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Implementation of quantum measurements using classical
resources and only a single ancillary qubit
Tanmay Singal 1,2, Filip B. Maciejewski 2 and Michał Oszmaniec 2✉

We propose a scheme to implement general quantum measurements, also known as Positive Operator Valued Measures (POVMs) in
dimension d using only classical resources and a single ancillary qubit. Our method is based on probabilistic implementation of d-
outcome measurements which is followed by postselection of some of the received outcomes. We conjecture that success
probability of our scheme is larger than a constant independent of d for all POVMs in dimension d. Crucially, this conjecture implies
the possibility of realizing arbitrary nonadaptive quantum measurement protocol on d-dimensional system using a single auxiliary
qubit with only a constant overhead in sampling complexity. We show that the conjecture holds for typical rank-one Haar-random
POVMs in arbitrary dimensions. Furthermore, we carry out extensive numerical computations showing success probability above a
constant for a variety of extremal POVMs, including SIC-POVMs in dimension up to 1299. Finally, we argue that our scheme can be
favorable for experimental realization of POVMs, as noise compounding in circuits required by our scheme is typically substantially
lower than in the standard scheme that directly uses Naimark’s dilation theorem.
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INTRODUCTION
Quantum measurements recover classical information stored in
quantum systems and, as such, constitute an essential part of
virtually any quantum information protocol. Every physical plat-
form has its native measurements that can be realized with
relative ease. In many cases, the class of easily implementable
measurements contains projective (von Neumann) measurements.
However, there are numerous applications1–9 in which more
general quantum measurements, so called Positive-Operator-
Valued Measures (POVMs), need to be implemented. Implementa-
tion of these measurements requires additional resources. A
recent generalization10 of Naimark’s dilation theorem11 showed
that the most general measurement on N qubits requires N
auxiliary qubits, when projective measurements can be imple-
mented on the combined system in a randomized manner.
From the perspective of implementation in near-term quantum

devices12, it is desirable to implement arbitrary POVMs with fewer
resources. Particularly, one would like to reduce the number of
auxiliary qubits needed to implement a complex quantum
measurement. A related problem is to quantify the relative power
that generalized measurements in d-dimensional quantum
systems have with respect to projective measurements in the
same dimension. While POVMs appear as natural measurements
for a variety of quantum information tasks: quantum state
discrimination13, quantum tomography14–16, multi-parameter
metrology17,18, randomness generation19, entanglement20 and
nonlocality detection21, hidden subgroup problem22,23, port-
based-teleportation24–26, to name just a few. It is, however, not
clear in general what quantitative advantage the more complex
measurements offer over their simpler projective counterparts.
This is because of the possibility to realize non-projective
quantum measurements via randomization and post-processing
of simpler measurements10,27–32. Specifically, taking convex
combinations of projective measurements can result in imple-
mentation of a priori quite complicated nonprojective POVMs10,32.

In this work we advance understanding of the relative power
between projective and generalized measurements by focusing
on a simpler problem, namely the relation between d-outcome
POVMs and general (with arbitrary number of outcomes) POVMs
acting on a d-dimensional Hilbert space H � Cd . We find a strong
evidence that general quantum measurements do not offer an
asymptotically increasing advantage over d-outcome POVMs for
general quantum state discrimination problems13, as d tends to
infinity. Specifically, we generalize the method of POVM simula-
tion from32 based on randomized implementation of restricted-
class POVMs, followed by post-processing and postselection
(defined later, see also Fig. 1). Here by postselection we mean
disregarding certain measurement outcomes and accepting only
the selected ones. In32 it was shown that postselection allows to
implement arbitrary POVM on Cd using only projective measure-
ments and classical resources. This, however, comes with a cost -
the method outputs a sample from a target quantum measure-
ment with success probability qsucc ¼ 1

d. In this work we find that,
surprisingly, there exists a protocol that allows to simulate a very
broad class of POVMs on Cd via d-outcome POVMs and
postselection with success probability qsucc above a constant
which is independent on the dimension d. Importantly, our
construction ensures d-outcome POVMs used in the simulation
can be implemented using projective measurements in Hilbert
space of dimension 2d. Therefore, our method gives a way to
implement quantum measurements on Cd using only a single
auxiliary qubit and projective measurements with constant
success probability. We note that there exist schemes implement-
ing arbitrary POVMs on Cd using a sequence of von Neumann
instruments (i.e., a description of quantum measurements which
includes post-measurement state of the system) on a system
extended by a single auxiliary qubit33,34. Our method is potentially
simpler to implement as, in a given round of the experiment, only
a single projective measurement has to be realized on the
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extended system and post-measurement states need not to be
considered.
While we do not prove that the success probability qsucc of our

scheme is lower bounded by a dimension-independent constant
for any POVMs on Cd , we give strong evidence that this is indeed
the case. First, we prove that for generic d-outcome Haar-random
rank-one POVMs in Cd35 the success probability is above 6.5%
(numerically we observe ≈ 25%). We also support our conjecture
by numerically studying specific examples of symmetric informa-
tionally complete POVMs (SIC-POVMs)36–38 and for a class of
nonsymmetric informationally complete POVMs39 (IC-POVMs),
both for dimensions up to 1299. As the dimension increases, we
observe that the success probability qsucc both for SIC-POVMs and
IC-POVMs is ≈ 1/5. Importantly, if true, our conjecture implies that
any non-adaptive measurement protocol can be realized using
only single ancillary qubit with a sampling overhead that does not
depend on the system size.
Finally, our scheme gives a possibility of more reliable

implementation of complicated POVMs in noisy quantum devices.
To support this claim, we employ the noise model used in
Google’s recent demonstration of quantum computational advan-
tage40. We make the following comparison between our method
and the standard Naimark’s scheme of POVM implementation: for
implementing typical random POVMs on N qubits, the fidelity of
circuits which implement our scheme is exponentially higher than
for Naimark’s implementation. This is due to the lower number of
ancillary qubits required.

RESULTS
Preliminaries
We start by introducing notation and the concepts necessary to
explain our POVM implementation scheme. We will be studying
generalized quantum measurements on d-dimensional Hilbert
space H � Cd . An n-outcome POVM, is an n-tuple of linear
operators onCd (usually called effects), i.e.,M ¼ M1;M2; � � � ;Mnð Þ,
satisfying Mi ≥ 0 and

Pn
i¼1 Mi ¼ 1, where 1 is identity on Cd . A

POVM P ¼ P1; P2; � � � ; Pnð Þ is called projective if all its effects
satisfy the following relations: PiPj= δijPi. Measurement of M on a
quantum state ρ results in a random outcome i, distributed
according to the Born rule pðijρ;MÞ ¼ tr ρMið Þ. We will denote the
set of all all n-outcome POVMs by Pðd; nÞ. The set Pðd; nÞ is
convex30: for M;N 2 Pðd; nÞ, and p∈ [0, 1] we define pM+ (1− p)
N to be an n-outcome POVM with the i-th effect given by
pMþ ð1� pÞN½ �i ¼ pMi þ ð1� pÞNi . A convex mixture pM+ (1−
p)N can be operationally interpreted as a POVM realized by
applying, in a given experimental run, measurements M,N with
probabilities p and 1− p respectively. A POVM M 2 Pðd; nÞ is
called extremal if it cannot be decomposed as a nontrivial convex
combination of other POVMs.

Another classical operation that can be applied to POVMs is
classical post-processing29,41: given a POVM M, we obtain another
POVM Q Mð Þ by probabilistically relabeling the outcomes of the
measurement M. Effects of Q Mð Þ are given by QðMÞi ¼

P
jqijjMj ,

where qi∣j are conditional probabilities, i.e., qi∣j ≥ 0 and ∑iqi∣j= 1.
Lastly, postselection, i.e., the process of disregarding certain
outcomes can be used to implement otherwise inaccessible
POVMs. We say that a POVM L= (L1,…, Ln, Ln+1) simulates a POVM
M= (M1,…,Mn) with postselection probability q if Li= qMi for
i= 1,…, n. This nomenclature is motivated by realizing that when
we implement L, then, conditioned on getting the first n
outcomes, we obtain samples from M. Thus, we can simulate M
by implementing L, and post-selecting on non-observing outcome
n+ 1. The probability of successfully doing so is q which means
that a single sample of M is obtained by implementing L on
average 1/q number of times. The reader is referred to32 for a
more detailed discussion of simulation via post-selection.
We will use ∥A∥ to denote the operator norm of a linear

operator A, and [n] to denote n-element set {1,…n}. Moreover, we
will use μn to refer to Haar measure on n-dimensional unitary
group U(n), and by PU�μnðAÞ we will denote probability of
occurrence of an event A according to this probability measure.
Finally, for two positive-valued functions f(x), g(x) we will write
f=Θ(g) if there exist positive constants c, C > 0 such that
cf(x) < g(x) < Cf(x), for sufficiently large x.

General POVM simulation protocol
The following theorem gives a general lower bound on the
success probability of simulation of n-outcome POVMs via
measurements with bounded number of outcomes and
postselection.

Theorem 1. Let M= (M1,M2,…,Mn) be an n-outcome POVM on
Cd . Let m ≤ d be a natural number and let fXγgαγ¼1 be a partition
of [n] into disjoint subsets Xγ satisfying ∣Xγ∣ ≤m− 1. Then, there
exists a simulation scheme that uses measurements having at
most m outcomes, classical randomness and post-selection that
implements M with success probability

qsucc ¼
Xα
γ¼1

X
i2Xγ

Mi

������
������

0
@

1
A

�1

: (1)

Furthermore, if rank Mi ≤ 1, and m ≤ d, then measurements
realizing the scheme can be implemented by projective measure-
ments in dimension 2d, i.e., using a single auxiliary qubit.

Proof. In what follows we give an explicit simulation protocol that
generalizes earlier result from32,42 that concerned the case of
simulation via dichotomic measurements (m= 2). The idea of the

Fig. 1 Implementation of a target measurement M with POVMs having at most m outcomes and postselection. Left figure illustrates
a general idea of the scheme, while in the right figure the method is illustrated in more detail–in b, them-outcome POVMs NXj are constructed
using effects ofM that correspond to different subsets Xγ forming a partition of [n] into subsets of cardinality m− 1 (figure shows the standard
partition and effects of [n]: X1 ¼ 1; 2; � � � ;m� 1f g, X2 ¼ m; � � � ; 2m� 2f g, etc.) In c, POVMs NXγ are implemented probabilistically and the
resulting outcomes ai undergo suitable post-processing and post-selection steps which simulate M.
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scheme is given in Fig. 1. We start by defining, for every element
Xγ of the partition, auxiliary measurements NXγ , each having m+ 1
outcomes, whose purpose is to “mimick” measurement M for
outputs belonging to Xγ and collect other (i.e., not belonging to Xγ)
results in the “trash” output labelled by n+ 1. Effects of NXγ are
defined by NXγ

i ¼ λγMi for i∈ Xγ, NXγ

i ¼ 0 for i∈ [n]⧹Xγ, and

NXγ

nþ1 ¼ 1� λγ
P

i2Xγ
Mi , where λγ ¼ kPi2Xγ

Mik�1.
We then define a probability distribution fqsuccλγ

gα
γ¼1

. The simulation
of M is realized by considering a convex combination of NXγ

according to this distribution: L ¼ Pα
γ¼1

qsucc
λγ

NXγ . An explicit compu-
tation shows that we have Li= qsuccMi, for i∈ [n] and therefore L
simulates the target measurement M with success probability qsucc.
Finally, each of the measurements NXγ comprising L has at most

∣Xγ∣+ 1 nonzero effects and therefore they can be implemented
with POVMs with at most m outcomes. From the standard
Naimark scheme of implementation of POVMs (c.f.11) we see that
the dimension needed to implement a POVM NXγ via projective
measurements equals at most the sum of ranks of effects of NXγ . In
the case of rank-one M and ∣Xγ∣ ≤m− 1 this sum for each NXγ is at
most d+m− 1 ≤ 2d, which completes the proof.

Crucially, we recall that an arbitrary quantum measurement on
Cd can be implemented by a convex combination of rank-one
POVMs having at most d2 outcomes followed by suitable post-
processing27,30. This implies that our protocol facilitates the
simulation of any POVM on Cd using only a single ancillary qubit
– first by decomposing the target POVM into a convex
combination of rank-one ≤ d2-outcome measurements, and
subsequently applying Theorem 1 to each of them.
Importantly, the standard Naimark’s implementation of a

general POVM would require appending an extra system of
dimension d (which can be realised by log2d ancillary qubits) and
carrying out a global projective measurement. Our simulation
protocol greatly reduces this requirement on the dimension cost
of implementing M with the possible downside being the
probabilistic nature of the scheme. The success probability qsucc
depends on the choice of the partition fXγgαγ¼1, and finding the
optimal one (for a given bound on the size of Xγ) is in general a
difficult combinatorial problem. In what follows we collect
analytical and numerical results suggesting the following

Conjecture. For arbitrary extremal rank-one POVMM= (M1, ¼,Mn)
on Cd , there exists a partition fXγgαγ¼1 of [n] satisfying
∣Xγ∣ ≤ d− 1 such that the corresponding value of success
probability qsucc from Eq. (1) is larger than a positive constant
independent of d.
Let us explore the intriguing conceptual consequences of the

validity of this conjecture. First, consider a general nonadaptive
measurement protocol that utilizes some quantum measurement
M on Cd . Such a protocol consists of S independent measurement
rounds of a quantum state ρ resulting in outcomes i1, i2,…, iS
distributed according to the probability distribution pðijM; ρÞ ¼
trðMiρÞ. This experimental data is then processed to solve a specific
problem at hand. If we can simulate any arbitrary M (see comment
below proof of Theorem 1) via POVMs that can be implemented
using only a single auxiliary qubit with probability q, which is
independent of the dimension d, then this means that we can, on
average, exactly reproduce the implementation of the above
protocol for qS of the total S rounds. Importantly, we also know in
which rounds the simulated protocol was successful, so we know
which part of the output data generated by our simulation comes
from the target distribution. Crucially, the above considerations are
completely oblivious to the figure of merit and the structure of the
problem that measurements of M aim to solve.
For many quantum information tasks, losing only a constant

fraction of the measurement rounds is not prohibitive and hence,

assuming the validity of the conjecture, our POVM simulation
scheme offers a way to significantly reduce quantum resources
needed for said POVM’s implementation. Such exemplary tasks
include quantum state tomography16, quantum state discrimina-
tion13, multi-parameter quantum metrology17,18 or port-based
teleportation24, and will be explored by us in future works.
Our simulation protocol and the above conjecture are also

relevant from the perspective of POVM simulability10,32,43 that
attracted a lot of attention recently in the context of resource
theories44–50. Namely, the maximal post-selection probability,
q(m)(M), with which a target POVM M on Cd can be simulated
using strategies utilizing randomized POVMs with at most m
outcomes, quantifies how far M is from the set of m-outcome
simulable POVMs in Cd , denoted by Sm. Moreover, q(m)(M)
imposes bounds on the so-called white noise critical visibility
t(m)(M)10 and the robustness R(m)(M)44 against simulation via
POVMs from Sm. Here by critical visibility we mean a parameter
tðmÞ Mð Þ associated with a minimal amount of white noise that
ensures that noisy version of M belongs to subset Sm, namely

tðmÞ Mð Þ :¼ max t jΦt Mð Þ 2 Smf g; (2)

where Φt Mð Þ is a POVM with effects ΦtðMiÞ :¼ tMi þ ð1� tÞ trMi
d 1.

By robustness R(m)(M) with respect to Sm, we mean the minimal
amount of mixing ofM with a POVM from Sm so that the resulting
POVM belongs to Sm, i.e.,

RðmÞ Mð Þ :¼ min s j 9K s:t:
Mþ sK
1þ s

2 Sm

� �
: (3)

Now, the above quantities are bounded with the success
probability of our scheme via (see Section A of Supplementary
Material):

qðmÞðMÞ � tðmÞðMÞ ; RðmÞðMÞ � 1
qðmÞðMÞ � 1 : (4)

Importantly, we note that the robustness R(m)(M) has an
appealing operational interpretation: it is also expressible as the
maximal relative advantage thatM offers over any POVM in Sm for
a state discrimination task44:

RðmÞðMÞ ¼ max
E

Psucc E;Mð Þ
max
N2Sm

Psucc E;Nð Þ � 1; (5)

where E ¼ ðqi; σiÞf gni¼1 is an ensemble of quantum states, and
Psucc E;Mð Þ is the probability for the minimum error discrimination
of the states from E withM. Now, from the second inequality in (4)
and the (conjectured) constant lower bound on q(d) we get a
surprising conclusion: general POVMs on Cddo not offer
asymptotically increasing (with d) advantage over d-outcome
simulable measurements for general quantum state discrimination
problems.

Haar random POVMs
We want to qualitatively understand how qsucc depends on the
total number of outcomes n, the number of POVM outcomes used
in the simulation m, and the dimension d. To make the problem
feasible we turn to study Haar-random POVMs on Cd . Quantum
measurements comprising this ensemble can be realized by a
construction motivated by Naimark’s extension theorem: (i) attach
to Cd an ancillary system Ca so that the composite system is n-
dimensional: Cd �Ca � Cn, (ii) apply on this composite system a
random unitary U chosen from the Haar measure μn in UðCnÞ, and
(iii) measure the composite system in the computational basis.
Effects of this measurement MU are given by MU

i ¼ trCa

1� 0j i 0h jUy ij i ih jU� �
, where 0j i 0h j is a fixed state on Ca. Haar-

random POVMs were introduced first in23 in the context of the
hidden subgroup problem and are a special case of a more
general family of random POVMs studied recently in35.
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Measurements MU are extremal for almost all U ∈ U(n). Further-
more, all extremal rank-one POVMs in Cd are of the form MU for
some U ∈ U(n), and n∈ {d, d+ 1,…, d2}. Hence, Haar-random
POVMs form an ensemble consisting of extremal non-projective
measurements, making them a natural test-bed for studying the
performance of our simulation algorithm.

Theorem 2. (Success probability of the implementation of Haar-
random POVMs) Let n 2 d; ¼ ; d2

� �
, m ≤ d. Let MU denote a rank-

one n-outcome Haar-random POVM on Cd . Let qðmÞ
succðMUÞ denote

the success probability of implementing MU via m-outcome
measurements as in Eq. (1) for the standard partition of n½ �, i.e.,
X1 ¼ 1; ¼m� 1f g; X2 ¼ m;mþ 1; ¼ ; 2m� 2f g, etc. We then
have

P
U�μn

qðmÞ
succ MU

� � 	 Θ
m
d

	 
	 

! 1; as d ! 1 : (6)

Moreover, let q(m)(MU) be the maximal success probability of
implementing MU with postselection via convex combination of
m-outcome measurements using any simulation protocol. We
then have

P
U�μn

qðmÞ MU
� � � Θ

m
d
logðdÞ

	 
	 

! 1; as d ! 1 : (7)

The above result shows that when simulating Haar-random
POVMs on Cd with m-outcome measurements in our scheme, the
success probability scales as m

d . Furthermore, Eq. (7) shows the
optimality of our method up to a factor logarithmic in d.
Specifically, we obtain the following crucial result: when m= d,
with overwhelming probability over the choice of random
U∈ U(d2), qðdÞ

succðMUÞ is above 6.74%. Below we sketch the proof
for Theorem 2. We provide a complete proof in Section C of the
Supplementary material, with expressions for finite d, for bounds
in Eqs. (6) and (7). A sketch of this proof is provided in the
Methods section.

Numerical investigation
We tested the performance of our POVM simulation scheme by
computing qsucc for SIC-POVMs36–38, IC-POVMs39 and for Haar-
random d2-outcome POVMs. We focused on simulation strategies
via POVMs that can be implemented with a single auxiliary qubit
(this corresponds to setting m= d in Theorem 1). Results of our
numerical investigation are given in Fig. 2. For every considered
measurement, the success probability was obtained via direct
maximization over only ≤24 random partitions of [d2]. The graph
shows that with increasing dimension, qsucc approaches ≈ 25% for
SIC POVMs and random POVMs, while for IC it is above ≈ 20% even
up to d= 1299. For details on the construction of these POVMs we
refer the reader to the Methods section.

Noise analysis
Let us now discuss the effects of experimental imperfections on
practical implementation of our scheme for generic POVMs. The
quantum circuits implementing Haar-random POVMs can be
considered generic random circuits. The simplest noise model
often adopted for such circuits (see ref. 51) is a global completely
depolarizing channel described by a “visibility” parameter η. In
what follows we assume that this noise is going to affect
implementation of circuits used to realize a target POVM M (either
via Naimark’s construction or via our method). This noise acts in
the following way on effects of n-outcome POVM: Mi ! Mη

i :¼
ηMi þ 1� ηð Þ 1n (see Section D of the Supplementary material for
details).
To quantitatively compare noisy and ideal implementation of a

POVM we use Total-Variation Distance dTV p Mjρð Þ;p Njρð Þð Þ :¼

1
2

Pn
i¼1 jp ijρ;Mð Þ � p ijρ;Nð Þj between probability distributions

p Mjρð Þ (p Njρð Þ) obtained when ρ is measured by M (N). In
particular, we will be interested in the worst-case distance, i.e.,
TVD maximized over quantum states ρ, which can be interpreted as
measure of statistical distinguishability of M and N (without using
entanglement52). This notion of distance is used to benchmark
quality of quantum measurements on near-term devices53–55.
The following result, proven in Section D of the Supplementary

material, gives a lower bound for the average worst-case distance
between ideal and noisy implementation of Haar-random POVMs.

Proposition 1. Let MU be a Haar-random n-outcome rank-one
POVM onCd and let MU,η be its noisy implementation with effects
MU;η
� �

i ¼ ηMU
i þ 1� ηð Þ 1n. We then have

max
ρ

dTV p MUjρ� �
;p MU;ηjρ� �� �� �� �

Haar
	 1� ηð Þcn ; (8)

where cn ¼ 1� 1
n

� �n � 1
e.

To make qualitative comparison between our and standard (i.e.,
based on Naimark’s dilation theorem) implementation of POVMs,
we use noise model used in Google’s recent demonstration of
quantum advantage40. Assuming that main source of errors are
multiple two-qubit gates, we get that dominating term in visibility
is exponentially decaying function: η ¼ η r2; g2ð Þ � exp �r2g2ð Þ,
where r2 is two-qubit error rate and g2 is the number of two-qubit
gates needed to construct a given circuit. Now recall that for
implementation of d2-outcome POVM using Naimark’s dilation,
one needs to implement circuits on the Hilbert space with
doubled number of qubits 2N (we assume d= 2N), while our post-
selection scheme requires only a single additional qubit, hence
the target space has only N+ 1 qubits. We note that for
implementation of generic circuits on 2N qubits, the theoretical
lower bound56 for needed number of CNOT gates is
gNaimark
2 ¼ Θ 42N

� � ¼ Θ 16N
� �

, while our scheme gives the scaling
gpost2 ¼ Θ 4N

� �
.

Finally, combining the above considerations with Proposition 1,
we get expected worst-case distance between ideal and noisy
Naimark implementation of generic d2-outcome measurement is
lower bounded by � 1� exp �Θ 16N

� �� �� �
e�1, which corresponds

to ηNaimark ¼ exp �Θ 16N
� �� �

. We compare this to the quality of
probability distribution pnoise

post ðMjρÞ generated by the noisy version
of our simulation scheme which is based on implementation of

Fig. 2 Success probability qsucc as a function of dimension d of
the Hilbert space for d2-outcome measurements. Results are
shown for Weyl-Heisenberg SIC-POVMs (green stars), non-symmetric
IC-POVMs (blue dots), and random POVMs (magenta triangles) for
dimensions upto 1299. For each dimension, we plot the maximum
of qsucc (computed according to the Eq. (1)), which was obtained
from random ≤ 24 partitions. For random POVMs, in each dimen-
sion, we generate 10 to 500 random POVMs (lower number for
higher dimensions) and plot the minimum qsucc across them. For IC-
POVMs, the measurement operators are specified by a single
parameter α which we keep at a fixed value across all dimensions
(see Section E of the Supplementary material for details).
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projective measurements on N+ 1 (not 2N) qubits and hence
incurring noise with ηpost � exp �Θ 4N

� �� �
. In Section D of the

Supplementary material we show that postselection step in our
scheme does not significantly affect the quality of produced
samples by proving that for typical Haar random MU

dTV p MUjρ� �
;pnoise

post ðMUjρÞ
	 


� Cð1� exp �Θ 4N
� �� �Þ; (9)

where C is an absolute constant. Therefore, for generic measure-
ments, implementation via our scheme will be affected by much
lower noise than in the case of Naimark’s. We expect that similar
behaviour (i.e., amount of noise in our scheme compared to
Naimark’s dilation) should be exhibited also for more realistic
noise models – the high reduction of the dimension of the Hilbert
space is, reasonably, expected to highly reduce the noise.

DISCUSSION
Aside from their practical relevance, our results shred light onto
the question whether POVMs are more powerful (in quantum
information tasks requiring sampling) than projective measure-
ments. Indeed, since typical POVMs in Cd can be implemented
using d-outcome measurements, it suggests (and if our conjecture
is true, then it implies) that, if there exists a gap in the relative
usefulness (quantified for example via robustness), then it is
between projective measurements and d-outcome POVMs. More-
over, the surprisingly high value of qðdÞ

succ will likely have potential
applications to nonlocality. First, it significantly limits (due to
inequality (4)) the amount of local depolarizing noise that can be
tolerated in schemes for generation secure quantum randomness
using extremal d2-outcome measurements19,57. We also anticipate
that our results can be used to construct new local models for
entangled quantum states that undergo general POVM measure-
ment (by using techniques similar to those of refs. 10,58).
We conclude with giving directions for future research. First,

naturally, is to verify whether our conjecture is true. The difficulty
in proving it comes from the combinatorial nature of the
optimization problem in Eq. (1)—it is difficult to analytically find
the optimal partition of [n] that maximizes qsucc for a target POVM
M. Effects of Haar random POVMs have similar properties - in
particular, they have (on average) equal operator norms—this
symmetry allowed us to study them analytically. However, general
POVMs can be highly unbalanced (in the sense of having effects
whose operator norms can vary significantly) and suitable
strategies need to be devised to tackle such situations. Second,
it is desirable to devise an algorithmic method which, when given
the circuit description of some POVM, returns the circuits needed
to implement it with postselection. Another direction is to identify
and quantify the real-time implementation costs of randomisation
and post-processing, and how these schemes could be suitably
modified to offset these cost considerations. Finally, it would be
interesting to see if the success probability is connected to other
properties of POVMs – for instance, their entanglement cost59.

METHODS
Sketch of Proof of Theorem 2
An explicit computation shows that for any subset X⊂ [n], we have
kPi2XM

U
i k ¼ kUXk2, where UX is a d × ∣X∣ matrix, obtained by choosing the

first d rows of U, and then taking from the resulting matrix those columns
with indices in X. With this we analyze the statistical behaviour of qsucc(MU)
in the regime d→∞ using tools from random matrix theory. Specifically,
the proof relies on the phenomenon of concentration of measure60 on the
unitary group U(n) equipped with the Haar measure and distance induced
by the Hilbert-Schmidt norm. It shows that as n⟶∞, Lipschitz-
continuous random variables on U(n) are with high probability close to
their Haar-averages - this is captured by large deviation bounds (also
known as concentration inequalities), that upper bound the probability

that a random variable take values drastically different form its Haar-
average.
In order to prove Eq. (6), we choose ∥UX∥ as the random variable to

which we apply the machinery of concentration of measure. An upper
bound to its Haar-average is obtained by performing a discrete
optimization over an ϵ-net of an m− 1-dimensional complex sphere.
Since the concentration inequality is true for all subsets X in the partition of
[n], the union bound shows that

P
Xk
P

i2XM
U
i k also exhibits concentration

of measure, which gives Eq. (6).
In order to prove Eq. (7), we invoke the inequality in Eq. (4), and use it to

upper bound q(m) with the robustness R(m)(MU) of a random POVMMU with
respect to m-outcome simulable POVMs in Cd . Using the interpretation of
robustness in the context of state-discrimination (see Eq. (5)), we lower
bound it by constructing a specific ensemble of quantum states obtained
by rescaling the effects ofMU. In this way, a lower bound on the robustness
(hence an upper bound on the success probability) becomes a function of
the matrix elements ∣Uij∣2 of the Haar-random unitary U. Finally, we prove a
concentration of measures inequality for this resulting function, by again
invoking the union bound and the cumulative distribution function of
∣Uij∣2, which was obtained in61.

Description of POVMs in the numerics
For every dimension, we generated effects of symmetric POVMs
numerically from a single fiducial pure state via transformations Xi

dZ
j
d ,

where i, j ∈ [0, d− 1] and Xd, Zd are d− dimensional analogues of Pauli X
and Z operators. For IC-POVMs we used a one-parameter family of fiducial
states ψαj i described in ref. 39 for the specific value α ¼ 1

2 1þ ið Þ (we
remark that POVMs originating from other values of α exhibited a similar
behaviour). For SIC-POVMs we used fiducial states from a catalogue in
ref. 62 for d < 100 and states in higher dimension (up to d= 1299), which
were provided to us by Markus Grassl in a private correspondence. The
construction of random POVMs is described in Section E of the
Supplementary material.
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