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Effect of partial distinguishability on quantum supremacy in
Gaussian Boson sampling
Junheng Shi1,2 and Tim Byrnes2,3,4,5,6,7✉

Gaussian boson sampling (GBS) allows for a way to demonstrate quantum supremacy with the relatively modest experimental resources
of squeezed light sources, linear optics, and photon detection. In a realistic experimental setting, numerous effects can modify the
complexity of the sampling, in particular loss, partial distinguishability of the photons, and the use of threshold detectors rather than
photon counting detectors. In this paper, we investigate GBS with partial distinguishability using an approach based on virtual modes
and indistinguishability efficiency. We develop a model using these concepts and derive the probabilities of measuring a specific output
pattern from partially distinguishable and lossy GBS for both types of detectors. In the case of threshold detectors, the probability as
calculated by the Torontonian is a special case under our framework. By analyzing the expressions of these probabilities we propose an
efficient classical simulation algorithm which can be used to calculate the probabilities. Our model and algorithm provide foundations for
an approximate method for calculating probabilities. It also allows for a way to design sampling algorithms that are not only compatible
with existing algorithms for ideal GBS, but can also reduce their complexity exponentially, depending on the indistinguishability
efficiency. Using this we show how the boundary of quantum supremacy in GBS can be affected by partial distinguishability.
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INTRODUCTION
It is commonly believed that quantum computers have the ability
to outperform classical computers and falsify the Extended
Church-Turing Thesis1. In order to demonstrate this quantum
speedup, one requires not only a large number of qubits but also
sufficiently suppressed logical errors. Decoherence typically
removes the quantum aspect of the computation, such that it
becomes possible to classically simulate the computation
efficiently. Specifically, quantum supremacy is claimed when the
quantum device achieves a superpolynomial quantum speedup.
This was the case in the comparison between the quantum
processor created by Martinis and co-workers2 and the classical
simulation algorithms of ref. 3 and recently from ref. 4.
Another heated battlefield in the context of quantum supremacy

is the Boson sampling (BS) problem where a passive linear optics
interferometer, Fock states at the input, and photon-detectors are
placed at the output. It was proved by Aaronson & Arkhipov1 that
the output distribution of such device cannot be efficiently
simulated by a classical computer in polynomial time5,6 because it
corresponds to the permanent of a given transformation matrix.
However, challenges arise in the experimental implementation
Aaronson & Arkhipov’s Boson sampling (AABS). One of them is the
low generation efficiency of single photons. To truly outperform the
current state-of-art classical simulation algorithm for AABS7, at least
50 photons are required at the input. But due to the low single
photon efficiency of solid state sources8–10 which is typically
between 0.2 and 0.3, the largest experimentally demonstrated
number of single photon inputs in AABS has only been 20 to date11.
It was then proposed that this challenge can be tackled by changing
the input light from Fock states to Gaussian states which was first
conceived in the form of Scattershot Boson Sampling (SBS)12–14 and
later developed to GBS15,16. The probability of measuring a specific

output pattern in GBS corresponds to the Hafnian of a matrix17

which has been also proven as being computationally hard5. While
generally the significance of BS is in relation to quantum supremacy,
GBS has also potential applications in finding subgraphs18 and
molecular vibronic spectra19.
GBS was first realized in small-scale experiments20,21. In 2020,

quantum supremacy was claimed by Pan, Lu, and co-workers in a
GBS device named Jiuzhang22, which was able to generate up to
76 photon detection events at the output of a 100-mode
interferometer. It should be noted the average output photon
detection events is in the vicinity of 40 which means that it was
not in the collision-free regime which most of the current GBS
theories fall into. Recently, the same group released an improved
version with lower losses23, which generates 113-photon detec-
tion events in a 144-mode circuit, going further away from the
collision-free regime. Another major aspect of the experiment is
the type of detection device used. In the experiment, threshold
detectors, rather than photon number resolving (PNR) detectors
were used, which only indicate the presence or lack of a photon.
The use of threshold detectors changes the underlying theory
because the output probability distribution is no longer deter-
mined by a Hafnian, but the Torontonian of the matrix
representing the linear optical network24,25.
The Hafnian and the Torontonian have the same computational

complexity for the ideal case, which is O(N32N) for a 2N × 2N
matrix. Despite having the same complexity, their origins are in
fact rather different. In the case of the Hafnian, the complexity
arises due to the large number of permutations of matrix elements
and the lack an efficient algorithm (i.e., which is available for other
matrix functions such as the determinant). Meanwhile, the
complexity of computing the Torontonian comes from the
computation of 2N determinants. Recently, it was shown that a
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quadratic speedup for simulating GBS can be achieved26, based
on the observation that the probability of a N-photon detection
for a pure Gaussian state only scales as 2

N
2 . This allows for the

reduction in complexity of simulating GBS with PNR detectors27

and with threshold detectors28 even for the case of lossy GBS with
the help of the Williamson decomposition and loop Hafnian. It
however is not as effective in the case of mixed Gaussian states
since it requires calculating a large number of loop Hafnians
associated with the pure state decomposition of the mixed state.
Another major challenge is to understand the impact of

experimental imperfections such as losses29,30, network noise31

and partial photon distinguishability32–36. Similarly to AABS, the
original theory of GBS only handles the ideal case and is not easily
extendable to include these imperfections. So far, only losses and
detector dark counts in GBS have been analyzed37. Ref. 37 is based
on the framework of ref. 29 where the generalized Wigner function is
used to demarcate the region of efficient classical simulation as a
function of losses and detector dark counts. In contrast, no analysis
has been carried out for partial photon distinguishability in GBS,
except for a recent paper38 claiming to extend their results for partial
distinguishability in AABS to that in GBS. The results of ref. 38 are
somewhat unsatisfactory in the sense that their results for GBS must
be applied in a context similar to AABS. For example, their
investigation is strictly limited to the collision-free regime with
weak squeezing, and they presume that the number of photons
generated by the source is fixed and known at the beginning of the
derivation. This is a rather strong assumption in relation to the
indeterminate-photon number nature of Gaussian states, especially
in the presence of loss. In addition, ref. 38 only discusses GBS with
PNR detectors, such that the theory is not applicable to the current
GBS experiments using threshold detectors.
In this paper, we provide an investigation of the partial

distinguishability problem in GBS, not limited by the collision-
free or determinate photon number assumptions. We develop a
model for partial distinguishability and apply it to GBS with both
PNR and threshold detectors. In this model we introduce a new
parameter called the indistinguishability efficiency. Along with
other existing parameters such as the squeezing parameter of the
input light and transmission rate introduced from the lossy GBS
model, it forms a composite parameter that affects the probability
distribution and its underlying structure, similar to how transmis-
sion rate and dark counts work together to determine the classical
simulatability of imperfect AABS29. We define virtual modes to
incorporate the distinguishable photons that do not interfere with
other photons but contribute to the photon detection at the end.
We note that a similar approach was also used in ref. 39 where it
was used for investigating the trade-off between Hong-Ou-
Mandel interference visibility and photon generation efficiency
for heralded single photon source. For GBS with PNR detectors,
the resulting probability is calculated as a sum of all possible
combinations of different outputs of these states. Despite starting
from completely different models, we find our characterization of
the distinguishable photons in GBS matches perfectly with that
derived for AABS40, which adds evidence towards the validity of
our model. For GBS with threshold detectors, we include both
partial distinguishability and losses in deriving the expression for
the probability. In order to include the distinguishable photons
from the virtual modes, we abandon the commonly employed
Torontonian method and propose a method based on the
marginal probability and prove that the probability defined by
Torontonian is a special case of our result.
We finally discuss how partial distinguishability affects quantum

supremacy in light of our results. For partially distinguishable GBS
with PNR detectors, since every term in the output probability
corresponds to a particular number of indistinguishable photons,
this determines the computational cost of calculating that term. By
showing that the cost increases exponentially with the number of
indistinguishable photons, we obtain an efficient approximation

scheme by considering only a fraction of all terms which involves a
smaller number of indistinguishable photons. In other words, GBS
becomes more “classical” with reduced indistinguishability. We
check the fidelity and complexity of the approximation which
depends mainly on the indistinguishability efficiency. The fidelity
of our approximation increases exponentially with decreasing
indistinguishability. We also propose two efficient classical simula-
tion algorithms, one for PNR detectors and one for threshold
detectors. With these algorithms, the complexities of simulation
algorithms such as those in refs. 27,28 can be reduced exponentially
in certain cases, depending on the indistinguishability efficiency. In
this way, we show that partial distinguishability affects quantum
supremacy.

RESULTS
The model of partial distinguishability
A typical GBS scheme consists of three parts: an interferometer with
K spatial ports for inputting photons and K ports for outputs; M of
these input ports are fed with squeezed vacuum states and each
output port has a detector. We note that what we refer to as “ports”
are commonly referred to as “modes” in most of the literature on BS
since all photons are typically assumed to be indistinguishable. In
this paper, we use the word “port” since each port may consist of
multiple modes. The interferometer is characterized by a K × K Haar-
random matrix T where its columns correspond to the input ports
and its rows correspond to the output ports.
It is convenient to represent a Gaussian state by a quasiprob-

ability distribution (QPD) because the first two statistical moments
of the QPD—the displacement vector and covariance matrix—are
sufficient to fully characterize the density matrix41,42. Since the
Gaussian states we are dealing with always have zero displace-
ment vector, we write ρ= ρ(V) and only use the covariance matrix
V to represent the density matrix. Its definition is given by

Vkl ¼
1
2
hfΔx̂k ;Δx̂lgi; (1)

where Δx̂ ¼ x̂� hx̂i and the quadrature field operators are
defined as x̂ ¼ ½q̂1; p̂1; :::; q̂K ; p̂K �; q̂k ¼ âk þ âyk ; p̂k ¼ iðâyk � âkÞ,
and âk are the annihilation operators for the kth port. We let
k∈ [1, K] throughout this paper.
By directly using the existing model for lossy GBS as in ref. 37,

the covariance matrix of squeezed vacuum inputs with losses is

Vð0Þ ¼
MM
m¼1

ηt e
2rm þ 1� ηt 0

0 ηt e
�2rm þ 1� ηt

� �M
I2K�2M; (2)

where ηt is the overall transmission rate:

ηt ¼ ηsηuηd: (3)

Here, ηs is the transmission of the inputs (sources) before
entering the interferometer, ηu is the transmission for the uniform
loss inside the interferometer, and ηd is the detection efficiency. In
principle, we should only include ηs in Eq. (2) because it describes
the Gaussian state before entering the interferometer, but since
our model is compatible with the result in ref. 7,37, we combine ηs,
ηu and ηd at this stage. Here, In is the n × n identity matrix which is
the covariance matrix of the vacuum state. A standard assumption
that is typically used in experiments such as ref. 22 is that all inputs
have identical squeezing parameter rm= r.
For GBS, partial distinguishability originates from imperfect

input light where minor shifts in time or frequency is the origin of
the distinguishability35,36. To characterize it, in our model all input
light is initially indistinguishable. Before entering the interferom-
eter, the photons go through a process where they have the
probability of becoming a distinguishable photon. These photons
do not interfere with other photons during their propagation in
the interferometer, but will be registered by the detectors at the
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output. In order to satisfy this assumption, we create an additional
virtual mode for every port which has input light. The Gaussian
state in each virtual mode is characterized as ρ(m)(V(m)). Through-
out this paper, the superscript (m) is used to denote the quantities
and parameters related to the distinguishable photons in the mth
virtual mode and we let m∈ [1,M]. The superscript (0) will be
reserved for the indistinguishable mode. We will also use
superscript ðm0Þ with m0 2 ½0;M� when including both indis-
tinguishable and distinguishable cases. These virtual modes are
initially in vacuum states, V(m)= I2K, until they are fed with
photons through the corresponding port from the indistinguish-
able mode. The transformation of photons from the indistinguish-
able mode to the virtual mode is characterized by the unitary
operator:

Um ¼ exp θðâymb̂
ðmÞ
m � b̂

ðmÞy
m âmÞ

n o
; (4)

where âym and âm are the creation and annihilation operators of
the mth port of the indistinguishable mode, b̂

ðmÞy
m and b̂

ðmÞ
m are the

creation and annihilation operators of the mth port of the mth
virtual mode. Here, the subscript m is to indicate which port. We
define the indistinguishability efficiency as the probability of a
photon not exchanged from the indistinguishable mode to the
virtual modes, denoted as ηind. Under the effect of Eq. (4), it
satisfies the relation:

ηind ¼ cos2θ: (5)

There is some similarity between this model and that for lossy
GBS29,37, but the major difference is that the photons in the virtual
modes are not lost, instead, they go on to propagate in the
interferometer until they are detected at the output.
Now we obtain the new density matrices for all M + 1 modes

after applying the distinguishable-indistinguishable transforma-
tion by taking the partial trace:

eρ ¼
YM
m¼1

Um

 !OM
m0¼0

ρðm0 Þ
YM
m¼1

Um

 !y

(6)

eρðm0 Þ ¼ trm0 ðeρÞ: (7)

Since we use the covariance matrix to represent the density
matrix, we give the covariance matrices of all M + 1 modes:

eVð0Þ ¼
MM
m¼1

X ind 0

0 Y ind

� �M
I2K�2M (8)

eVðmÞ ¼ I2m�2

M Xdis 0

0 Ydis

� �M
I2K�2m; (9)

where we have

X ind ¼ ηtηind e
2r þ 1� ηtηind (10)

Y ind ¼ ηtηind e
�2r þ 1� ηtηind (11)

Xdis ¼ ηtð1� ηindÞ e2r þ 1� ηtð1� ηindÞ (12)

Ydis ¼ ηtð1� ηindÞ e�2r þ 1� ηtð1� ηindÞ: (13)

In our model, the output pattern measured at detection does
not only come from the indistinguishable mode. It is the
combined output pattern of all M + 1 modes. Consider the case
of ideal PNR detection. If the output pattern of the m0th mode is
sðm

0Þ ¼ ½sðm
0Þ

1 ; sðm
0Þ

2 ; :::; sðm
0 Þ

K � where sðm
0Þ

k denotes the number of
output photons at kth port of m0th mode, then the overall output
pattern is

s ¼
XM
m0¼0

sðm
0 Þ; (14)

and for each port we have

sk ¼
XM
m0¼0

sðm
0Þ

k : (15)

Partially distinguishable GBS with PNR detectors
We now proceed to calculate the probability distribution of the
output for PNR detectors. For the original GBS with perfect
indistinguishability, the probability of observing an output pattern
s= [s1, s2, ..., sK] where sk is the number of detected photons at the
output of the kth port is given by the equation:

PðsÞ ¼ HafðAsÞ
s1!:::sK !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQÞ

p ; (16)

where Haf(⋅) stands for the matrix function Hafnian and As is the
selected kernel matrix which is obtained by repeating rows and
columns of the kernel matrix according to s. The kernel matrix is
constructed out of the covariance matrix. Q is the covariance
matrix of Q-function43.
For partially distinguishable GBS under our model, we need to

first decompose the overall output pattern into different
combinations of M + 1 patterns, namely s(0), s(1)... s(M), according
to Eq. (14) and Eq. (15). We define Pðm

0Þðsðm0 ÞÞ as the probability to
obtain output pattern sðm

0Þ for the m0th mode. The probabilities of
all possible combinations are then combined to obtain the overall
probability:

PðsÞ ¼
X

sð0Þ; sð1Þ; :::; sðMÞPM
m0¼0

sðm
0 Þ ¼ s

� �
YM
m0¼0

Pðm
0Þðsðm0ÞÞ:

(17)

In Eq. (17) there are a total of
QK

k¼1ðs
ð0Þ
k þ 1Þ possible

configurations of s(0), ranging from [0, ..., 0] to [s1, ..., sK]. Now we
regroup them by the total number of photons in a configuration,
denoted as N(0):

Nð0Þ ¼
XK
k¼1

sð0Þk ; (18)

and rewrite Eq. (17) as

PðsÞ ¼
XN
n ¼ 0

fNð0Þ ¼ ng

X
sð0Þ

Pð0Þðsð0ÞÞPdisðs� sð0ÞÞ;
(19)

where

PdisðsdisÞ ¼
X

sð1Þ; :::; sðMÞPM
m¼1

sðmÞ ¼ sdis

� �
YM
m¼1

PðmÞðsðmÞÞ;
(20)

where N is the total number of photons of the overall output
pattern:

N ¼
XK
k¼1

sk : (21)

Here, we consider the photons from all the virtual modes as a
whole because later we propose an classical sampling algorithm
for their combined probability in Eq. (20).
In the Methods section, we obtain the covariance matrix Q and

kernel matrix A of all M + 1 modes. Applying them to Eq. (16) we
obtain the specific probability distribution for each state. The
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expression for the probability with respect to the indistinguishable
mode takes the same form as Eq. (16):

Pð0Þðsð0ÞÞ ¼ HafðAð0Þ
s Þ

sð0Þ1 !:::sð0ÞK !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQð0ÞÞ

q : (22)

For the distinguishable modes, on the other hand, the change
in the form of kernel matrix leads to the reduction of the Hafnian
matrix function to simple multiplication:

PðmÞðsðmÞÞ ¼ GðNðmÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQðmÞÞ

q YK
k¼1

jTk;mj2s
ðmÞ
k

sðmÞ
k !

; (23)

GðNðmÞÞ ¼
X
q

ðNðmÞ!Þ2

ðq!!Þ2ðNðmÞ � qÞ!
β

0q
d α

0NðmÞ�q
d ; (24)

where q 2 f0; 2; :::; 2bNðmÞ

2 cg and N(m) is the total number of
photons in the mth virtual mode

NðmÞ ¼
XK
k¼1

sðmÞ
k : (25)

Here, Tk,m is an element of the interferometer matrix T. It
represents the amplitudes of the transformation of a photon from
the mth port to the kth port. Expressions for parameters β0d and α0d
are

α0d ¼ ηtð1� ηindÞð1� ηtð1� ηindÞÞsinh2r
1þ ηtð1� ηindÞð2� ηtð1� ηindÞÞsinh2r

; (26)

β0d ¼ ηtð1� ηindÞ sinh r cosh r
1þ ηtð1� ηindÞð2� ηtð1� ηindÞÞsinh2r

: (27)

A detailed derivation of Eq. (23) can be found in the Methods
section . Hence the computational complexity of calculating one
specific probability from mth virtual mode is only a 1st degree
polynomial respect to total number of output photons.
It should be noted that this result does not indicate that the

exact calculation of Pdis can be done in polynomial time, because
it contains

QK
k¼1

ðM�1þskÞ!
ðM�1Þ!sk ! terms. Each term corresponds to a

possible combination of s(1), ..., s(M). For the extreme case of the
collision-free regime, there would still be MN terms. Even though
the computational complexity of calculating each term is only
polynomial according to Eq. (23), adding them costs at least
exponential time. Nevertheless, unlike Eq. (22), Eq. (23) provides a
back door for classical simulation. In the next section we propose
an classical simulation method for generating Pdis.

Efficient classical simulation for distinguishable GBS
Looking at Eq. (23) closely, we find that by multiplying an
additional factorial, the product on the right side forms a
multinomial distribution:

PðmÞ
prodðsÞ ¼ N!

YK
k¼1

jTk;mj2sk
sk !

; (28)

which means that the output port of each photon is randomly
chosen among all K ports following the probability distribution
(∣T1,m∣2, ∣T2,m∣2... ∣TK,m∣2). P

ðmÞ
prod(s) is also related to the probability

distribution of obtaining output pattern s in distinguishable
AABS40:

PAAðsÞ ¼
PermðT#s Þ
s1!:::sK !

; (29)

where T#s denotes a matrix with entries ∣Tij∣2 where Tij is an entry
of the original complex AABS transformation matrix Ts. Under the
condition that there is only one input port, Eq. (29) reduces to Eq.

(28). With this in mind, the remaining coefficients in Eq. (23) can
be interpreted as the probability of obtaining N(m) photons from
the state described by Eq. (9):

PðmÞ
numðNÞ ¼

GðNÞ

N!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQðmÞÞ

q : (30)

Now we can write Eq. (23) as a multiplication of Eq. (28) and Eq.
(30).
Such an analysis enables us to provide a classical sampling

method for distinguishable GBS, with the help of the two
probabilities distributions PðmÞ

prod(s) and PðmÞ
numðNÞ. Before doing that,

we need to set the range for the number of photons. Theoretically,
this range is from zero to infinity, but since the probability
decreases exponentially with N, and GðNÞ / α

0N
d , it is convenient to

truncate the sampling range at a number, Nt ¼ Ndt where Nd is
the average number of photons:

Nd ¼ ηtð1� ηindÞsinh2r; (31)

and t is a truncation factor. Due to the truncation we renormalize
PðmÞ
numðNÞ according to:

ePðmÞ
numðNÞ ¼

PðmÞ
numðNÞPNt

n¼1 P
ðmÞ
numðnÞ

: (32)

Algorithm 1. Efficient sampling of distinguishable GBS.

Algorithm 1 then allows us to sample the output pattern from
all virtual modes. The computational complexity of the worst-case
scenario is OðMKdtNdeÞ which scales only polynomially. We can
create a probability distribution of all output patterns from
distinguishable GBS with ε accuracy requiring a computational
cost OðMKdtNde=εÞ. n binary digit accuracy can be achieved for
each probability if we let ε= 1/2n. We denote this probability
distribution as Psimðs; εÞ.
While Pdis(s) is only calculated for one s at a time, Psimðs; εÞ

updates the probabilities for all output patterns simultaneously
with each sampling. This is extremely useful in Eq. (19) where
Pdis(s) of a considerable number of different patterns s needs to be
calculated to obtain the result. Naturally we obtain an approxima-
tion to P(s) with accuracy ε by replacing Pdis(s) with Psimðs; εÞ.

Partially distinguishable GBS with threshold detectors
In the original proposal of GBS, each output port has a PNR
detector. For a quantum supremacy demonstration, the number of
ports—and hence the number of PNR detectors—is rather large,
which may be prohibitive experimentally. As such, in works such
as ref. 22 they were replaced with threshold detectors where the
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detection result only shows the presence of the photons
regardless of its exact number. If any number of photons greater
or equal to one are detected, it is refered to as a “click”. Of course,
the probability of a click can be calculated by adding the
probabilities of all possible output patterns from PNR detectors
over an infinite number of terms. A better way than this direct
approach is to use the P-functions of the POVM elements 0j i 0h j
and Î� 0j i 0h j, where one can directly calculate the probability of
the output pattern s as in ref. 24

PðsÞ ¼ TorðQUÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQÞ

p ; (33)

with a matrix function defined as Torontonian:

TorðQUÞ ¼
X

V2PðUÞ
ð�1ÞjUj�jVj 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ðQ�1ÞV
� �q : (34)

Here, U is a set where the elements are the ports that have
clicks in pattern s, PðUÞ is the power set which contains all the
subsets of U , and QðmÞ

U is a matrix formed by keeping in Q(m) only
the rows and columns corresponding to the ports in set U .
In ref. 24, Eq. (33) is obtained by considering only the Gaussian

state-of ideal GBS. Furthermore, how to include the effects of
partial distinguishablility is not obvious from their formalism.
Therefore, we need a new expression for P(s) to include the effects
of all M + 1 modes and make Eq. (33) a special case. We propose
the probability as a weighted sum of the marginal probabilities of
no-click events:

PðsÞ ¼
X

V2PðUÞ
ð�1ÞjUj�jVj ePðRÞ; (35)

where ePðRÞ is the marginal probability of a no-click event for the
ports in the given set R with the expression:

ePðRÞ ¼
YM
m0¼0

ePðm0ÞðRÞ: (36)

Here, R is the set difference of [1,M] and V i.e. R ¼ ½1;M� � V .ePðm0 ÞðRÞ is the marginal probability of a no-click event in the
m0th mode.
For Gaussian states the marginal probability distribution of

certain ports can be directly calculated by only considering the
columns and rows corresponding to these ports in the covariance
matrix. Additionally, the marginal probability of a no-click event is
a function of determinant, therefore we have

ePðm0ÞðRÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Qðm0Þ

R

	 
r :
(37)

When ηind= 1, all photons are indistinguishable hence there is
no click in any mth virtual mode such that ePðmÞðRÞ ¼ 1. By
proving that

detðQð0Þ
R Þ ¼ detðQð0ÞÞdet Qð0Þ�1

	 

V

	 

; (38)

Eq. (33) becomes a special case of Eq. (35). The proof is given in
the Methods section. Apparently, detðQð0ÞÞ is irreducible so that
the complexity of calculating ePð0ÞðRÞ remains OðjRj3Þ as in the
case of Torontonian.
Interestingly, the marginal probability of a no-click events in all

virtual modes can be reduced to

ePðmÞðRÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ T mðRÞαdÞ2 � ðT mðRÞβdÞ2

q ; (39)

where T mðRÞ ¼
P

j2RjT j;mj2. A detailed derivation of Eq. (39) can
be found in the Methods section. T mðRÞ can be interpreted as the

total transmission rate of ports in R. When ηind= 1, αd= βd= 0
we have ePðmÞðRÞ ¼ 1. This gives an exact calculation of the
probability distribution of threshold detector GBS with partial
distinguishability.

Quantum supremacy with partially distinguishable GBS
We have obtained the probability distribution of partially
distinguishable GBS that does not require any assumptions of
being collision-free, or having a determinate photon number and
explicitly include losses. We proceed to discuss how partial
distinguishability affects quantum supremacy.
Let us define an approximate version of the probability P(s) by

replacing Pdis(s) with Psimðs; εÞ and truncating Eq. (19) at a certain
value Ncut

Papproxðs;eε;NcutÞ ¼
XNcut

n¼0

Pnðs; εnÞ; (40)

Pnðs; εnÞ ¼
X
sð0Þn

Pð0Þðsð0Þn ÞPsimðs� sð0Þn ; εÞ:
(41)

Here we can write the accuracy for Papprox and Pn respectively as

eε ¼ ε
PNcut

n¼0

P
sð0Þn

Pð0Þðsð0Þn Þ

εn ¼ ε
P
sð0Þn

Pð0Þðsð0Þn Þ:

We note that the accuracy here refers to the probability for a
particular output pattern rather than the whole distribution.
Obviously

PNcut
n¼0

P
sð0Þn

Pð0Þðsð0Þn Þ occupies a tiny portion of the
whole distribution. Therefore we have εn≪ ε andeε � ε. Hence the
absolute accuracy of Papprox is larger compared to that of Psim
although the relative accuracy most likely stays unchanged.
Here, Pn(s, εn) includes the contributions of all configurations

that have n indistinguishable photons. The magnitude of this term
depends on the indistinguishability efficiency ηind. For the
extreme condition that ηind= 1 which corresponds to the ideal
case, Pn(s, εn) from n < N are all zero. Since the dependence of
Pn(s, εn) on n for ηind < 1 is approximately exponentially decreas-
ing, we may safely truncate Papprox with Ncut smaller than N. The
fidelity of the approximation is defined as

Fðs;eε;NcutÞ ¼ Papproxðs;eε;NcutÞ=PðsÞ: (42)

This approximation is powerful because the computational
complexity increases superexponentially with Ncut. This is because
the computational complexity of calculating Pð0Þðsð0Þn Þ is O(n32n)
which is exponential and the number of elements in sð0Þn is
maximally 0:0ptNnð Þ when the output pattern is collision-free. The
complexity of Papproxðs;eε;NcutÞ is then at most OðNNcut 2NcutÞ which
is polynomial to N. By using the Ncut parameter, this reduces the
computational cost of the approximation, reducing it from the
ideal GBS case which takes O(N32N) steps. From Fig. 3 we see that
with Ncut= 2 and N= 9, which has only a modest computational
overhead, the fidelity of our approximation can be maintained to
exceed 98.2%. This demonstrates how effective our approximation
method is.
We have not been able Fig. 1 to obtain an analytical relationship

between F and ηind. However, numerically we observe that the
fidelity obeys an approximate relation

F � 1� ceηind ; (43)

as shown in Fig. 2, where c is a fitting parameter. According to this
relation, the approximation can achieve high fidelity for Ncut much
smaller than N unless ηind is close to 1. In Fig. 2 we show the
approximation for various Ncut. We see that the fidelity is above 0.9
even for a modest Ncut= 3 approximation with ηind as large as 0.9.
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Another observation is that for a given GBS setup, when the
total number of photons of an output pattern increases while the
order of an approximation Ncut is fixed, the fidelity of the Papprox
only decreases linearly or even more slowly. For the example
shown in Fig. 3, we use Papprox with Ncut= 2 to approximate the
output patterns for a total number of photons N, from 3 to 9.
While the exact calculation of these output patterns requires an
exponential increase in computational time, the fidelity of the
approximation Papprox decreases linearly, instead of exponentially.
The rate of decrease in fact appears to ease as N increases.
Performing a linear extrapolation of the data for N < 8 to N= 50,
we expect a fidelity of ~90%, which is likely to be an
underestimate as the data has some evidence of reducing in

gradient with N. This relation between fidelity and computational
time again shows the effectiveness of this approximation method.
For GBS with threshold detectors, partial distinguishability does

not affect quantum supremacy directly because the main
exponential contribution to the complexity comes from the
number of elements to be calculated, which is 2N. Partial
distinguishability only reduces the complexity of calculating one
element from O(N3) to O(N), by converting calculation of the
determinant to multiplication as shown in Eq. (39). We note that if
we let ηind ≈ 0 such that all photons are almost distinguishable,
the computational complexity is still exponential because the
number of elements is still 2N which is established as the proof for
exponential complexity of calculating probability for a particular
output in GBS with threshold detectors. But as we have seen
above, the sampling method for Psimðs; εÞ can be used to
efficiently sample the distribution in this limit.
We note that while we have focused primarily on the

probability of an output pattern in this paper, our model can
also be used for generating samples for partially distinguishable
GBS. Our model is compatible with existing simulation algorithms
such as refs. 27,28, which allows one to take advantage of these
algorithms and the imperfect indistinguishability at the same time.
For GBS with PNR detectors, we first create two samples. One is for
photons from all M distinguishable modes, directly created by
Algorithm 1. The other is for the photons from the indistinguish-
able mode, created by feeding the covariance matrix representing
the mode

T 0

0 T�

� �eVð0Þ Ty 0

0 TT

" #
; (44)

into the sampling method provided in ref. 27. Then, we combine
these two samples by adding the results of each port to create
one final sample.
For GBS with threshold detectors, we could directly take the

sample created for PNR detectors. We can however improve the
sampling algorithm by taking advantage of the following two
observations. The first is that for threshold detectors, one photon
is enough to register a click in a port, and whether this photon
comes from the indistinguishable mode or distinguishable modes

Fig. 1 A pictorial representation of the proposed model for GBS with partial distinguishability. For the simplicity of illustration, we show a
3 × 3 interferometer (K = 3) characterized by T with input light at first two ports (M= 2). When partially distinguishable input light
(represented by the mixed color ball for the input ports) enters the interferometer, they decompose into non-interfering modes and
propagate inside the interferometer independently until they leave the interferometer and collectively meet the detectors at the output ports.
The thin solid-lined rectangle represents the interferometer for the indistinguishable photons. The dashed rectangles represent the
interferometer for the distinguishable virtual modes.

Fig. 2 Approximation fidelity with indistiguishability efficiencies.
Numerical evaluations of fidelity, Eq. (42), for Ncut= 3, Ncut= 4 and
Ncut= 5 when K= 35, M= 6, N= 6, r= 0.9, ηt= 0.9. The output
pattern is s1= ...= sN= 1, sN+1= ...= sK= 0 the other choices of
output pattern give similar results. This result is obtained over 94
Haar-random unitary matrices. The error bar represents the standard
deviation.
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is irrelevant. The second point is that the complexity of sampling
an indistinguishable photon is much larger than that of sampling
a distinguishable one. Therefore, we can first sample the M
distinguishable modes. According to that sampling result, we can
neglect the output ports where clicks are already registered.
Hence we only need to sample the output pattern for the
remaining ports. This is possible for a Gaussian state because the
marginal probabilities can be calculated by selecting the
corresponding rows and columns of the covariance matrix. The
details of the algorithm can be found in Algorithm 2.

Algorithm 2. Sampling algorithm of partially distinguishable GBS
with threshold detectors.

The complexity of generating a sample with N photons (clicks)
for ideal GBS are O(N32N/2) for the two algorithms of refs. 27,28. For
the partially distinguishable case, since only part of the sampled
photons actually come from the indistinguishable mode, the
complexity of will be reduced. For every photon counted as a
photon with the PNR detectors or registered as a click with
threshold detectors, approximately ηind of the probability comes
from the indistinguishable mode, which makes the complexity
OððNηindÞ32Nηind=2Þ. This expression covers quantitatively all levels
of indistinguishability, from the totally distinguishable case ηind=
0, where the exponential term becomes unity, to the perfectly
indistinguishable case where ηind= 1, where the complexity
remains the same as the ideal case. For partially distinguishable
cases, there is an exponential reduction of 2Nð1�ηindÞ=2. This
reduction of complexity can be substantial with a large number
of sampled photons (clicks) or small indistinguishable efficiency. It
indicates that 1/ηind as many photons (clicks) are needed in a
partially distinguishable GBS experiment to reach the regime
where classical simulations become intractable.

DISCUSSION
In this paper, we have developed a model which allows us to
model GBS with partially distinguishable photons and obtain the
expressions for the probabilities of a given output pattern for both
PNR and threshold detectors. The model is based on the
construction of virtual modes which incorporates the distinguish-
able photons and forms a new Gaussian state that propagates
inside the interferometer independently until it reaches the
detectors. We have proved that the expression for the probability
of the photons from these distinguishable Gaussian states
contains the previous result obtained by Aaronson and Arkhipov
for the distinguishable AABS as a special case. This is because we
included the indeterminate-photon-number nature of Gaussian
states in contrast to AABS where the photon number is fixed.
Based on that we proposed an algorithm for efficient simulation of
the output patterns from these distinguishable Gaussian states
which enables us to exponentially reduce the computational time
of calculating the probabilities.
Our method provides a framework to calculate the probabilities

for imperfect GBS, especially for GBS with threshold detectors
which has only been theoretically investigated for the ideal case.
We proved that the Torontonian—the result obtained in the ideal
case—is a special case within our framework. We note that for low
indistinguishability, the proof that supports the complexity of

Fig. 3 Approximation fidelity with increasing number of detected photons for a fixed approximation order. Numerical evaluations of
fidelity, Eq. (42) for Papprox with number of detected photons N for (a) Ncut= 2, K= 30, M= 6, r= 0.9, ηind=0.5, ηt=0.9; (b) Ncut= 3, K= 30, M= 6,
r= 0.9, ηind= 0.9, ηt= 0.99. The output pattern for each N is s1= ...= sN= 1, sN+1= ...= sK= 0, the other choices of output pattern give similar
results. These results are obtained over 94 Haar-random unitary matrices.

J. Shi and T. Byrnes

7

Published in partnership with The University of New South Wales npj Quantum Information (2022)    54 



computing the Torontonian still holds. Our aforementioned
simulation algorithm can reduce the computationally hard exact
calculation with a highly accurate approximation particularly for
low indistinguishability.
For GBS with PNR detectors, which to date is more theoretically

developed, we proposed an approximation based on the structure
of the expression of the probability with respect to indistinguish-
ability efficiency to show how partial distinguishability affects
quantum supremacy. We have taken advantage of the physical
nature of the indistinguishability, i.e. interference of photons
which is the cause of the computationally hard complexity.
Therefore for low indistinguishability, we only include contribu-
tions from a smaller number of interfering photons which takes
exponentially less time. We note that for GBS with extremely high
indistinguishability a direct calculation of the Hafnian is more
efficient than the approximation method due to the additional
overhead of incorporating the distinguishable photons. Numeri-
cally we showed how the computational time of our approxima-
tion for a given fidelity decreases exponentially with reduced
indistinguishablity which indicates the relationship between
partial distinguishablity and quantum supremacy.
While we have obtained the expression Eq. (35) for the exact

calculation of the probability for GBS with threshold detectors,
using this to find an approximation method is less easily
constructed, unlike the case for PNR detectors. For the PNR
detector case, the approximation Eq. (40) comes naturally from
the expression Eq. (17) for exact sampling. In this sense, GBS with
threshould detectors is advantageous than GBS with PNR
detectors in the context of probability calculation due to the lack
of an efficient approximation algorithm. Though For PNR
detectors, our approximation method may be used to obtain
the bound for indistinguishability efficiency for efficient simulation
at a required fidelity and computational time. In our numerical
studies we have found that the indistinguishability efficiency
should be larger than 0.9, such that the computational require-
ments of the approximation method become costly. This is
satisfied for the recent GBS experiments to date20–23.
Our model also provides a foundation for taking advantage of

the partial distinguishability to reduce the computational time in
classical simulation of GBS. We proposed two simulation
algorithms for partially distinguishable GBS with both types of
detectors based on Algorithm 1 and the algorithms of refs. 27,28.
With imperfect indistinguishability, the computational time is
exponentially reduced, depending on the number of photons
(clicks) and the level of indistinguishability. Our result shows that
roughly 1/ηind as many as photons (clicks) are needed in a
experiment in comparison to a classical simulation. Therefore, in
both a probability calculation and a classical simulation algorithm,
our model shows that partial distinguishability can affect quantum
supremacy in GBS.

METHODS
Q-function covariance matrices and kernel matrices of all M +
1 modes
As shown in Eq. (16), the probability of obtaining a certain output pattern s
from a Gaussian state requires the covariance matrix of the Q-function of
the state, denoted as Q. It is needed for the value of its determinant and
for constructing the kernel matrix A:

A ¼
0 IK
IK 0

� �
I2K � Q�1
� �

; (45)

where Q is converted from the real covariance matrix V. From the relation
between the covariance matrix of the light before entering the
interferometer, namely Qin, and the light after the interferometer, namely

Qout:

Qout ¼
T 0

0 T�

� �
Qin

Ty 0

0 TT

" #
; (46)

we could obtain similar relation for the kernel matrices:

Aout ¼
T� 0

0 T

� �
Ain

Ty 0

0 TT

" #
: (47)

Eq. (47) is very useful because it allows us to calculate the kernel matrices
successively from one interferometer to the other without the need of
calculating the inverse matrix for every covariance matrix being
transformed. The only kernel matrix we need to directly calculate from
the definition Eq. (45) is for the light emerging from the source, which is
what are we will calculate in the next step for our partially
distinguishable light.
First we obtain Qin for all M+ 1 modes from Eq. (8) and Eq. (9):

Qð0Þ
in ¼ I2K þ

αiJð0Þ βiJ
ð0Þ

βiJ
ð0Þ αiJð0Þ

" #
; (48)

QðmÞ
in ¼ I2K þ

αdJðmÞ βdJ
ðmÞ

βdJ
ðmÞ αdJðmÞ

" #
; (49)

where

Jð0Þ ¼
M

1:::
M

1
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{M M

0:::
M

0
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{K�M

;
(50)

JðmÞ ¼
M

0:::
M

0
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{m�1 M

1
M

0:::
M

0
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{K�m

;
(51)

αi ¼ ηtηind sinh r sinh r; (52)

βi ¼ ηtηind sinh r cosh r; (53)

αd ¼ ηtð1� ηindÞ sinh r sinh r; (54)

βd ¼ ηtð1� ηindÞ sinh r cosh r: (55)

Then we calculate Ain. By observing that

I2K þ
�K

j¼1αj �K
j¼1βj

�K
j¼1αj �K

j¼1βj

" # !
I2K �

�K
j¼1α

0
j �K

j¼1β
0
j

�K
j¼1β

0
j �K

j¼1α
0
j

" # !
¼ I2K ; (56)

)
α0j ¼ 1� 1þαj

ð1þαjÞ2�β2j
;

β0j ¼
βj

ð1þαj Þ2�β2j
;

8><>: (57)

it can be found that

Að0Þ
in ¼ β0iJ

ð0Þ α0iJ
ð0Þ

α0iJ
ð0Þ β0iJ

ð0Þ

" #
; (58)

AðmÞ
in ¼

β0dJ
ðmÞ α0dJ

ðmÞ

α0dJ
ðmÞ β0dJ

ðmÞ

" #
; (59)

where the values of α0i ; α
0
d ; β

0
i ; β

0
d can be calculated through Eqs. (57):

α0i ¼
ð1� ηindηtÞηindηtsinh2r

1þ ηtηindð2� ηtηindÞsinh2r
; (60)

β0i ¼
ηtηind sinh r cosh r

1þ ηtηindð2� ηtηindÞsinh2r
; (61)

α0d ¼ ηtð1� ηindÞð1� ηtð1� ηindÞÞsinh2r
1þ ηtð1� ηindÞð2� ηtð1� ηindÞÞsinh2r

; (62)

β0d ¼ ηtð1� ηindÞ sinh r cosh r
1þ ηtð1� ηindÞð2� ηtð1� ηindÞÞsinh2r

: (63)
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In the last step, we used Eq. (47) to obtain the kernel matrices after the
propagation inside the interferometer:

Að0Þ
out ¼

T� 0

0 T

� �
β0iJ

ð0Þ α0jJ
ð0Þ

α0iJ
ð0Þ β0iJ

ð0Þ

" #
Ty 0

0 TT

" #
; (64)

AðmÞ
out ¼

β0dE
�
1;m α0dE

�
2;m

α0dE2;m β0dE1;m

" #
; (65)

where

E1;m ¼

T1;m

..

.

TK;m

2664
3775 T1;m � � � TK ;m½ �; (66)

E2;m ¼

T1;m

..

.

TK;m

2664
3775 T�1;m � � � T�K ;m
� 


: (67)

We note that the subscripts “in” and “out” are only used in this section
because in the main text we are only interested in the kernel matrices after
the interferometer.

Derivation of Eq. 23
To obtain Eq. (23), firstly we need to calculate Haf(A(m)) where the form of
A(m) is given by Eq. (65). Direct calculation is very difficult so we observe
that A(m) can be decomposed into two matrices with no overlap:

AðmÞ ¼ β0d
E�1;m 0

0 E1;m

� �
þ α0d

0 E�2;m
E2;m 0

� �
: (68)

Combined with the definition of Hafnian function we obtain

HafðAðmÞÞ ¼ 1
n!2n

X
ρ2S2n

Yn
j¼1

Gρð2j�1Þ;ρð2jÞHρð2j�1Þ;ρð2jÞ; (69)

where we have

G ¼
E�1;m E�2;m
E2;m E1;m

� �
(70)

and H is a 2n × 2n matrix such that

Hi;j ¼
β0d; if ði > nAND j > nÞOR ði 	 nAND j 	 nÞ
α0d; if ði > nAND j 	 nÞOR ði 	 nAND j > nÞ:

(
(71)

With the definitions Eq. (66) and Eq. (67), it is easy to prove thatYn
j¼1

Gρð2j�1Þ;ρð2jÞ ¼
YK
i¼1

jTk;mj2s
ðmÞ
k ; (72)

which can be used to reduce the calculation of Haf(A(m)) to the calculation
of Haf(H):

HafðAðmÞÞ ¼
YK
k¼1

jTk;mj2s
ðmÞ
k HafðHÞ: (73)

The calculation of Haf(H) is non-trivial and we must resort to graph
theory. As is well-known, the Hafnian is closely linked to weighted perfect
matchings of a graph by the following definition for a 2n × 2n matrix:

HafðHÞ ¼
X

τ2PMPð2nÞ

Y
ði;jÞ2τ

Hi;j ; (74)

which means we have to perfectly match 2n vertices to form one
permutation in PMP(2n).
Regarding the definition of Hi,j, we can divide these 2n vertices into two

sets: N 1 ¼ [1, n] and N 1 ¼ ½nþ 1; 2n�. A match inside N 1 or N 2

corresponds to the weight β0d and the match between N 1 and N 2
corresponds to the weight α0d. For a given permutation, if we denote the
number of matches insideN 1 orN 2 as q, the number of matches between
N 1 and N 2 is consequently n− q. Note the value of q is always even
because a match in N 1 inevitably leads to a match in N 2. Now we can

rewrite Haf(H) as a summation respect to q:

HafðHÞ ¼
X
q

f qβ
0q
d α

0n�q
d ; (75)

where q 2 f0; 2; :::; 2bn2cg.
The final step is to obtain the expression of fq. Firstly, we regroup the

vertices in N 1 into two sets: N 1;in contains the vertices matching vertices
inside N 1; N 1;out contains the vertices matching vertices in N 2. We do the

same thing for vertices in N 2 such that in total there are n!
q!ðn�qÞ!

	 
2
configurations for this process.
Secondly, we count the number of perfect matches for vertices in N 1;in

and N 2;in. Since each one contributes ∣ PMP(q) ∣= (q−1)!! permutations, in
total there are ((q−1)!!)2 configurations in this process.
Thirdly, we count the number of matches between vertices inN 1;out and

N 2;out. Since there are n− q vertices in each set, we can straightforwardly
obtain the number of configurations to be (n− q)!.
Combining them we obtain the closed-form expression of fq:

f q ¼ n!
q!ðn�qÞ!

	 
2
ððq� 1Þ!!Þ2ðn� qÞ!

¼ ðn!Þ2

ðq!!Þ2ðn�qÞ! :
(76)

It is easy to prove that ∑qfq= (2n− 1)!!, which verifies the correctness of
the expression.
Thus we obtain the analytical result for Haf(A(m)) and hence Eq. (23)

where we let G(N)= Haf(H).

Proof of Eq. 38
This section proves that for a covariance matrix Σ of size 2K × 2K, U ¼ ½1; K �,
R is an arbitrary subset of U , Rc is the relative complement set of R
respect to U , we will always have:

detðΣRÞ ¼ detðΣÞ det ðΣð�1ÞÞRc

	 

: (77)

Proof: First, we regroup the matrix Σ as
A B
C D

� �
by moving rows and

columns so that A includes the indices from Rc and B includes the indices
fromR. Note the sign of the determinant will not be changed because the
interchange of rows (columns) are always carried out an even number of
times therefore we have

detðΣÞ ¼ detð
A B

C D

� �
Þ: (78)

Next, we use the Schur complement

det
A B

C D

� �� �
¼ detðA� BD�1CÞdetðDÞ; (79)

to obtain

detðA� BD�1CÞ ¼ detðΣÞ
detðΣRÞ

: (80)

Then we calculate the inverse matrix of
A B
C D

� �
to be

ðA� BD�1CÞ�1 �A�1BðA� BD�1CÞ�1

�D�1CðD� CA�1BÞ�1 ðD� CA�1BÞ�1

" #
: Therefore

ðA� BD�1CÞ�1 ¼ Σ�1
� �

Rc ; (81)

such that we obtain another equation of detðA� BD�1CÞ

detðA� BD�1CÞ ¼ 1

det Σ�1
� �

Rc

	 
 : (82)

Combining Eq. (80) and Eq. (82) we obtain Eq. (77).

Calculation of marginal probability of distinguishable
photons
This section calculates the marginal probability of given ports according to
Eq. (37). Basically, that amounts to calculating the determinant of a
selected covariance matrix QðmÞ

R whose rows and columns are selected
from Q(m) according to the ports listed in set R. Without loss of generality,
we presume there are n elements in R and we denote its ith element as Ri.
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First we need to calculate Q(m) which is QðmÞ
out obtained by putting Eq. (49)

into Eq. (46):

QðmÞ
out ¼ I2K þ

αdE2;m βdE1;m
βdE

�
1;m αdE�2;m

" #
; (83)

Therefore, QðmÞ
R can be written as a single matrix:

QðmÞ
R ¼

ðγ1 þ αdÞTR1 ;mT�R1 ;m ::: αdTR1 ;mT
�
Rn ;m βdTR1 ;mTR1 ;m ::: βdTR1 ;mTRn ;m

..

. . .
. ..

. ..
. . .

. ..
.

αdTRn ;mT
�
R1 ;m ::: ðγn þ αdÞTRn ;mT�Rn ;m βdTRn ;mTR1 ;m ::: βdTRn ;mTRn ;m

βdT
�
R1 ;mT

�
R1 ;m ::: βdT

�
R1 ;mT

�
Rn ;m ðγ1 þ αdÞT�R1 ;mTR1 ;m ::: αdT�

R1 ;mTRn ;m

..

. . .
. ..

. ..
. . .

. ..
.

βdT
�
Rn ;mT

�
R1 ;m ::: βdT

�
Rn ;mT

�
Rn ;m αdT�Rn ;mTR1 ;m ::: ðγK þ αdÞT�Rn ;mTRn ;m;

2666666666664

3777777777775
(84)

where γi ¼ 1=jTRi ;mj
2. Now we take all the coefficients and form another

matrix C:

C ¼

γ1 þ αd ::: αd βd ::: βd

..

. . .
. ..

. ..
. . .

. ..
.

αd ::: γK þ αd βd ::: βd

βd ::: βd γ1 þ αd ::: αd

..

. . .
. ..

. ..
. . .

. ..
.

βd ::: βd αd ::: γK þ αd

266666666664

377777777775
: (85)

Then we calculate its determinant by resorting to the definition of
determinant

detðQðmÞ
R Þ ¼

P
ρ2S2K

SgnðρÞ
Q2n
i¼1

QðmÞ
R ði; ρðiÞÞ

¼
P

ρ2S2K
SgnðρÞ

Q2n
i¼1

Ci;ρðiÞ
Qn
j¼1

jTRj ;mj
2

 !2

¼ 1
C2 detðCÞ;

(86)

where C ¼
Qn

j¼1 γj . Then we find that

detðCÞ ¼ C þ CT ðαd � βdÞð Þ C þ CT ðαd þ βdÞð Þ; (87)

where T ¼
Pn

j¼1 1=γj . Consequently we have

detðQðmÞ
R Þ ¼ ð1þ T αdÞ2 � ðT βdÞ2: (88)

We then use this in Eq. (37) to obtain Eq. (39).
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