the following way: For each vertex v of G with a degree larger
than one, prepare a state GHZdvþ1j iv through BSMs on GHZ-3
states. Then, for each edge (v1, v2) of G, perform a fusion on two
photons selected respectively from jGHZdv1þ1iv1 and jGHZdv2þ1iv2 .We refer to each BSM or fusion during this process as a merging
operation.
However, the above method still has room for improvement.

The physical-level graphs in Fig. 8 can be decomposed into
multiple components that are combined by fusions through the
process shown in Fig. 9. Here, each recurrent subgraph connected
with multiple vertices is separated and connected with only one
vertex. The decomposition of different post-H microclusters is
explicitly presented in Supplementary Figure 7. To generate a
post-H microcluster, we prepare the individual components first
by the aforementioned method, then merge them through
fusions. This process may greatly reduce the number of required
merging operations since the number of edges decreases as
shown in Fig. 9.
Furthermore, we can generalize the method using the fact that

every merging operation commutes with each other. That is, even
if all the fusions and BSMs in the above process are performed in
an arbitrary order, the final state does not vary (up to the change
of the Pauli frame). To systematically address this feature, we
define a merging graph of a post-H microcluster or one of its
components by a graph in which the vertices correspond to initial
GHZ-3 states and the edges indicate the merging operations
between them required to generate the state. Each edge of a
merging graph is either internal or external that corresponds to
BSMs or fusions, respectively.
A merging graph of a component can be constructed by the

following method starting from its physical-level graph (see Fig. 10
for two examples): First, for each vertex v satisfying dv ≥ 2 in the
physical-level graph, replace it with dv− 1 new vertices connected
by internal edges in series with each other. This process means
decomposing a GHZ-(dv+ 1) state into dv− 1 GHZ-3 states. The
edges originally connected to v are distributed to the new vertices
in a way that every new vertex is connected to three or fewer
edges. Then there is only one vertex connected to two edges,
which is called the “seed vertex” of v. This seed vertex means that

Fig. 9 Decomposition of a graph state. A graph state is
decomposed by separating recurrent subgraphs that are connected
with multiple vertices.
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one photon in the corresponding GHZ-3 state does not participate
in any merging operation and remains in the final state. Lastly, the
merging graph is obtained by removing all the vertices with
degree one. See Supplementary Note 6 for a stricter step-by-step
description of the method.
The merging graph of a post-H microcluster is constructed by

combining the merging graphs of its components. That is, for each
fusion between different components, the corresponding seed
vertices in the merging graphs are connected by an external edge.
Then we finally get the method summarized at the beginning of
this subsection.

Optimization of resource overheads
The process of generating a post-H microcluster described above
is determined by two factors: the merging graph and the order of
the merging operations. Here, we discuss their optimization for
minimizing resource overhead. The merging graph is selected
randomly by the algorithm in Supplementary Note 6. Based on it,
we determine the order of the merging operations through an
algorithm found heuristically and calculate the expected number
NMC
GHZ of GHZ-3 states required to generate the state. We repeat

this process for a large enough number to obtain as low resource
overhead as possible. N�

GHZ and N pL can be calculated by using
the obtained optimal resource overheads; see Supplementary
Note 3 for details.
During the generation process, performing each merging

operation can be regarded as contracting the corresponding
edge, which means removing the edge, merging the two vertices
(v1, v2) that it previously joined into a new vertex w, and
reconnecting all the edges that were connected to v1 and v2
with w. Here, each vertex indicates a connected subgraph (a group
of entangled photons) of the intermediate graph state. We assign
a “weight” Nv (which is initialized to 1) on each vertex v, which is
the average number of GHZ-3 states required to generate the
connected subgraph. If the edge between two vertices v1 and v2
are contracted, the new vertex w has the weight of

Nw ¼ 2

ð1� ηÞ2 ðNv1 þ Nv2Þ ¼: Nv1þmNv2 ; (22)

where the factor 2/(1−η)2 is the inverse of the success probability
of the merging operation. By repeating this process, the post-H
microcluster is obtained when there is only one vertex left, whose
weight is equal to NMC

GHZ.
To find an optimal order of merging operations, we use the

following strategy:

1. Find the set Emin.wgt of edges with the smallest weight,
where the weight of an edge (v1, v2) is defined as Nv1þmNv2 .

2. Using an edge coloring algorithm, allocate “colors” to all
edges so that different edges sharing a vertex have different
colors and as few colors as possible are used.

3. Partition Emin.wgt into disjoint subsets by the colors of the
edges. Find the largest subset Emrg among them. If such a
subset is not unique, choose one randomly.

4. Contract each edge in Emrg in an arbitrary order.
5. Repeat all the above steps until only one vertex is left.

The strategy is based on the following two intuitions: First, it is
better to merge vertices with small weights first, since (N1+
mN2)+ mN3 < N1+ m(N2+ mN3) if N1 < N2 < N3. Secondly, it is better
to perform merging operations in parallel as much as possible.
Such a set of edges can be found by the edge coloring algorithm.
For our results, we have used the function coloring.gree-
dy_color in NetworkX package44 with the strategy largest_-
first. (Since the function performs vertex coloring, we input the
line graph of Gmrg into the function.)
In Supplementary Note 7, we show an evidence that this

optimizing strategy is indeed highly effective in terms of both the
optimality of the calculated overhead and searching time, by
comparing its performance with those of its variants constructed
by omitting or altering specific steps. We conjecture that this
strategy is powerful for generating general graph states as well as
those for PTQC, which will be worth investigating.

Methods for comparing PTQC and previous approaches
Here, we describe the methods to obtain the results in Fig. 7
where PTQC and three known approaches are compared. Let ηe,
ηb, ηs, ηd, and ηm denote the photon loss rates in a single-photon
source, beam splitter, switch, delay line (for the time period
required to process classical data for a switch), and photodetector,
respectively. We consider “fancy” switches24 that have multiple
input and output modes; thus, N states can be post-selected from
M input states (N <M) with a single switch. For the analysis, we
assume ηe= ηb= ηs= ηd= ηm= ηcomp. The total photon loss rate
η is upper bounded by

ηe þ ηm þ Nbηb þ Nsηs þ Ndηd :¼ Ncompηcomp; (23)

where Nb, Ns, and Nd are respectively the maximal numbers of
beam splitters, switches, and delay lines that a single photon
encounters between its creation and measurement. When
counting delay lines, we assume that actions that are not causally
related can be done in parallel; namely, delay lines are
compressed as much as possible so that those required for
switches are dominant. The loss threshold per component is lower
bounded by ηth/Ncomp, where ηth is the total loss threshold.

Fig. 10 Construction of merging graphs from a physical-level graph. v is the only vertex with a degree larger than two in the original graph.
The upper and lower processes differ in the selection of the seed vertex for the decomposition of v.
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Let us first consider PTQC without post-selection of star clusters.
During the generation of GHZ-3 states and their post-selection, a
photon passes through one beam splitter, switch, and delay line38.
While constructing microclusters, a photon encounters at most
Nstep pairs of a switch and delay line that are used for post-
selecting photons by the outcomes of merging operations. Here,
Nstep is the number of steps (groups of merging operations that
can be conducted in parallel). In a CBSM, physical-level BSMs
(BSMphy’s) in each block should be done one by one since their
types (Bψ, B+, and B−) depend on the previous BSMphy outcomes.
Therefore, a photon passes through at most one switch (zero if
m= 1) and m− 1 delay lines before the BSMphy of the photon is
performed. Lastly, a photon enters two beam splitters during the
BSMphy. To sum up, we get

η � ηe þ ηm þ 3ηb þ ðNstep þ 2� δm;1Þηs þ ðNstep þmÞηd
¼ ð2Nstep þmþ 6� δm;1Þηcomp;

(24)

where δ is the Kronecker delta. If star clusters are post-selected,
we should add one switch and delay line (for the post-selection)
and m− 1 delay lines (to wait for step-1 fusions to finish) to the
formula, which leads to

η � ð2Nstep þ 2mþ 7� δm;1Þηcomp: (25)

MTQC is the same as PTQC except that m is fixed to 1 and
central qubits are encoded. Since only side qubits are involved in
CBSMs, Eqs. (24) and (25) for m= 1 can be directly applied to this
case. Figure 7 shows only the case that star clusters are post-
selected, which gives higher thresholds than the case without it. In
Supplementary Note 8, we discuss the effects of the central qubit
encoding in detail, showing that it is not helpful for improving the
performance of the protocol unlike claimed in Ref. 18.
For the tree-encoding method, the thresholds per component

are already reported in Fig. 4b of Ref. 24. The number N�
det of

detectors per data qubit, which is used as a resource measure in
Ref. 24, can be approximately converted to N�

GHZ by multiplying
1/198. It is because a single successfully generated GHZ-3 state
requires 6 × 32= 192 detectors for its generation and two
detectors for measuring each photon in the state.
We lastly investigate the approach with single-photon qubits

and boosted fusions. Employing the BSM scheme in Ref. 19, a GHZ-
2m state for each m∈ {1, 2,⋯ , N− 1} (for an integer N≥2) is used
as an ancillary state for a single BSM, where a GHZ-2 state is a Bell
state 00j i þ 11j i. (Bell states are ignored in resource analysis.) The
BSM scheme succeeds with the probability of ð1� 1=2NÞð1� ηÞ2N
and discriminates only the letter of the Bell state (qsign= 1/2,
qlett= 0) with the probability of ð1� ηÞ2N=2N . In other cases,
photon losses are detected and the data is discarded (qsign=
qlett= 1/2). Based on this information, we can conduct error
simulations for various values of N and obtain the loss thresholds,
as done for PTQC. To compute the threshold per component, we
consider the path of a photon in an ancillary GHZ-2N−1 state
(which is the longest):

η � ηe þ ηm þ ð1þ 2NÞηb þ ð1þ Nanc
stepÞðηs þ ηdÞ

¼ ð5þ 2N þ 2Nanc
stepÞηcomp;

(26)

where Nanc
step is the number of steps during the generation of the

GHZ-2N−1 state. The factor 2N in front of ηb comes from the
number of beam splitters in a boosted fusion19. Considering
ancillary GHZ states for two step-1 and two step-2 fusions per
central qubit, N�

GHZ is given as

N�
GHZ ¼

3þ 4Nanc
GHZ without PS;

3þ2Nanc
GHZ

1�1=2Nð Þð1�ηÞ2N
þ 2Nanc

GHZ with PS;

8<
: (27)

where “PS” means post-selection of star clusters and Nanc
GHZ is the

average number of GHZ-3 states required to generate all the

ancillary GHZ states for one BSM. The calculation results are as
follows: For the cases of N≤3, we get ηth < 10−3. For the case of
N= 4 with PS, we get ηth= 2.7 × 10−3, ηth/Ncomp= 1.0 × 10−4, and
N�
GHZ ¼ 185. For the case of N= 5 with PS, we get ηth= 1.8 × 10−3,

ηth/Ncomp= 4.0 × 10−5, and N�
GHZ ¼ 1027. Only the case of N= 4

with PS is marked in Fig. 7.

DATA AVAILABILITY
The simulation data for obtaining thresholds and resource overheads of our protocol
is available at https://github.com/seokhyung-lee/PTQC.

CODE AVAILABILITY
The Python codes used for numerical simulations are available from the
corresponding author upon reasonable request.
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