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Distribution and quantification of remotely generated Wigner
negativity
Yu Xiang 1,2,5, Shuheng Liu1,5, Jiajie Guo1, Qihuang Gong1,2,3, Nicolas Treps4, Qiongyi He 1,2,3✉ and Mattia Walschaers 4

Wigner negativity, as a well-known indicator of nonclassicality, plays an essential role in quantum computing and simulation using
continuous-variable systems. The conditional preparation of Wigner-negative states through appropriate non-Gaussian operations
on an auxiliary mode is common procedure in quantum optics experiments. Motivated by the demand of real-world quantum
network, here we investigate the remote creation and distribution of Wigner negativity in the multipartite scenario from a
quantitative perspective. By establishing a monogamy relation akin to the generalized Coffman-Kundu-Wootters inequality, we
show that the amount of Wigner negativity cannot be freely distributed among different modes. Moreover, for photon subtraction
—one of the main experimentally realized non-Gaussian operations—we provide an intuitive method to quantify remotely
generated Wigner negativity. Our results pave the way for exploiting Wigner negativity as a valuable resource for numerous
quantum information protocols based on non-Gaussian scenario.
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INTRODUCTION
Continuous-variable (CV) systems have attained impressive
success in quantum information processing1. As an important
platform that has been widely studied, Gaussian systems and
operations are extensively used in quantum teleportation2,
quantum key distribution3, and quantum-enhanced sensing4,5.
These protocols come with the advantage of deterministically
producing resource states and being analytically tractable due to
the Gaussian properties of the states. However, non-Gaussian
states and operations have irreplaceable advantages in some CV
protocols6, such as entanglement distillation7,8, error correction9,
secure quantum communication10, and the verification of Bell
nonlocality11. Considerable progress in the controllable generation
of multimode non-Gaussian states has been made in recent
experiments12,13, which also provide support for the implementa-
tion of universal CV quantum computation in the long term14.
For some non-Gaussian states, the Wigner function can reach

negative values. This Wigner negativity has been seen as a necessary
ingredient in CV quantum computation and simulation to outper-
form classical devices15–17. A common approach to generate Wigner
negativity is by means of the action of a conditional operation on
initially prepared Gaussian states. In the pursuit of long-distance
quantum technologies, it is crucial to develop efficient methods to
produce Wigner negativity in a distant node. Recently, it was proven
that a necessary requirement for such scheme is the existence of
Einstein-Podolsky-Rosen (EPR) steering18,19—a particular type of
quantum correlation where local measurements performed on one
party can adjust (steer), instantaneously, the state of the other
remote party20–22. Based on this kind of nonlocal effect, one can
remotely produce negativity in the steering mode by applying a set
of appropriate operations on the steered mode.
In consideration of the real-world quantum network in the

multipartite scenario, it is a worthwhile objective to deeply explore
the remote generation and distribution of Wigner negativity over

many nodes in an entanglement-based network. As an inter-
mediate type of quantum correlation between entanglement and
Bell nonlocality, multipartite quantum steering23 has received
extensive attention in recent developments of quantum informa-
tion theory24,25. It has been successfully implemented in CV optical
network26–29, photonic network30–32, and atomic ensembles33.
Inspired by the shareability of EPR steering, known as mono-
gamy34–40, it is interesting to explore how can the remotely
generated Wigner negativity be distributed over different modes?
Is there any monogamy relations imposing quantitative con-
straints on that negativity? Does stronger steerability generate
more negativity?
Here we present a quantitative investigation of Wigner

negativity that is remotely created via multipartite EPR steering,
in which non-Gaussian operations performed on one steered node
of quantum network produce Wigner negativity in different
distant nodes, as shown in Fig. 1. We first investigate to what
extent Wigner negativity can be shared by establishing a
monogamy relation. This constraints the degree of distributed
negativity akin to the Coffman-Kundu-Wootters (CKW) monogamy
inequality for steerability36. Basic examples including two typical
schemes, i.e. photon subtraction and Fock-state projection, for the
remote preparation of Wigner-negative states are given. Then we
focus on photon subtraction, one of the commonly used non-
Gaussian operations, and find an intuitive measure for the amount
of induced Wigner negativity in the steering modes. This allows us
to find out the different behaviors of the steerability and the
created negativity depending on the squeezing and purities of
initial Gaussian states.

RESULTS
We begin by briefly introducing the theoretical framework of
multimode CV quantum optics. The noninteracting quantized
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electromagnetic field can be treated as a number N of optical
modes that behave as quantum harmonic oscillators with different
frequencies described by Ĥ ¼PN

k¼1 2ωkðâykâk þ 1
2Þ. Here, âk and âyk

are the annihilation and creation operators of a photon in mode k,
satisfying the bosonic commutation relation ½âk ; âyk0 � ¼ δkk0 . The
corresponding quadrature phase operators for each mode are
defined as x̂k ¼ âk þ âyk and p̂k ¼ ðâk � âykÞ=i. Collecting the
quadrature operators for all the modes into a vector
ξ̂ � ðx̂1; p̂1; :::; x̂N; p̂NÞ>, the covariance matrix (CM) σ is given
with elements σij ¼ hξ̂ i ξ̂ j þ ξ̂ j ξ̂ ii=2� hξ̂ iihξ̂ ji. If the system is
prepared in a Gaussian state, the properties can be completely
determined by its CM. Otherwise, the first and second-order
statistical moments are not enough to characterize the non-
Gaussian system, and we must resort to a more complete
description. Here we choose the Wigner function as a preferred
phase space representation for an arbitrary state with density
matrix ρ̂,

WðξÞ ¼
Z

R2N

d2Nα

ð2πÞ2N exp �iξ>Ωα
� �

χðαÞ; (1)

where Ω¼LN
1

0 1
�1 0

� �
is the symplectic form and the Wigner

characteristic function χðαÞ ¼ Tr ½ρ̂ expðiξ̂>ΩαÞ�. A particular
attribute of non-Gaussian states is the possibility for this Wigner
function to attain negative values that can be quantified as
N � R jWðξÞjdξ � 141.
In order to effectively generate and distribute Wigner negativity,

an indirect scheme was proposed based on EPR steering18. In a
two-mode Gaussian system, when there exists steering from Bob
to Alice, then an appropriate local Gaussian transformation
together with photon subtraction on the steered mode A can
remotely generate Wigner negativity in the steering mode B, i.e.
N B > 0. The bipartite Gaussian steerability can be quantified by
the parameter GB!A ¼ maxf0; 12 ln DetσB

Det σAB
g, where σB and σAB

denote the CM for mode B, and the group (AB), respectively42.
This formalism was developed for arbitrary conditional operations
on an arbitrary number of modes, showing that EPR steering is still
necessary to prepare a Wigner-negative state in the steering
modes19. The remotely generated Wigner negativity was not
quantified, nor are its multimode properties such as the share-
ability of the negativity among steering modes understood.
Especially, since EPR steering is a prerequisite for remote
preparation of Wigner negativity, one may intuitively expect that
stronger steerability in the initial Gaussian states creates more

Wigner negativity. With our quantitative investigation, we show
that such a joint increase of steering and Wigner negativity does
not always exist.

Monogamy of remotely generated Wigner negativity
First, we study the multimode character of the remotely generated
Wigner negativity by deriving constraints on the distribution of
this negativity among various modes in the steering party (B1B2…
Bn) for a (1+ n)-mode Gaussian state σAB1B2 ¼ Bn . As a fundamental
property of EPR steering, the CKW-type monogamy relation
reveals that the sum of Gaussian steerability between any two
modes cannot exceed their intergroup steerability, i.e.,
GB1B2 ¼ Bn!A �Pn

i¼1 GBi!A, which bounds the achievable key rate
of quantum secret sharing36. In analogy with this steering
constraint, we establish a monogamy relation for the amount of
the remotely generated Wigner negativity:

N B1B2 ¼ BnðLAjB1B2 ¼ BnÞ �
Xn
i¼1

N Bi ðLAjBi Þ: (2)

Here, LAjBj ¼ Bk represents the optimal set of local operations on
mode A to induce the largest amount of Wigner negativity in the
group of modes (Bj…Bk), where the subscript “A∣Bj…Bk” represents
that the choice of L depends on the initial Gaussian steering from
the group (Bj…Bk) to mode A. Thus generating negativities in
different modes requires different optimal operations on the
steered mode A. For instance, inducing Wigner negativity in the
steering mode Bj, or Bk, or their joint (BjBk), requires different local
Gaussian transformations prior to a non-Gaussian operation (e.g.
photon subtraction).

Proof. Without loss of generality, let us focus on a tripartite scenario,
in which the steering party B contains two modes B1 and B2. Now we
use the fact that N B1ðLAjB1Þ> 0 and N B2ðLAjB2Þ> 0 cannot be true
simultaneously, which is a consequence of another type of Gaussian
steering monogamy relation: modes B1 and B2 cannot simulta-
neously steer mode A under Gaussian measurements34,35. Assuming
that mode B1 can steer mode A, negativity can be generated only
in the Wigner function of mode B1 under Alice’s local operation
LAjB1 , such that Eq. (2) takes the simpler form N B1B2ðLAjB1B2Þ⩾N B1ðLAjB1Þ (or the analogous expression with swapped B1↔ B2).
The local operation LAjB1 in the right side is chosen to generate the
largest negativity N B1 in mode B1, determined by the Gaussian
steering of mode A by individual mode B1. Because the Wigner
negativity is nonincreasing under partial trace within the group
(B1B2)16, it is straightforward as

N B1ðLAjB1Þ ¼
R
drB1 W½Tr B2 ½ρB1B2 ��ðrB1Þ

�� ��� 1

¼ R drB1 R drB2W½ρB1B2 �ðrB1 ; rB2Þ
�� ��� 1

⩽
R
drB1

R
drB2 W½ρB1B2 �ðrB1 ; rB2Þ

�� ��� 1

¼ N B1B2ðLAjB1Þ:
Here, W½ρB1B2 �ðrÞ represents the Wigner distribution of the joint
state ρB1B2 . Note that the negativity N B1B2ðLAjB1Þ in the above
inequality is also generated by the same local operation LAjB1 ,
which may not be optimal for the group (B1B2). To create the
largest negativity N B1B2 , we need to choose optimal local
operations LAjB1B2 based on joint steering of mode A by group
(B1B2), leading to N B1B2ðLAjB1B2Þ � N B1B2ðLAjB1Þ. Afterwards it is
promptly verified that N B1B2ðLAjB1B2Þ � N B1B2ðLAjB1Þ � N B1ðLAjB1Þ.

An example is given in Fig. 2. In this linear optical network, a
pure three-mode entangled Gaussian state can be generated in
the local station by mixing three squeezed inputs, then two of the
output modes B1 and B2 are sent to the remote nodes, as
illustrated in Fig. 2a. When the first beam splitter is fixed at R1:
(1− R1)= 50:50 and the second beam splitter is adjustable, the

Fig. 1 Scheme of the remote generation of Wigner negativity
through EPR steering in a multipartite scenario. a The initial
Gaussian steerable system; b After some appropriate local opera-
tions on the steered mode hold by Alice, the steering subsystem
hold by Bob becomes non-Gaussian with Wigner negativity.
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steerabilities distributed among three modes in the initial
Gaussian state are given in Fig. 2b. Here we choose two typical
types of non-Gaussian operations for Alice. One is the single-
photon subtraction, which can be effectively realized in experi-
ments12,43. The corresponding Wigner negativities remotely
created through photon subtraction on mode A are shown in
Fig. 2c. The other conditional preparation of Wigner negativity by
local Fock-state projection can be found in panel Fig. 2d, where
mode A projects to 2j i44,45. It is clear that in both cases the two-
mode and three-mode Gaussian steering GB1!A, GB2!A and
GB1B2!A are necessary to induce Wigner negativity for individual
mode B1, B2, and for the group (B1B2), respectively. However,
constrained by the monogamy relation of Gaussian steering34, i.e.,
modes B1 and B2 cannot steer mode A simultaneously, the
negativities generated in the individual mode N B1 > 0 and
N B2 > 0 can never be satisfied at the same time. This means that
when B1 receives a Wigner-negative state, it automatically
guarantees that B2 did not acquire Wigner negativity. Meanwhile,
the joint Wigner negativities created on the group (B1B2) are
significantly higher than the negativity of either individual mode
in both cases.
In a more extreme case with R2= 0.5, no Wigner negativity is

created in either mode individually, but their joint Wigner
function can be negative, i.e., N B1B2ðLAjB1B2Þ> 0. In Fig. 4 in the
following section, we show that in presence of loss such a
scenario can be quite common. This reminds of a context of
quantum secret sharing where neither B1 nor B2 can acquire
Wigner negativity, but only when both cooperate to achieve it.
Moreover, such setups where Wigner negativity appears globally
but not locally have an appealing interpretation: the operation in
mode A created Wigner negativity before beamsplitter R2 and the
latter delocalized it over mode B1 and B2. If neither B1 nor B2
locally manifest this Wigner negativity, it must be hidden in a
non-trivial correlation between both modes. When the joint state
for B1 and B2 is pure—as is the case in Fig. 2d—this is a clear
signature of entanglement between the two modes. However, in
the more general case where B1 and B2 share a mixed state such

conclusion no longer holds. Nevertheless, as shown in Section
“Distillation of nonlocal Wigner negativity”, the global negativity
of W½ρB1B2 �ðrÞ implies that one can always distill Wigner negativity
in mode B1 or B2 by performing a suitable measurement on the
other mode.

Quantification of the generated Wigner negativity
EPR steering refers to the ability of one system to adjust the state
of another distant system by local measurements. Since remotely
generated Wigner negativity is both enabled and constrained by
Gaussian steering, one may intuitively expect that stronger
steerability induces more Wigner negativity. However, we show
that this is not the case by providing an intuitive quantification for
some experimentally prominent bipartition (multimode) Gaussian
states. We quantify the amount of Wigner negativity in the
steering modes, via the purities of initial Gaussian states, and show
that purity, rather than steerability, governs the amount of Wigner
negativity that can be created. In some cases studied below, less
squeezing in the initial Gaussian state (for both pure and mixed
cases) produces weaker steerability but remotely creates stronger
negativity.
It is well known that any two-mode Gaussian state can be

transformed into a standard form46 through local linear unitary
Bogoliubov operations (LLUBOs), so that the CM σAB reads

σAB;sf ¼
σA γAB

γ>AB σB

� �
¼

a 0 c1 0

0 a 0 c2
c1 0 b 0

0 c2 0 b

0
BBB@

1
CCCA (3)

with a,b ≥ 1 and ab� c21ð2Þ � 0. The two local purities μAðBÞ �
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det σAðBÞ

p ¼ 1=aðbÞ and the global purity

μAB � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det σAB

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðab� c21Þðab� c22Þ

p
, are invariant under

LLUBOs47. Furthermore, because LLUBOs are local and symplectic,
the standard form σAB,sf manifests equal quantity of Gaussian
steerability possessed in the initial states.
We now restrict our scope to two-mode Gaussian states with

c1=− c2= c, which include the major experimentally realized CV
EPR resources such as the two-mode EPR state with phase-
insensitive losses and the two-mode squeezed thermal state. By
focusing on the experimentally relevant case where a single-
photon subtraction S is performed on the steered mode, we
derive that the amount of remotely generated Wigner negativity
N B is determined by the purities of initial Gaussian state μA, μB,
and μAB:

N BðSAjBÞ ¼ 2
e
μAμB�μABμA
μAB�μAμB ðμAμB � μABÞ

μABðμA � 1Þ � 1

" #
: (4)

Exchanging μA↔ μB, we can obtain the result for the other
direction N AðSBjAÞ. The derivation of the above relation is detailed
in the section of “Methods”. Gaussian steerability and remotely
created Wigner negativity are both determined by the local and
global purities, but the dependence is very different. EPR steering
provides a necessary bridge to induce Wigner negativity, but it is
insufficient to unambiguously quantify the created Wigner
negativity.
We explicitly show this point in an example where a two-mode

EPR state is distributed over a single lossy channel characterized
by ηA (the other channel is assumed ideal), as shown in Fig. 3,
which is often used to demonstrate one-way steering26,27,48. The
CM of this kind of state is in the standard form (3) with
a ¼ ηAðcosh 2r � 1Þ þ 1, b ¼ cosh 2r, and c1 ¼ �c2 ¼ ffiffiffiffiffi

ηA
p

sinh 2r,
where r is the squeezing parameter. The asymmetric Gaussian
steerabilities in two directions are indicated in Fig. 3b, where the
Gaussian steerability GA!B > 0 when ηA > 0.5 while the other
direction GB!A > 0 happens for any ηA > 0. It also shows that

Fig. 2 Remotely generated Wigner negativity and initial Gaussian
steering in a tripartite scenario. a A feasible linear optical network
to remotely generate Wigner negativity: the local station produces a
pure three-mode Gaussian state, then sends two outputs B1 and B2
to remote nodes. By performing some appropriate local operations
on mode A, one can successfully prepare mode B1, or B2, or their
joint (B1B2) to a Wigner-negative state. b Fixing R1: (1− R1)= 50: 50
and input squeezing levels r= 1 (corresponding to −8.7 dB
quadrature noise), the initial Gaussian steerability changes with a
variable R2. c After a single-photon subtraction on mode A, the
remotely generated Wigner negativity of mode B1, mode B2, and the
group (B1B2), respectively. d After a photon-number-resolving
measurement with two photons in mode A, the remotely generated
Wigner negativity of mode B1, mode B2, and the group (B1B2),
respectively.
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higher squeezing level creates stronger steerability (blue lines). By
performing a single-photon subtraction on the steered mode B,
the Wigner negativity can be created in mode A (N AðSBjAÞ> 0)
when ηA > 0.5 as well and becomes larger with increasing
efficiency ηA (solid lines), as shown in Fig. 3c. Interestingly, for
the other direction, by performing a single-photon subtraction on
the steered mode A, the generated negativity N BðSAjBÞ does not
vary with ηA. This observation can be understood as a
consequence of losses in the mode of photon subtraction
commute with the subtraction operation itself49. As derived in
Eq. (11) in Section “Quantifying the remotely created Wigner
negativity”, it can be seen that the Wigner negativity generated in
mode B is only determined by the loss in its own channel (i.e. ηB,
here it is considered as unity). This highlights the asymmetry of
the induced Wigner negativity and suggests a way to remotely
generate negativity that is robust to channel loss on the photon-
subtraction side. Figure 3c also shows, unlike the Gaussian
steerability plotted in Fig. 3b, the lower squeezing level leads to
larger negativities (red lines). This can be explained by the purities
of initial states given in Fig. 3d. The purities μA, μB, and μAB of the
initial states with higher squeezing level are more sensitive to the
loss (blue lines). Since purity plays a bigger role than squeezing in
generating Wigner negativity50, the case with higher squeezing
but lower purities can only lead to weaker Wigner negativities
(blue lines).
Besides the examples discussed above, we also analyze the

asymmetric Gaussian steerability and the properties of induced
Wigner negativity for another important CV EPR resource—two-
mode squeezed thermal states51, which are detailed in the section
of “Methods”. Moreover, as shown in Section “Necessity of the
additional local Gaussian transformation”, we also emphasize that
producing EPR resources with CM in a standard form (3) can
significantly simplify the procedure for remote generation of
Wigner negativity and makes the resulting non-Gaussian state
readily available for further applications.
Furthermore, for any three-mode globally pure Gaussian state,

i.e., μAB1B2 ¼ 1, the standard form of CM with respect to A− (B1B2)

splitting is locally equivalent to

ð5Þ

through Williamson and Bloch-Messiah decompositions47, where
c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
. We can see that the system is qualitatively

equivalent to a product of a two-mode squeezed vacuum state
tensor an uncorrelated vacuum mode, such that the steering
property between mode A and modes (B1B2) can be unitarily
reduced to the two-mode case. Thus, the generated Wigner
negativity of the group (B1B2) is equivalently indicated by

N B1B2ðSAjB1B2Þ ¼ 2 e�
μ

1þμð1þ μÞ � 1
h i

; (6)

where μ ¼ μA ¼ μB1B2 ¼ 1=a. By the same method, this result (6) is
also valid for (1+ n)-mode pure Gaussian states with respect to A
− (B1B2…Bn) splitting (n > 2).
Finally, as the CM for a more general mixed state contains more

parameters, here we numerically show that the amount of
remotely generated negativity is still related to the purities of
initial Gaussian state. As shown in Fig. 4, we provide an evidence
to show this conclusion still holds by a three-mode mixed state. In
this scheme, the output modes B1 and B2 are both distributed over
lossy channels characterized by ηB1 and ηB2 , respectively, such that
the global purity μAB1B2 < 1 when ηB1 ; ηB2 ≠ 1. For simplicity, we
assume that the distance between two remote nodes and the
local station is the same, thus ηB1 ¼ ηB2 ¼ η. As shown in Fig. 4b,
due to the existence of channel losses (for a fixed value of η= 0.8),
the area where neither mode B1 nor mode B2 can individually
steer mode A has expanded to 0.242 < R2 < 0.758 compared with
the scheme discussed in Fig. 2. The corresponding Wigner
negativities remotely created in mode B1 or B2, or the group
(B1B2) through a photon subtraction on mode A are given in

Fig. 3 Remotely generated Wigner negativity and initial Gaussian
steering and purity in an asymmetric scenario. a Scheme of a two-
mode squeezed vacuum state with one lossy channel on mode A,
where R1 is a balanced beam splitter. b The initial asymmetric
Gaussian steerability with different squeezing levels r= 1 (blue) and
r= 0.85 (red), corresponding to a quadrature noise reduction of
−8.7 dB and −7.4 dB, respectively. Loss has a more significant effect
on the steering mode A. c After the single-photon subtraction on
the steered mode, the amount of induced Wigner negativity on the
steering mode corresponding to Gaussian steerability given in b. d
The local and global purities of the initial Gaussian states with
different squeezing levels.

Fig. 4 Remotely generated Wigner negativity and initial Gaussian
steering and purity in a lossy tripartite scenario. a A similar
scheme as that shown in Fig. 2 but now both two output modes are
distributed over lossy channels. b Fixing R1: (1− R1)= 50: 50, ηB1 ¼
ηB2 ¼ 0:8 and input squeezing levels r= 1, the initial Gaussian
steerabilities change with a variable R2. c After a single-photon
subtraction on mode A, the remotely generated Wigner negativities
of mode B1, mode B2 and the group (B1B2), respectively. d Some local
purities of the initial Gaussian state. The remaining cases are
constants with the current setting, i.e., μA= 0.266, μB1B2 ¼ 0:227 and
μAB1B2 ¼ 0:469.
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Fig. 4c. It is clear that both Gaussian steerability and Wigner
negativity appear in the same condition. Comparing with Fig. 4c,
d, we can find that the amount of remotely created Wigner
negativities is still determined by the purities of initial states.

DISCUSSION
We develop the scheme for remote generation of Wigner
negativity through EPR steering to multimode scenario, and show
the presence of constraints for distributing Wigner negativity over
different modes. So far, multipartite steering has been demon-
strated in various Gaussian systems, e.g., linear optical net-
works26,27, quantum frequency comb29, and Bose–Einstein
condensates33. These experimental developments lay a favorable
foundation for implementing remote generation of multipartite
non-Gaussian states through photon subtraction or other appro-
priate operations. Furthermore, we present an intuitive and
computable quantification of the generated Wigner negativity
for bipartition (multimode) system in terms of the local and global
purities of initial Gaussian states. Our results deepen the under-
standing of Wigner negativity as a resource and provide an
important framework of non-Gaussian quantum information
theory.
Our work also triggers several interesting questions to stimulate

further research. For instance, as Gaussian steerability GA!B1 > 0
and GA!B2 > 0 can happen simultaneously, then by performing a
single-photon subtraction on each mode B1, B2, can we achieve
more significant increase of the negativity in mode A? In addition,
for this direction the Gaussian steerability still follows the CKW-
type monogamy constraint, however, this constraint does not
hold any more for the generated negativity. We have observed a
violation in a pure three-mode state (see Methods), i.e.,
N AðLB1B2jAÞ<N AðLB1jAÞ þ N AðLB2jAÞ. Moreover, after non-
Gaussian operations on the steered mode, the resulting system
cannot be fully captured by the second-order correlations given in
CM. To this day, relatively little is known about the characteristics
of non-Gaussian steering52.

METHODS
Quantifying the remotely created Wigner negativity
It is of particular interest to us is whether stronger steerability in the initial
Gaussian states induces more Wigner negativity, as it is enabled and
constrained by Gaussian steering. To answer this, we need first quantify
the amount of Wigner negativity. In this part, we aim to derive the
qualitative measure of Wigner negativity Eq. (4) in the main text by
focusing on the experimentally relevant case where a photon subtracted
from the steered mode in two-mode Gaussian states c1=−c2= c, which
include the major experimentally realized CV EPR states.
Let us recall that, any two-mode Gaussian state can be transformed

through LLUBOs to the standard form (3). Using the formula derived from
ref. 18, we obtain the reduced Wigner function of the steering mode B after
the local Gaussian transformation RA∣B combined with a single-photon
subtraction applied on the steered mode A,

W B βBð Þ ¼ exp � 1
2 βB; σ

�1
B βB

� �� 	
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Det σB

p
Tr R>AjBσARAjB

 �

� 2
h i

´ β>B σ
�1
B

>
γ>ABRAjBR

>
AjBγABσ

�1
B βB þ Tr ðR>AjBVAjBRAjBÞ � 2

h i
¼ exp � 1

2 βB; σ
�1
B βB

� �� 	
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Det σB

p
Tr νσAV�1

AjB

 �

� 2
h i

´ νβ>B σ
�1
B

>
γ>ABV

�1
AjBγABσ

�1
B βB þ 2ν � 2


 �
;

(7)

where βB ¼ ðxB; pBÞ> is the coordinate in a multimode phase spaces of
subsystem B, VAjB ¼ σA � γABσ

�1
B γ>AB is the Schur complement of σB and ν is

the corresponding symplectic eigenvalue. The Schur complement VA∣B can
be decomposed through Williamson decomposition via VAjB ¼ νS>AjBSAjB ,
where SA∣B is the corresponding symplectic matrix and a local Gaussian

transformation RAjB ¼ S�1
AjB . When it comes to our particular interest

subclass c1=−c2= c, it is easy to find out that the Schur complement is
a multiple of identity matrix so that there is no need to perform an
additional local Gaussian operation. Then we get

WB xB; pBð Þ ¼ e�
x2
B
þp2

B
2b 2b2ða� 1Þ � 2bc2 þ c2ðx2B þ p2BÞ
� 


4πb3ða� 1Þ ; (8)

which is circularly symmetric. It is straightforward to calculate Wigner
negativity using integral,

N BðSAjBÞ ¼ 2c2e
bða�1Þ

c2
�1

bða� 1Þ � 2: (9)

By expressing N BðSAjBÞ in terms of purities μAB= 1/(ab− c2), μA= 1/a,
μB= 1/b, Eq. (9) becomes

N BðSAjBÞ ¼ 2
e
μAμB�μABμA
μAB�μAμB ðμAμB � μABÞ

μABðμA � 1Þ � 1

" #
: (10)

Figure 3 showed the case of two-mode squeezed vacuum state
transmitted with single lossy channel of mode A. To further understand
the effect of channel losses, we also take into account the loss in mode B’s
channel, characterized by ηB. When both channels are nonideal, the
generated negativity in mode B is

N B ¼ 4eð
1

2ηB
�1Þsech2

r
ηBcosh

2r
1� ηB þ ηB cosh 2r

� 2; (11)

which merely depends on ηB but still does not vary with the loss in the
channel of the steered mode A.
In the following, we analyze another important kind of experimentally

realized CV EPR states–two-mode squeezed thermal states. The CM
elements of these states are a ¼ ðnA þ nB þ 1Þ coshð2rÞ þ ðnA � nBÞ,
b ¼ ðnA þ nB þ 1Þ coshð2rÞ � ðnA � nBÞ, c1 ¼ �c2 ¼ ðnA þ nB þ 1Þ sinhð2rÞ,
where nA, nB are the average number of thermal photons for each
subsystem51. We set the thermal noise only on one input mode with nA
and leave nB= 0, as illustrated in Fig. 5a. The asymmetric Gaussian steerability
in two directions varying with nA is denoted in Fig. 5b, and as a consequence
the induced Wigner negativity on the steering mode by applying single-
photon subtraction on the steered mode is quantified in Fig. 5c. Note that the
effect of thermal noise on the steered mode is more significant than that on
the steering mode, which is opposite to the effect of losses on two modes in
the main text. As there exists a thermal barrier in the direction GB!A , and
correspondingly, a nonzero N BðSAjBÞ can exist only when nA< 0.682. In the

Fig. 5 Remotely generated Wigner negativity and initial Gaussian
steering and purity in a noisy bipartite scenario. a Scheme of a
two-mode squeezed thermal state with asymmetric thermal noise nA
and nB= 0. b The initial asymmetric Gaussian steerability with fixed
squeezing level of r= 0.6 (corresponding to −5.2 dB quadrature
noise), where thermal noise has a more significant effect on the
steered mode. c Corresponding to b, after the single-photon
subtraction on one side, the remotely generated Wigner negativity
of the other side. d The local and global purities of the initial
Gaussian states.
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opposite direction, GA!B > 0 and thus N AðSBjAÞ> 0 for arbitrarily large value
of thermal noise nA. It is clear that the amount of remotely created Wigner
negativity is quantitatively determined by the purities of initial states, as
plotted in Fig. 5d.

Distillation of nonlocal Wigner negativity
In Figs. 2 and 4 we observe cases where the local Wigner functions of B1
and B2 are fully positive, but nevertheless, Wigner negativity arises in the
joint state for (B1B2). In this particular situation, one could argue that
Wigner negativity is hidden in the nonlocal part of the Wigner function.
Nevertheless, it turns out that such hidden negativity can always be
unveiled by performing a well-chosen measurement on either B1 or B2.
Here we prove this claim.
First of all, we introduce the displaced parity operator

Π̂ðrB1 ; rB2 Þ :¼ D̂
yðrB1 ; rB2 Þð�1Þ ^nB1B2 D̂ðrB1 ; rB2 Þ; (12)

where the displacement operator D̂ðrB1 ; rB2 Þ ¼ D̂ðrB1 Þ � D̂ðrB2 Þ, with

D̂ðrBk Þ :¼ expðiξ̂>BkΩrBk=2Þ. Furthermore, n̂B1B2 is the number operator for
the joint system (B1B2). Because this number operator can be written as a
sum of the local number operators n̂B1B2 ¼ n̂B1 þ n̂B2 , we can now write
that

Π̂ðrB1 ; rB2 Þ ¼ Π̂ðrB1 Þ � Π̂ðrB2 Þ: (13)

The values of the Wigner function are given by53,54

W½ρB1B2 �ðrB1 ; rB2 Þ ¼ 1
4π2 hΠ̂ðrB1 ; rB2 ÞiB1B2

¼ 1
4π2 hΠ̂ðrB1 Þ � Π̂ðrB2 ÞiB1B2 ;

(14)

where we introduce the shorthand notation hX̂iB1B2 :¼ Tr ½ρB1B2 X̂�.
The identity (14) is now particularly useful to express the correlation

between displaced parity measurements on modes B1 and B2 as

hΠ̂ðrB1 Þ � Π̂ðrB2 ÞiB1B2 � hΠ̂ðrB1 ÞiB1 hΠ̂ðrB2 ÞiB2
¼ 4π2 W½ρB1B2 �ðrB1 ; rB2 Þ �W½ρB1 �ðrB1 ÞW½ρB2 �ðrB2 Þ

� 	
:

(15)

In the specific case whereN B1B2 > 0 andN B1 ¼ N B2 ¼ 0 the above identity
implies the existence of values rB1 and rB2 for which
hΠ̂ðrB1 Þ � Π̂ðrB1 ÞiB1B2 � hΠ̂ðrB1 ÞiB1 hΠ̂ðrB2 ÞiB2 < 0. In other words, there is
always a case where the displaced parity measurements are anti-
correlated.
A state which has Wigner negativity is always a state where for some

phase space coordinates rBk measurements of the observable Π̂ðrBk Þ
provide the outcome −1 with a higher probability than the outcome +1.
This observation is important in the light of (15). Let us now fix rB1 and rB2
such that W½ρB1B2 �ðrB1 ; rB2 Þ< 0. For joint measurements of Π̂ðrB1 Þ and
Π̂ðrB2 Þ, we are most likely to obtain opposite parities due to the anti-
correlation in (15). More formally phrased, the only way of obtaining this
anti-correlation is through

Prob ½Π̂ðrB2 Þ ¼ �1jΠ̂ðrB1 Þ ¼ þ1�
>Prob½Π̂ðrB2 Þ ¼ þ1jΠ̂ðrB1 Þ ¼ þ1�;

Prob½Π̂ðrB1 Þ ¼ �1jΠ̂ðrB2 Þ ¼ þ1�
>Prob½Π̂ðrB1 Þ ¼ þ1jΠ̂ðrB2 Þ ¼ þ1�:

(16)

However, this means that when we measure Π̂ðrB1 Þ and post-select on
measurement outcomes +1, we find that for the state in B2 is given by

W½ρB2 �ðrB2 Þ ¼ 1
2π hΠ̂ðrB2 ÞiB2

¼ 1
2π Prob½Π̂ðrB2 Þ ¼ þ1jΠ̂ðrB1 Þ ¼ þ1��
�Prob½Π̂ðrB2 Þ ¼ �1jΠ̂ðrB1 Þ ¼ þ1��
< 0:

(17)

In other words, when the global Wigner function in (B1B2) is non-positive,
whereas the local Wigner functions in B1 and B2 are positive, conditioning
on a positive outcome for a displaced parity measurement on either B1 or
B2 allows to prepare a Wigner-negative state in B2 or B1, respectively. Even
though this proof shows the existence of some measurement to prepare
Wigner negativity, in many cases, one can probably find more convenient
measurements to unveil the Wigner negativity.
We note finally that this is a very complementary setting to the one

discussed in the remainder of this article. We emphasized that to create
and distribute Wigner negativity when the global state is Gaussian, we
require quantum steering in this Gaussian state. Yet, when the global state

is already Wigner negative, the requirements on the level of the
correlations are far less stringent. A good example to keep in mind is
that of the state ρB1B2 ¼ ð 0; 1j i 0; 1h j þ 1; 0j i 1; 0h jÞ=2. This state is globally
Wigner negative, but locally leads to positive Wigner functions.
Conditioning on a measurement outcome associated with the projector
0j i 0h j on either subsystem will project the other subsystem into a state
1j i 1h j. As such, a simple Gaussian measurement on a global Wigner
negative state with only classical correlations can lead to local Wigner
negativity. This illustrates that delocalized Wigner negativity is a very
strong resource to create local Wigner negativity.

Necessity of the additional local Gaussian transformation
Here, we prove that the additional local Gaussian transformation RA∣B
required prior to photon subtraction in ref. 18 to optimize the induced
Wigner negativity is no longer needed if and only if the CM of two-mode
Gaussian states in the standard form σAB,sf satisfies c1=−c2= c. Thus
producing EPR resource with CM in a standard form significantly simplifies
the procedure for remote generation of Wigner negativity and makes the
resulting non-Gaussian state readily available for further applications.
From the standard form σAB,sf, the Schur complement of σB is given by

VAjB ¼
a� c21=b 0

0 a� c22=b

 !
; (18)

whose symplectic eigenvalue is v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� c21=bÞða� c22=bÞ

p
. When there

exists Gaussian steering GB!A , the symplectic eigenvalue v must be smaller
than 142. Without any local Gaussian transformation RA∣B prior to the
photon subtraction on mode A, the condition for WB βBð Þ< 0 should be
tr VAjB
� 


< 2. Note that every CM σAB that corresponds to a physical
quantum state has to satisfy the bona fide condition a� c21=b > 0 and
a� c22=b > 042, then we have

Tr VAjB
� 
 ¼ a� c21

b

� �
þ a� c22

b

� �
⩾2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� c21

b

� �
a� c22

b

� �s
¼ 2v: (19)

The above inequality can be saturated if and only if c21 ¼ c22. With this
condition, tr VAjB

� 

< 2 is equivalent to v < 1, i.e., the photon subtraction on

mode A can always generate Wigner negativity in mode B as long as
GB!A > 0 without any prior local Gaussian transformation. Otherwise, if
c21 ≠ c22, then tr VAjB

� 

> 2v, which means an additional local Gaussian

transformation RA∣B is necessary to make EPR steering sufficient for
remotely generating Wigner negativity. This complements the results of
ref. 18, where it was shown that an additional local Gaussian transformation
prior to photon subtraction is necessary to make EPR steering sufficient for
remotely generating Wigner negativity. This Gaussian transformation
requires inline squeezing and is experimentally challenging. Our results
can be used as a recipe to prepare resourceful Gaussian states for the
remote generation of Wigner negativity without the need for inline
squeezing.

Distribution of Wigner negativity in the other direction
Steering is a directional form of nonlocality, related to the Einstein
“spooky” paradox, which is fundamentally defined differently from
entanglement. In previous work36, we have derived the CKW-type
monogamy inequalities for multipartite Gaussian steering in two
directions. We then wonder whether the CKW-type monogamy inequality
holds for the distribution of Wigner negativity created in the opposite
direction, i.e., N AðLB1B2 jAÞ � N AðLB1 jAÞ þ N AðLB2 jAÞ.
We present a three-mode entangled Gaussian state that is similar to the

case shown in Fig. 2a, but with the first beamsplitter being adjustable R1:
(1− R1) and the second fixed as a balanced one. In particular, when the
first beamsplitter is adjusted at R1= 1/3, the initial Gaussian state is
produced as a GHZ-like state. For the direction where mode A acts as the
steering party to steer the modes B1, B2, the Gaussian steerability
distributed among three modes and the corresponding Wigner negativ-
ities remotely created by a single-photon subtraction on the individual or
joint modes B1, B2 are denoted in Fig. 6a, b. It is clear that the two-mode
and three-mode Gaussian steerability GA!B1ðB2Þ > 0 and GA!B1B2 > 0 are
necessary to induce negativities N AðSB1ðB2ÞjAÞ and N AðSB1B2 jAÞ in the
Wigner functions of the steering mode A, respectively. Interestingly, we
observe that N AðSB1B2 jAÞ<N AðSB1 jAÞ þ N AðSB2 jAÞ when R1 approaches to
1 (Fig. 6d), even though the Gaussian steerability still follows the
monogamy constraint, i.e., GA!B1B2 � GA!B1 � GA!B2 > 0 presented in
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Fig. 6c. This settles an open question for the shareability of generated
Wigner negativity in this direction.
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