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Approaching Heisenberg-scalable thermometry with built-in
robustness against noise
Da-Jian Zhang 1✉ and D. M. Tong 1✉

It is a major goal in quantum thermometry to reach a 1/N scaling of thermometric precision known as Heisenberg scaling but is still
in its infancy to date. The main obstacle is that the resources typically required are highly entangled states, which are very difficult
to produce and extremely vulnerable to noises. Here, we propose an entanglement-free scheme of thermometry to approach
Heisenberg scaling for a wide range of N, which has built-in robustness irrespective of the type of noise in question. Our scheme is
amenable to a variety of experimental setups. Moreover, it can be used as a basic building block for promoting previous proposals
of thermometry to reach Heisenberg scaling, and its applications are not limited to thermometry but can be straightforwardly
extended to other metrological tasks.
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INTRODUCTION
Accurately measuring temperature is of universal importance,
underpinning many fascinating applications in material science1,2,
medicine and biology3,4, and quantum thermodynamics5. The
advent of quantum technologies has opened up exciting
possibilities of exploiting quantum effects to yield the quantum
enhancement of thermometric precision that cannot otherwise be
obtained using classical methods6,7. The emerging field, known as
quantum thermometry nowadays, could have a large impact on
quantum platforms demanding precise temperature control, such
as cold atoms, trapped ions, and superconducting circuits. This has
motivated a vibrant activity on quantum thermometry over the
past decade8–18.
A major goal in quantum thermometry is to reach a 1/N scaling

of precision known as Heisenberg scaling (HS), which represents
an important quantum advantage of central interest in quantum
metrology19–21. Here, N stands for the amount of physical
resources which usually refers to the number of probes employed.
Conventionally, HS is achieved by exploiting highly entangled
states8,9,15,16. However, along this line, the HS permitted in theory
is typically elusive in reality, due to the vulnerability of highly
entangled states to noises as well as the difficulty in producing
these states. This point has been theoretically shown in refs. 22–25

and is also reflected in the fact that less experimental progress has
been made in implementing Heisenberg-scalable thermometry to
date. Indeed, although the issue of how to attain HS has received
much attention since the early days of quantum thermometry8,
the first experiment demonstrating HS was carried out only
recently26. This experiment explored NOON states to reach HS and
observed that the decoherence effect becomes increasingly
severe as the order of NOON states increases. As such, HS was
only demonstrated for small N, i.e., N � Nmax ¼ 9, for which the
scaling advantage is far from allowing one to beat the best
possible classical methods. Besides, several no-go theorems27–30

show that HS is forbidden to reach in the asymptotic limit N→∞
in the presence of most types of noises. For these reasons, it is
crucial to find a noise-robust scheme capable of reaching HS in
the regime of large N31 which is of interest from a practical
standpoint and allowed by these theorems.

Note that a number of noise-robust schemes have been
proposed for other metrological tasks32–42. However, there has
not been a noise-robust scheme in quantum thermometry so far.
In this work, we fill the gap. We find that a temperature-
dependent phase can be accumulated coherently through the
continuous interplay between the strong Markovian thermaliza-
tion of N probes and the relatively weak coupling of the N probes
to a same external ancilla (see Fig. 1). This mechanism enables us
to propose a scheme of thermometry to approach HS for a wide
range of N, with robustness irrespective of the type of noise in
question but without complicated error correction techniques.
A salient feature of our scheme is that the whole estimation

procedure is free of entanglement, unlike in previous works21,
where highly entangled states are either introduced in the state-
preparation stage or generated via some interactions in the
interrogation stage. Another feature of our scheme is that the
probing time is not increasingly long with N. These two features
distinguish our scheme from previous schemes like the parallel
scheme and sequential scheme43 on a fundamental level. As
detailed below, our scheme is amenable to a variety of
experimental setups. Moreover, it can be used as a basic building
block for promoting previous proposals of thermometry to reach
HS, and its applications are not limited to thermometry but can be
straightforwardly extended to other metrological tasks.

RESULTS
The basic dynamical equation
Suppose that we are given a sample of temperature T, with which a
probe S keeps in contact. The thermalization process of S can be
described by a Markovian master equation ∂tρSðtÞ ¼ LSρSðtÞ6,7.
Here, ρSðtÞ is the evolving state of S. LS is a Liouville
superoperator assumed to have the following two properties: (i)
it admits a temperature-dependent state ρT as the unique steady
state; and (ii) the nonzero eigenvalues λμ of LS have negative real
parts, where μ is an index labeling the eigenvalues. Property (i)
implies that LSρT ¼ 0, and property (ii) means that there is a
dissipative gap λ :¼ minλμ≠0 ReðλμÞ

�� �� in the Liouvillian spec-
trum44–46. We do not impose any restriction on the explicit forms
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of LS and ρT, so that the scheme to be presented is applicable to a
variety of physical models. In particular, ρT may or may not be the
Gibbs state, depending on the specific physical model in question.
Starting from an arbitrary initial state, ρSðtÞ undergoing the
thermalization process automatically evolves towards ρT at an
exponentially fast rate44–46. Therefore, we may assume that S
(approximately) reaches ρT at a certain time t0.
We weakly couple S to an ancilla A after the time t0. The free

Hamiltonian of A is denoted by HA. The interaction between S
and A is assumed to be of the form HI= ℏgS⊗ A with ½A;HA� ¼ 0,
where g is a positive number describing the coupling strength,
and S and A are two Hermitian operators of S and A, respectively.
In the frame rotating with HA , the dynamics of SA can be
described by

∂tρðtÞ ¼ LSρðtÞ � ig½S� A; ρðtÞ� ¼: LρðtÞ: (1)

Note that we temporarily do not take noise into account, as our
purpose here is to show how the continuous interplay between
the thermalization LS and the interaction HI leads to the coherent
accumulation of a temperature-dependent phase.
Let us figure out the reduced dynamics of A. Inspired by the

Nakajima-Zwanzig projection operator technique47, we introduce
a superoperator P, defined as PX ¼ ρT � trSX , for an operator X
acting on the joint Hilbert space of SA. Evidently,
PρðtÞ ¼ ρT � ρAðtÞ, where ρAðtÞ denotes the evolving state of
A. The superoperator complementary to P, denoted by Q, is
defined as QX ¼ X � PX .
Applying P, Q to Eq. (1) separately and invoking P þQ ¼ 1,

where 1 stands for the identity map, we have

∂tPρðtÞ ¼ PLPρðtÞ þ PLQρðtÞ; (2)

∂tQρðtÞ ¼ QLPρðtÞ þ QLQρðtÞ: (3)

The solution of Eq. (3) can be formally expressed as47

QρðtÞ ¼ Gðt; t0ÞQρðt0Þ þ
R t
t0
dsGðt; sÞQLPρðsÞ; (4)

where Gðt; sÞ :¼ eQLðt�sÞ . This point can be verified by inserting Eq.
(4) into Eq. (3). Substituting Eq. (4) into Eq. (2) and noting that
ρðt0Þ ¼ ρT � ρAðt0Þ and therefore Qρðt0Þ ¼ 0, we obtain an exact
equation of motion for A:

∂tPρðtÞ ¼ PLPρðtÞ þ R tt0 dsPLGðt; sÞQLPρðsÞ: (5)

Here, the second term on the right-hand side represents some
memory effect, as it depends on the past history of PρðsÞ.
To figure out the explicit expression for the first term on the

right-hand side of Eq. (5), we deduce from property (i) that LSρT ¼

0 and hence LPρðtÞ ¼ �ig½S� A; ρT � ρAðtÞ�. Then, from the
defining property of P, it follows that
PLPρðtÞ ¼ ρT � �ig½φTA; ρAðtÞ�ð Þ; (6)

where φT :¼ trðSρT Þ. On the other hand, using property (ii), the
norm of the second term on the right-hand side of Eq. (5) can be
bounded asZ t

t0

dsPLGðt; sÞQLPρðsÞ
����

���� � εg Pk k2 Kk k2
ðλ=gÞ � ε Kk k ; (7)

where K is the superoperator defined as KX :¼ �i½S� A; X�, and ε
is a dimensionless constant determined by the damping basis of
LS44,45. The proof of the bound is given in the “Methods” section.
Note that λ characterizes the strength of the thermalization LS ;

that is, the larger λ is, the stronger the thermalization is. Likewise,
g characterizes the strength of the interaction HI. Under the
condition that the thermalization is strong whereas the interaction
is relatively weak, i.e., λ/g≫ 1, we deduce from Eq. (7) that the
second term on the right-hand side of Eq. (5), i.e., the memory
effect, is negligible. Upon neglecting this term and inserting Eq. (6)
into Eq. (5), we reach the basic dynamical equation:

∂tρAðtÞ ¼ �ig½φTA; ρAðtÞ�; (8)

representing a unitary dynamics able to coherently accumulate φT

in the state of A superposed by eigenstates of A. Hereafter, in line
with the studies on quantum phase estimation43, we refer to φT as
a temperature-dependent phase.

The scheme of thermometry
To estimate the unknown temperature T of a given sample, we put
N probes, S1; � � � ;SN , in contact with the sample. Upon preparing
each probe in ρT at time t0, we couple all of the probes to a same
ancilla A. The above configuration is schematically shown in
Fig. 1a. A natural platform for implementing it could be the
magnetic resonance force microscopy48 (see Fig. 1b), where the
spins immersed in the sample and the magnetic tip serve as the
probes and the ancilla, respectively. The dynamical equation for
the N probes and the ancilla in the rotating frame reads

∂tρðtÞ ¼ LS1A þ � � � þ LSNAð ÞρðtÞ; (9)

with LSnAρ ¼ LSnρ� ign½Sn � A; ρ�. Here, LSn denotes the Liou-
ville superoperator for Sn, gn represents the coupling strength
between Sn and A, and Sn is a Hermitian operator acting on Sn.
For simplicity, we assume that LSn ¼ LS , gn= g, and Sn= S, for all
n. Our following discussion can be straightforwardly extended to
the general case.

Fig. 1 Schematic of our scheme. a Configuration of the setup implementing our scheme. To estimate the temperature of a given sample, we
put N probes in contact with the sample and weakly couple all of them to a same external ancilla. The continuous interplay between the
strong Markovian thermalization of the probes and the relatively weak coupling to the ancilla ensures information transmission from the
probes to the ancilla. This leads to the coherent accumulation of a temperature-dependent phase, and measuring the phase yields an
estimate of the temperature. b Illustration of one possible implementation of our scheme using magnetic resonance force microscopy. The
spins immersed in the sample serve as the probes and the magnetic tip serves as the ancilla. The force produced by the spins on the magnetic
tip affects the mechanical vibrations of the cantilever, which can be detected by optical methods.
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Let ENðt1; t0Þ denote the dynamical map associated with Eq. (9),

ENðt1; t0Þ ¼ exp LS1A þ � � � þ LSNAð Þðt1 � t0Þ½ �; (10)

transforming the state ρ�N
T � ρAðt0Þ at time t0 into the state

ENðt1; t0Þρ�N
T � ρAðt0Þ at time t1. Then, the state of A at time t1

reads

ρAðt1Þ ¼ trS1 ���SN ENðt1; t0Þρ�N
T � ρAðt0Þ

� �
: (11)

To find the explicit expression for ρAðt1Þ, we resort to the fact that
LSnA’s commute with each other and rewrite Eq. (10) as

ENðt1; t0Þ ¼ ES1Aðt1; t0Þ � � � ESNAðt1; t0Þ; (12)

with ESnAðt1; t0Þ ¼ exp½LSnAðt1 � t0Þ�. Besides, according to the
basic dynamical equation (8),

trSn ESnAðt1; t0ÞρT � ρAðt0Þ½ � ¼ exp½�igφTAðt1 � t0Þ�ρAðt0Þ exp½igφTAðt1 � t0Þ�:
(13)

Substituting Eqs. (12) and (13) into Eq. (11), we have

ρAðt1Þ ¼ e�igNφT Aðt1�t0ÞρAðt0ÞeigNφT Aðt1�t0Þ; (14)

implying that φT is intensified N times due to the use of N probes.
In deriving Eq. (13), we have neglected the memory effect.

Indeed, the memory effect can be made arbitrarily weak by
choosing either a large λ or a small g so that λ/g is large enough.
Here, N should be confined to a certain appropriate range, as
detailed below. It is worth noting that the past two decades have
witnessed enormous experimental progresses in engineering
strongly dissipative processes (see the review article by Müller
et al.49 and references therein). Nowadays, experimentalists are
able to realize arbitrary Markovian processes for a number of
experimentally mature platforms such as trapped ions50 and
Rydberg atoms51. These developments imply that it is experimen-
tally feasible to obtain a large λ. Besides, the value of g is often
fixed once the platform adopted has been calibrated, whereas the
value of λ may be still allowed to be tuned. For example, in the
magnetic resonance force microscopy, the value of g is
determined by the distance between the spins and the magnetic
tip48. So, g is fixed once the distance has been fixed. However, λ is
still tunable through varying the intensity and frequency of an
external magnetic field48. For the above reasons, we consider the
scenario that λ is large whereas g is fixed.
Without loss of generality, we set the probing time t1− t0 to be

a “unit” of time 1/g for simplicity. It follows from Eq. (14) that

ρAðt1Þ ¼ exp½�iNφTA�ρAðt0Þ exp½iNφTA�: (15)

Then, an estimate of T can be obtained by measuring ρAðt1Þ. It
remains to find the optimal state ρAðt0Þ and observable O. This
can be carried out with the aid of the quantum Cramér-Rao
theorem52, stating that the estimation error δT from measuring
any observable is bounded by the inequality δT � 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νFNðTÞ

p
,

where ν denotes the number of measurements, and FNðTÞ is the
quantum Fisher information (QFI) for ρAðt1Þ. Therefore, the
optimal ρAðt0Þ is the state maximizing the QFI, and the optimal
O is the observable saturating the inequality. It is well-known43

that such ρAðt0Þ and O are, respectively, aMj i þ amj ið Þ= ffiffiffi
2

p
and

aMj i amh j þ amj i aMh j. Here, aMj i and amj i denote the eigenvectors
of A corresponding to the maximum eigenvalue aM and minimum
eigenvalue am, respectively.
In light of the above analysis, we may now specify our scheme

as follows: (i) Put N probes S1; � � � ;SN in contact with the sample
and prepare each of them in ρT at time t0. (ii) Initialize the state of
ancillaA to be aMj i þ amj ið Þ= ffiffiffi

2
p

and couple all of the probes toA
for the time 1/g. (iii) Perform the measurement associated with
O ¼ aMj i amh j þ amj i aMh j on A at time t1= t0+ 1/g. (iv) Repeat
steps (ii) and (iii) ν times to build a sufficient statistics for
determining T. As the QFI for ρAðt1Þ reads
FNðTÞ ¼ N2ðaM � amÞ2 ∂TφTj j2; (16)

the precision attained in our scheme approaches the HS

δT ¼ 1=
ffiffiffi
ν

p
NðaM � amÞ ∂TφTj j½ �: (17)

Notably, the evolving state of the N probes and the ancilla is
approximately ρ�N

T � ρAðtÞ. Thus, no highly entangled state is
involved in the whole estimation procedure of our scheme.
Moreover, the probing time in our scheme is a single “unit” 1/g
and does not increase as N increases. In passing, we point out that
the precision of the form (17) is termed as the weak Heisenberg
limit in ref. 53.
It may be instructive to give a physical picture for comprehend-

ing how our scheme works. To gain some insight into the physical
origin of Eq. (8), we may interpret the probe employed in our
scheme as an effective transducer, which helps to extract the
information about temperature from the sample and transmit it to
the ancilla under the condition that the Markovian thermalization
is strong enough so that the memory effect is negligible. The
ancilla, on the other hand, may be interpreted as an information
storage and is responsible for storing the information about
temperature, with its initial state determining the storage capacity.
Such a continuous interplay between the probe and the ancilla
leads to the basic dynamical equation (8) permitting the coherent
accumulation of the temperature-dependent phase φT in the state
of the ancilla. The accumulating rate is described by g, which is
reminiscent of the transduction parameter in electrical or
magnetic field sensing20. When N probes are coupled to the
same ancilla, the accumulating rate is increased from g to Ng as
indicated in Eq. (14), since there are now N effective transducers
transmitting the information about temperature to the ancilla. We
emphasize that the working principle of our scheme is built upon
the very nature of open dynamics, which distinguishes our
scheme from previous schemes involving Ramsey and Mech-
Zehnder interferometers where the dynamics is unitary.

Built-in robustness of our scheme against noises
Taking noises into account, we shall rewrite Eq. (9) as

∂tρðtÞ ¼ ½ðLS1A þ Lnoise
S1

Þ þ � � � þ ðLSNA þ Lnoise
SN

Þ þ Lnoise
A �ρðtÞ;

(18)

with Lnoise
Sn

and Lnoise
A denoting the Liouville superoperators

describing the noises acting on Sn and A, respectively. Here, no
restriction is imposed on the explicit forms of Lnoise

Sn
and Lnoise

A .
Under the condition that the Markovian thermalization LSn is
strong, the QFI of our scheme in the presence of the noises can be
evaluated as

F noise
N ðTÞ ¼ 2N2 ∂TφTj j2

X
k≠l

pk;l ϕkh jA ϕlj ij j2; (19)

with coefficients

pk;l ¼
0; if pk ¼ pl ¼ 0;
ðpk�plÞ2
pkþpl

; otherwise:

(
(20)

Here, pk and ϕkj i are the eigenvalue and associated eigenvector
of a density operator δ which is determined by Lnoise

A and
ρAðt0Þ. The proof of Eq. (19) is presented in Supplementary
Note 1, where the expression of δ is given. Using Eqs. (16) and
(19), we arrive at the result that the ratio F noise

N ðTÞ=FNðTÞ is
independent of N. This result means that the detrimental
influence of noises on our scheme does not become increas-
ingly severe as N increases.
To see the significance of the above result, we may recall the

reason why the HS permitted in many previous schemes is
extremely vulnerable to noises. So far, a lot of effort has been
devoted to exploring the possibilities of encoding the parameter
of interest into the relative phase of a quantum system for
reaching HS, which has become one main stream of research on

D.-J. Zhang and D.M. Tong

3

Published in partnership with The University of New South Wales npj Quantum Information (2022)    81 



Heisenberg-scalable metrology nowadays. Generally speaking,
along this line of development, previous schemes require either
highly entangled states or increasingly long probing time. A well-
known example is the parallel scheme43, in which N probes are
employed and a relative phase Nφ is obtained by preparing the
initial state of the probes to be an N-body maximally entangled
state. Evidently, the N-body maximally entangled state is
increasingly vulnerable to noises as N increases. Hence, in the
presence of noises, the parallel scheme usually suffers from an
exponential drop in performance as N increases20,21. Another well-
known example is the sequential scheme43, in which a single
probe is employed and a relative phase Nφ is obtained with an N
times long probing time. Since the decoherence effect is
accumulated with time, the longer the probing time is, the
severer the detrimental influence of noises on the sequential
scheme becomes. Likewise, the performance of the sequential
scheme usually drops exponentially as N increases in the presence
of noises20,21. As a matter of fact, most of the experiments relying
on highly entangled states or increasingly long probing time are
confined to the regime of very small N20,21.
Our scheme provides a different means of encoding the

parameter of interest into the relative phase of a quantum system
without appealing to highly entangled states and increasingly
long probing time. Here, by saying “different means,” we mean
that the phase NφT stems from the information transmission from
the N probes to the same ancilla, which are permitted by the very
nature of open dynamics. The key advantage of exploring this
means for reaching HS is that the detrimental influence of noises
is no longer increasingly severe as N increases. This means that
our scheme is robust against noises, which, as demonstrated
below, allows for approaching HS for a wide range of N. Notably,
the robustness of our scheme is intrinsic, since no error correction
technique is involved in our scheme. Moreover, it is worth noting
that the robustness of our scheme is irrespective of the specific
type of noises in question, since Eq. (19) is derived without
restricting the explicit forms of Lnoise

Sn
and Lnoise

A . In passing, we
would like to point out that it has been shown in several works8,9

that the problem of temperature estimation can be mapped into
the problem of phase estimation. Analogous to the parallel
scheme, the schemes in these works are based on highly
entangled states like NOON states and have been experimentally
shown to be very vulnerable to noises26.

Example
Let us furnish an analytically solvable model to demonstrate the
usefulness of our scheme. Consider the physical model of N qubits
independently contacting with a Bosonic thermal reservoir of
temperature T12. We take the qubits to be S1; � � � ;SN . The
thermalization process of Sn is governed by the Liouvillian

LSnρ ¼ � i
_ ½HSn ; ρ� þ γðnþ 1ÞD½σSn� �ρþ γnD½σSnþ �ρ: (21)

Here, HSn ¼ _ΩσSn
z =2 is the free Hamiltonian of Sn, with σSn

i ,
i= x, y, z, denoting the Pauli matrices acting on Sn. The last two
terms stand for the process of energy exchange with the reservoir,
with γ > 0 describing the exchange rate. Note that the dissipative
gap λ is proportional to γ, i.e., λ∝ γ. n ¼ ½exp _Ω=kBTð Þ � 1��1 and
D½σSn

± �ρ ¼ σSn
± ρσ

Sn
∓ � fσSn

∓ σ
Sn
± ; ρg=2, with σSn

± ¼ ðσSn
x ∓ iσSn

y Þ=2.
Note that the unique steady state of Sn happens to be the Gibbs
state ρT ¼ expð�HSn=kBTÞ=ZT , where kB is the Boltzmann’s
constant and ZT ¼ tr expð�HSn=kBTÞ the partition function. A is
also taken to be a qubit. The interaction between Sn and A is set
to be _gσSn

z � σA
z . So,

LSnAρ ¼ LSnρ� ig½σSn
z � σAz ; ρ�: (22)

We examine a major source of noises, dephasing. That is, the
Liouville superoperator Lnoise

Sn=A describing the noise acting on Sn=A

reads

Lnoise
Sn=Aρ ¼ κSn=A σ

Sn=A
z ρσ

Sn=A
z � ρ

� �
; (23)

where κSn=A denotes the dephasing rate. The initial state of the
probes and the ancilla is set to be ρ�N

T � ρAðt0Þ with
ρAðt0Þ ¼ ð 0j i þ 1j iÞð 0h j þ 1h jÞ=2. So far, we have specified all
the Liouville superoperators entering the full dynamical Eq. (18) as
well as the initial state assumed in our scheme.
Now, let us figure out the performance of our scheme in the

presence of the noises. To this end, we need to find out the output
state of A at time t1= t0+ 1/g, which is given by

ρAðt1Þ ¼ 1
2

1 ΓNe�2η

Γ�Ne�2η 1

 !
: (24)

Here, 1/g is the probing time which is independent of N, and

Γ ¼ eωþðξÞ
2 1þ ð2nþ1Þξffiffiffiffiffiffiffi

ΔðξÞ
p � 4i

ð2nþ1Þ
ffiffiffiffiffiffiffi
ΔðξÞ

p
	 


þ eω�ðξÞ
2 1� ð2nþ1Þξffiffiffiffiffiffiffi

ΔðξÞ
p þ 4i

ð2nþ1Þ
ffiffiffiffiffiffiffi
ΔðξÞ

p
	 


;

(25)

where ΔðξÞ ¼ ð2nþ 1Þ2ξ2 � 8iξ � 16 and ω± ðξÞ ¼ ½�ð2nþ 1Þξ ±ffiffiffiffiffiffiffiffiffi
ΔðξÞp �=2, with ξ= γ/g and η ¼ κA=g characterizing (in units of g)

the strength of the Markovian thermalization and that of the
dephasing noise acting on the ancilla A, respectively. The proof of
Eq. (24) is presented in Supplementary Note 2. It is interesting to
note that the noises acting on the probes S1; � � � ;SN do not affect
the output state ρAðt1Þ. The QFI for ρAðt1Þ reads
F noise

N ðTÞ ¼ N2 Γj j2N�2 ∂TΓj j2e�4η

þN2 Γj j4N�2 ∂T Γj jð Þ2e�8η= 1� Γj j2Ne�4η
� �

:
(26)

Equations (24) and (26) are analytical results without numerical
approximation.
We first examine the limiting case of ξ→∞, which corresponds

to the ideal situation that the Markovian thermalization is infinitely
strong and there is no memory effect. Using Eq. (26) and noting
that limξ!1 Γ ¼ expð�2iφT Þ, where φT :¼ trðσzρT Þ ¼ 1=ð2nþ 1Þ,
we have that

F noise
N ðTÞ ¼ 4N2 ∂TφTj j2e�4η: (27)

Equation (27) represents a HS of precision. Since

ρAðt1Þ ¼ 1
2

1 e�2iNφT e�2η

e2iNφT e�2η 1

� �
; (28)

we see that the HS in Eq. (27) stems from the relative phase NφT

acquired in ρAðt1Þ. Notably, this relative phase is obtained without
appealing to highly entangled states and increasingly long
probing time. A consequence of this fact is that the detrimental
influence of noises does not lead to an exponential drop of the HS.
Indeed, using Eq. (27) and noting that FNðTÞ ¼ 4N2 ∂TφTj j2, we
have that

F noise
N ðTÞ=FNðTÞ ¼ e�4η; (29)

which is consistent with our general analysis that F noise
N ðTÞ=FNðTÞ

is independent of N.
We now examine the situation that the strength of the

Markovian thermalization is large and within current experimental
reach. To do this, we numerically compute F noise

N ðTÞ in units of

F thðTÞ for different ξ. Here, F thðTÞ ¼ ð_Ω=2kBT2Þ2sec h2 _Ω=2kBTð Þ
is the QFI for the Gibbs state ρT ¼ expð�HSn=kBTÞ=ZT

12. We
choose four values of ξ, namely, 100, 200, 300, and 400. To reach
these values, we can set, for instance, g= 100 kHz and γ= 10, 20,
30, 40MHz, which are experimentally feasible for a number of
quantum platforms such as Rydberg atoms and trapped ions49. We
examine an exemplary temperature satisfying kBT/ℏΩ= 2, which is
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of interest in quantum thermometry12. The numerical results are
shown in Fig. 2, where η is set to be 1/10 in view of the convention
that the lifetime of an ancilla is usually assumed to be long in
quantum metrology (see, e.g., refs. 33–35,37,40). Here, we also show
the QFI given by Eq. (27) (see the black solid line), which serves as a
benchmark for the QFIs associated with the four values of ξ.
The four dashed curves in Fig. 2 correspond to the QFIs

associated with the four values of ξ (see the figure legend). As can
be seen from this figure, these dashed curves approach the black
solid line when N is no larger than a certain Nmax. This means that
the HS described by Eq. (27) is attained in the regime of N � Nmax.
It is easy to see that Nmax depends on ξ; more precisely, the larger
ξ is, the greater Nmax can be. We numerically find that Nmax may
be, respectively, taken to be 109, 217, 326, 435 for the four values
of ξ. Note that the HS achieved in current experiments is usually
confined to the regime of N � Nmax ¼ 1031 due to the detrimental
effect of noises. The above numerical results demonstrate that our
scheme allows for approaching HS in the presence of noises for a
wide range of N. Moreover, it is worth noting that strongly
dissipative processes have been experimentally realized in a
number of quantum platforms (see the review article by Müller
et al.49). This means that the HS permitted in the above wide
ranges of N may be achieved using a variety of experimental
setups (to be listed in the “Discussion” section), which makes our
scheme appealing from a practical perspective.
Figure 3 depicts F noise

N ðTÞ as a function of N in units of F thðTÞ
for different noise strength η. Here, kBT/ℏΩ= 2, ξ= 400, and four
values of η are chosen, namely, η= 0.1, 0.2, 0.3, 0.4. As can be seen

from Fig. 3, F noise
N ðTÞ decreases as η increases, which is expected

from a physical point of view. It is interesting to note that Nmax
does not change much in the course of varying η, indicating that
the range in which the HS is attained is irrespective of the value of
η. Moreover, in Supplementary Note 3, we examine the influence
of the initial state of the N probes and the ancilla on F noise

N ðTÞ. We
consider the initial state of the form ρ⊗N⊗ σ, where ρ and σ are
arbitrarily given 2 × 2 density matrices. Both analytical and
numerical results show that F noise

N ðTÞ does not depend much on
ρ but heavily relies on σ. More precisely, F noise

N ðTÞ grows
quadratically as a function of the l1 norm of coherence of σ54.
We remark that the HS given by Eq. (27) is lost when N is too

large. The underlying reason is that there is some memory effect
for each ESnAðt1; t0Þ appearing in decomposition (12) of ENðt1; t0Þ
and these memory effects may add linearly so that the total
memory effect for ENðt1; t0Þ becomes non-negligible for a too
large N. Nevertheless, as long as the Markovian thermalization is
strong enough, these memory effects can be made very weak and
any large value of Nmax can be obtained in our scheme. By the
way, considering that a stronger thermalization allows for
producing a larger number of Gibbs states per unit time, a direct
approach of taking advantage of strong thermalization for
thermometry might be to repeatedly produce and measure Gibbs
states with individual probes. Yet, this approach is ineffective in
practice. Indeed, real-word quantum measurements suffer from
correlated background noises if the measurement time is shorter
than the noise correlation time55,56. As these noises cannot be
averaged out by repetitive measurements55,56, the direct
approach may not even be able to beat the standard quantum
limit in the presence of these noises.

DISCUSSION
The key to the implementation of our scheme is to realize the
weak coupling of N probes to a same ancilla. Apart from the
magnetic resonance force microscopy, this kind of coupling is
achievable in a variety of experimental setups, including super-
conducting qubits coupled to a microwave resonator57, Rydberg
atoms coupled to a microwave cavity58, trapped ions coupled to a
common motional mode59 or an optical cavity mode60, and
nitrogen-vacancy (NV) centers in diamond coupled to a micro-
wave mode in a superconducting transmission line cavity61.
Thanks to the freedom in choosing explicit forms of LS and ρT,

various kinds of probes can be used in our scheme. Particularly,
the probes in previous proposals of thermometry may be used in
our scheme, and our scheme may be exploited to promote these
proposals to reach HS. To this end, one only needs to find an
ancilla that is able to couple with the N probes given in a previous
proposal. The ancilla can be a NV center if hybridization
proposals62 are under consideration, or a measuring apparatus
when quantum nondemolition measurements are used63,64, or
even an environment to which we have access20,65.
The applications of our scheme are not limited to thermometry

but can be straightforwardly extended to other metrological tasks.
Indeed, our scheme is applicable to any metrological task in which
the parameter of interest can be encoded in the unique steady
state of a Markovian system. The metrological tasks of this kind are
far more than quantum thermometry and are frequently
encountered in quantum sensing, especially in noisy quantum
metrology65. Two examples are the detection of rotating fields66

and the sensing of low-frequency signals67.
In summary, we have proposed a scheme of thermometry to

approach HS for a wide range of N, based on the finding that an N-
fold increase of the temperature-dependent phase can be
obtained from the continuous interplay between the strong
thermalization of N probes and the weak coupling to the same
external ancilla. As opposed to conventional ones, our scheme
gets rid of a number of experimentally demanding requirements,

Fig. 2 Log–log plot of the quantum Fisher information Fnoise
N ðTÞ

as a function of N in units of F thðTÞ for different ξ. The black solid
line corresponds to the quantum Fisher information in Eq. (27).
Parameters used are kBT/ℏΩ= 2 and η= 1/10.

Fig. 3 Log–log plot of Fnoise
N ðTÞ as a function of N in units of

F thðTÞ for different η. Parameters used are kBT/ℏΩ= 2 and ξ= 400.
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e.g., the preparation of highly entangled states, and is implemen-
table in a variety of experimental setups. More importantly, it
offers the key advantage of robustness irrespective of the type of
noise in question, without resorting to complicated error
correction techniques. Therefore, our scheme provides a feasible
and robust pathway to the HS, with the entanglement-free feature
which is noteworthy in view of previous proposals of Heisenberg-
scalable thermometry. Two directions for future work are to
exploit our scheme to promote previous proposals of thermo-
metry to reach HS and to apply our scheme to other metrological
tasks. Besides, throughout this paper, we have assumed the
Markovian dissipative process described by the Lindblad equation,
which is an approximative description relying on a number of
simplifications. A more detailed analysis of our scheme starting
from a fully microscopic description, while going beyond the
scope of the present work, would be an interesting topic for future
studies.

METHODS
To obtain Eq. (7), it is convenient to express L as L ¼ LS þ gK with
KX :¼ �i½S� A; X�. Using the equalities LSP ¼ PLS ¼ 044,45, we have

PL ¼ gPK; LP ¼ gKP: (30)

Note that E1E2k k � E1k k E2k k for two superoperators E1 and E2. Here and
throughout this paper, the Hilbert-Schmidt norm is adopted. That is, for an
operator X, the norm reads Xk k :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðXyXÞ

q
, and for a superoperator E, it

is the induced norm defined as Ek k :¼ sup
Xk k�1

EðXÞk k. It follows from Eq. (30)
that PLk k � g Pk k Kk k and LPk k � g Kk k Pk k. Using these two inequal-
ities and noting that ρðsÞk k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trρ2ðsÞp � 1, we haveR t
t0
dsPLGðt; sÞQLPρðsÞ

��� ��� � R tt0 ds PLGðt; sÞQLPρðsÞk k

� PLk k R tt0 ds Gðt; sÞQk k
� �

LPk k � αg2;
(31)

where α :¼ Pk k2 Kk k2 R tt0 ds Gðt; sÞQk k. It can be shown that

Gðt; sÞQk k � ε exp½ εg Kk k � λð Þðt � sÞ�: (32)

The proof of Eq. (32) is very technical and presented in Supplementary
Note 4, where the expression for ε is given. Under the condition

λ=g > ε Kk k; (33)

Gðt; sÞQk k decreases exponentially as t− s increases. Then,

α � Pk k2 Kk k2 ε=ðλ� εg Kk kÞ½ �: (34)

Inserting Eq. (34) into Eq. (31), we can immediately obtain Eq. (7).
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