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Experimental critical quantum metrology with the
Heisenberg scaling
Ran Liu1,2,3,5, Yu Chen4,5, Min Jiang1,2,3, Xiaodong Yang 1,2,3, Ze Wu1,2,3, Yuchen Li1,2,3, Haidong Yuan4✉, Xinhua Peng 1,2,3✉

and Jiangfeng Du 1,2,3

Critical quantum metrology, which exploits quantum critical systems as probes to estimate a physical parameter, has gained
increasing attention recently. However, the critical quantum metrology with a continuous quantum phase transition (QPT) is
experimentally challenging since a continuous QPT only occurs at the thermodynamic limit. Here, we propose an adiabatic scheme
on a perturbed Ising spin model with a first-order QPT. By introducing a small transverse magnetic field, we can not only encode an
unknown parameter in the ground state but also tune the energy gap to control the evolution time of the adiabatic passage.
Moreover, we experimentally implement the critical quantum metrology scheme using nuclear magnetic resonance techniques and
show that at the critical point the precision achieves the Heisenberg scaling as 1/T. As a theoretical proposal and experimental
implementation of the adiabatic scheme of critical quantum metrology and its advantages of easy implementation, inherent
robustness against decays and tunable energy gap, our adiabatic scheme is promising for exploring potential applications of critical
quantum metrology on various physical systems.
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INTRODUCTION
Quantum metrology, which makes use of the superposition and
entanglement, can achieve far better precision than the classical
schemes1–3. In the conventional scheme of quantum metrology,
the estimation of an unknown parameter is typically achieved by
first preparing a probe state, then letting the probe evolve under a
dynamics that encodes the unknown parameter, the value of the
parameter can then be estimated from the evolved state via a
suitable measurement1–4.
With an entangled probe state, quantum metrology can

potentially enhance the precision from the classical shot noise
limit, which scales as N−1/2, to the Heisenberg limit, which scales
as N−1, here N is the number of the probes1,2,4–13. The classical
shot noise limit and the Heisenberg limit can also be considered in
terms of the evolution time, T, where the precision scales as T−1/2

for the shot noise limit and T−1 for the Heisenberg limit14,15. For
the conventional scheme, which consists of preparation, evolution
and measurement, the ability to prepare highly entangled probe
states or maintain a sufficiently long coherent evolution is
essential to achieve a precision beyond the classical limit. This
quantum advantage is not achievable in general for systems
subject to noise.
Recently, the critical quantum metrology16–28 has attracted

increasing theoretical interest since it combines the advantages of
the intrinsic robustness due to the adiabatic evolution16,29 and
high sensitivity near the critical point. Similar to the adiabatic
quantum computation30–32, the critical quantum metrology with
adiabatic evolution starts with the ground state of an initial
Hamiltonian, which is easy to prepare, then evolves adiabatically
to the ground state of the final Hamiltonian close to the critical
point that encodes the unknown parameter. However, previous
protocols typically consider systems with a continuous quantum

phase transition (QPT), which only exists at the thermal dynamical
limit, and the minimal energy gap at the critical point is also in
general fixed which limits the speed of the adiabatic evolution.
Such requirements impose great challenges on the experimental
realization of the critical quantum metrology.
In this work, we overcome these challenges and propose an

adiabatic scheme by employing a perturbed two-spin system with a
first-order QPT where the energy gap can be tuned by introducing a
small transverse magnetic field which lifts the energy crossing and
controls the time required by the adiabatic passage. This can also be
used to tune the trade-off between the precision and the bandwidth
of the estimation. Moreover, we experimentally implement the
scheme using a two-spin nuclear magnetic resonance (NMR) system
and demonstrate a precision at the Heisenberg scaling of the probe
time T as 1/T. The adiabatic scheme is inherent robust against the
decay since it remains at the ground state during the evolution, which
we also verify with numerical simulations. As a first theoretical
proposal and experimental implementation of the adiabatic scheme
of critical quantum metrology, it opens an avenue for exploring
potential applications of critical quantum metrology on various
physical systems.

RESULTS
Quantum critical model
The quantum critical model employed in our adiabatic scheme of
the critical quantum metrology is a two-spin-1/2 Ising model with
the Hamiltonian

HIsing ¼ Bzðσ1
z þ σ2

z Þ þ σ1
zσ

2
z ; (1)

where σiz is Pauli operator on the ith spin, Bz is a longitudinal
magnetic field to be estimated. The ground state of the
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Hamiltonian is given by

gðBzÞj i ¼
00j i; Bz � �1;

01j i± 10j iffiffi
2

p ; �1 � Bz � 1;

11j i; Bz � 1;

8><
>: (2)

with the corresponding eigenenergies 1+ 2Bz,−1 and 1− 2Bz,
respectively. At Bz= ±1, a first-order QPT occurs, where the
energy-level crossing exactly exists as well as a sudden change of
its ground state. The ground state has a degeneracy of 2 when
−1 < Bz < 1. The degeneracy, however, can be lifted by restricting
to the symmetric triplet space33. Intuitively as the Hamiltonian is
invariant under the exchange of the two spins, if the initial state is
symmetric then the state will remain in the symmetric space
during the evolution. We can thus only consider the symmetric
states and the adiabatic evolution is only constrained by the
energy gap of the effective Hamiltonian on the symmetric space34.
The ground state on the symmetric space, however, still does

not provide a precise information of Bz. To enable the estimation
of Bz, we need a one-to-one correspondence between Bz and the
ground state. To achieve that we can add a small transverse field
with Bx≪ 1,

fHIsing ¼ Bzðσ1
z þ σ2

z Þ þ Bxðσ1
x þ σ2xÞ þ σ1

zσ
2
z ; (3)

which preserves the symmetry. The energy-level crossing is lifted
and the energy gap opens linearly with Bx at the critical points
Bz= ±135. The transverse field thus transforms the singular jump
at the critical point to a non-singular transition over a finite width.
By tuning Bx, we can adjust the width and the rate of change near
the critical point. This transverse field can also be used to tune the
energy gap, which determines the evolution time of the adiabatic
passage. Our adiabatic scheme of critical quantum metrology for
measuring a magnetic field mainly exploits these properties of the
first-order QPT of the Ising model near its critical point Bz= 1.
As a proof of principle, we focus on the local estimation where

Bz is within a small neighborhood of a known value. The precision
of the local estimation can be characterized by the quantum
Cramer-Rao bound (QCRB)1–3,36,37 as

δB2z � 1
νFQ

; (4)

here ν is the number of repetitions of the experiment and FQ is the
quantum Fisher information (QFI)1–3 of the final state, egj i. The
ground states of fHIsing are very close to those of HIsing, except in
the vicinity of the critical points, where the transverse field mixes
them, thus avoiding the energy-level crossing. In this region, it is
sufficient to consider the two lowest energy state
f aj i :¼ 11j i; bj i :¼ 01j iþ 10j iffiffi

2
p g. The effective Hamiltonian on the

two lowest energy levels can be written as

Heff ¼ �jBzj12 þ ð1� jBzjÞσz þ
ffiffiffi
2

p
Bxσx ; (5)

where 1n denotes the n × n identity operator. When Bz > 0, the
ground state of the effective Hamiltonian can be written as

egðBzÞj i ¼ � sin
θ

2
aj i þ cos

θ

2
bj i; (6)

where tan θ ¼
ffiffi
2

p
Bx

1�Bz
38. The QFI of the ground state

FQð egj iÞ ¼ 4ð ∂Bzegj∂Bzegh i � j egj∂Bzegh ij2Þ; (7)

can then be obtained as

FQð egj iÞ ¼ 2B2x

½ð1� BzÞ2 þ 2B2x �
2 : (8)

Near the critical point Bz= 1, FQð egj iÞ � 1
2B2x

, which suggests an

arbitrarily high precision when Bx→ 0. However, the closing of the
energy gap when Bx→ 0 implies a critical slowing down and an

inevitable growth of the protocol duration. A small, finite Bx
reconciles this contradiction, as well as enables the adiabatic
preparation of the ground state at the critical point Bz= 1. In the
following, we shall show that critical quantum probes can achieve
a Heisenberg scaling of the sensitivity via a suitable local design of
the adiabatic passage to the ground state approaching the
critical point.

Experimental protocol
We can implement the adiabatic evolution with an additional
control field along the z-direction as

fHðtÞ ¼ ½Bz þ BcðtÞ�ðσ1
z þ σ2

z Þ þ Bxðσ1
x þ σ2

xÞ þ σ1zσ
2
z ; (9)

where Bc(t) is the control field which adiabatically changes from a
large value to zero. This preserves the symmetry of the evolution.
In the experiment, Bz and Bc(t) is combined as a single field which
is changed from a large value to some Bz, whose value is then
estimated by proper measurements on the final state. The
calibration of the measured effective magnetic field can be found
in Supplementary Note 6. To gauge the practical advantage near
the critical point, however, we also need to evaluate the cost,
which is the time, T, required for the adiabatic evolution. A QFI
scaling as T2 corresponds to the Heisenberg scaling14,15,39, while a
QFI scaling as T corresponds the shot noise limit.
We consider the time required by the adiabatic evolution from

an initial large Bz0 to the critical point, Bzc ≈ 1. For the local
precision limit where the field is within a small neighborhood of a
known field, if the field to be estimated is not near the critical
point, we can shift it by compensating it with an additional known
field. For general unknown field that is not within a small
neighborhood, this can be achieved through the two-step
adaptive method40,41. In this two-step method, the experiment
is repeated where the first few experiments are used to obtain a
rough estimation of the unknown field, with this rough estimation
the field can then be shifted to near the critical point in the
following experiments. The detailed procedure can be seen in
Supplementary Note 2.
The adiabatic path can be described as

Had½AðsÞ� ¼ ½1� AðsÞ�fHIsingðBz0Þ þ AðsÞfHIsingðBzcÞ; (10)

where fHIsingðBz0Þ is the initial Hamiltonian and fHIsingðBzcÞ is the
final Hamiltonian, s= t/T∈ [0, 1] is the normalized time, the
function, A(s), determines the adiabatic path with A(0)= 0 and
A(1)= 1.
The time required for the adiabatic path is determined by the

adiabatic condition42. The simplest adiabatic path is the linear
path, which corresponds to A(s)= s. In this case the evolution time
is of the order 1=Δ2

min (see Supplementary Note 1) with Δmin as the
minimal energy gap between the ground state and the first
excited state30. In our case the energy gap is

ΔðsÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B2x þ ½1� Bz0 þ Bz0AðsÞ � BzcAðsÞ�2

q
; (11)

with Δmin ¼ 2
ffiffiffi
2

p
Bx . For the linear path we thus have T / 1

B2x
. The

QFI, which is FQð egj iÞ � 1
2B2x

, then scales only linearly with T. More

efficient adiabatic evolutions are required to go beyond the shot
noise limit. One choice is the local adiabatic path, which adjusts
the evolution speed according to the local energy gap as dAðsÞ

ds ¼
cΔ2ðsÞ with c as a constant43. In this case the evolution time is of
the order 1

Δmin
log 1

Δmin
and the precision can go beyond the shot

noise limit (see Supplementary Note 1). Compared with the linear
path with a constant speed, the local adiabatic path modifies the
speed of the evolution according to the local energy gap.
Intuitively, it distributes more time at places of smaller energy
gap and evolves faster at places where the energy gap is large.
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This can speed up the evolution while satisfying the adiabatic
condition at all places. Consequently, the scaling of QFI beyond
the shot noise limit can be achieved.
In our experiment we further optimize the adiabatic path

numerically. The optimization is achieved as follows: (1) first set a
threshold on the fidelity, which is denoted as Pc (in our case Pc=
0.9999); (2) start from A(0)= 0, let A1 be the minimal value such
that j gðA1Þje�iHadðA1Þτ jgð0Þ� �j � Pc, here τ is a fixed constant and
gðAÞj i is the ground state of HadðAÞ; iteratively, we set Ai+1 as the
minimal value such that j gðAiþ1Þje�iHadðAiþ1Þτ jgðAiÞ

� �j � Pc; (3) If
AN ≥ 1, then set AN= 1 and the procedure terminates. An adiabatic
path is then obtained with Að iNÞ ¼ Ai . When Pc is chosen
sufficiently close to 1, the obtained path guarantees that the
evolved state stays close to the ground state along the path and
the time of this path is ∝1/Bx (see ‘Methods’ and Supplementary
Note 1). This path is obtained from the fidelity directly, while the
linear and the local paths are based on the energy gap which is
related to the fidelity in an indirect way. We simulate the evolution
of different adiabatic paths with the full Hamiltonian and it can be
seen from Fig. 1 that the numerically obtained path shows a better
performance.
To saturate the QCRB, we need to perform the optimal

measurement, which is the projective measurement on the
eigenvectors of the symmetric logarithmic derivative (SLD). The
SLD, denoted as L, can be obtained from the equation
∂ρðBzÞ
∂Bz

¼ 1
2 ½ρðBzÞLþ LρðBzÞ�2,36,37. When ρðBzÞ ¼ egj i egh j, we have

L ¼ 2ð ∂Bzegj i egh j þ egj i ∂Bzegh jÞ, whose eigenvectors are given by

v1Opt ðθÞ
��� E

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin θ

2

q
11j i þ cosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1�sin θÞ
p 01j iþ 10j iffiffi

2
p ;

v2Opt ðθÞ
��� E

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin θ

2

q
11j i þ cosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þsin θÞ
p 01j iþ 10j iffiffi

2
p :

Here θ takes the same value as in Eq. (6). This optimal
measurement depends on Bz, and in practice it can be
implemented adaptively with the estimated value Bz based on
the previously accumulated measurement data40,41,44–46.

Experimental implementation
We implement the protocol on the Bruker Avance III 400 MHz
(9.4 T) spectrometer at the room temperature. The two nuclear
spins, as shown in Fig. 2, are 13C and 1H in the 13C-labeled

chloroform which is dissolved in d6 acetone. In the double-
resonant rotating frame the natural Hamiltonian of this system is
π
2 Jσ

1
zσ

2
z , where J= 214.5 Hz is the coupling strength. For conve-

nience, we will take the time unit as 2
πJ and write the Hamiltonian

as HNMR ¼ σ1
zσ

2
z : The transverse field can be realized by the on-

resonance radio-frequency pulse along the x-axis, and the vertical
field can be generated with an appropriate offset of the
transmitter’s frequency47.
The initial state of the system is the pseudopure state (PPS),

ρ00 ¼ 1�ϵ
4 14 þ ϵ 00j i 00h j48, where ϵ≈ 10−5 represents the thermal

polarization. We then prepare the ground state of the initial
Hamiltonian Had½Að0Þ ¼ 0� ¼ fHIsingðBz0Þ and adiabatically drive

the system to Had½AðTÞ ¼ 1� ¼ fHIsingðBzf Þ, where Bz0 is taken as 20
in the experiment and Bzf= 0. In the experiment, we use the
trotterized adiabatic evolution with M segments49,50, each with a
duration Δt= T/M. For the numerical path T= c/Bx (in the experiment
c ≈ 3.6, see ‘Methods’ for the details) and the step number is taken as
M= 100 (see Supplementary Note 3 for the details). During each
segment, the field is approximated as a constant with Bz½i� ¼
½1� Að i

MÞ�Bz0 þ Að i
MÞBzf and the corresponding evolution, as shown

in Fig. 2b, is generated via the trotterization as UiðΔtÞ ¼
e�iHad½Ai �Δt ¼ e�iBxðσ

1
xþσ2x ÞΔt2 e�ifBz ½i�ðσ

1
zþσ2z Þþσ1zσ

2
z gΔte�iBxðσ

1
xþσ2x ÞΔt2 þ OðΔt3Þ,

where e�iBxðσ
1
xþσ2x ÞΔt2 is realized by a strong resonant control pulse

along the x-axis, e�i½Bz ½i�ðσ1zþσ2z Þþσ1zσ
2
z �Δt is realized by a free evolution

with an frequency offset Bz[i]J/233.
In the experiment, we stop the adiabatic evolution at different

Bz, which varies from 0.1 to 2.7, to get the ground state egexpðBzÞ�� �
,

then perform the optimal projective measurements,
fjv1Opt ðBzÞihv1Opt ðBzÞj; jv2Opt ðBzÞihv2Opt ðBzÞjg. In the experiment,
only the local observables can be directly implemented.
Specifically, the local observable implemented directly in our
experiment is σ1

x � 1
2 ð12 � σ2

z Þ, whose eigenvectors are v1loc
�� � ¼

1ffiffi
2

p ð 0j i þ 1j iÞ � 1j i and v2loc
�� � ¼ 1ffiffi

2
p ð 0j i � 1j iÞ � 1j i with the

corresponding eigenvalues λ1= 1 and λ2=−1. To perform the
optimal measurement, we first implement a unitary operation
UO(Bz) with UOðBzÞjvmOpt i ¼ jvmloc i, m= 1, 2, then perform the local
measurement. The detailed implementation of UO(Bz) can be
found in the ‘Methods’ and Supplementary Note 4. In NMR the
experimental signal corresponds to the average of the observable
over an ensemble, which is given by p1(Bz)λ1− p2(Bz)λ2 with
pmðBzÞ ¼ jhvmOpt jegexpðBzÞij2 ¼ jhvmlocjUOðBzÞjegexpðBzÞij2. From the
experimental signal, together with the condition p1(Bz)+ p2(Bz)
= 1, we can get p1(Bz) and p2(Bz), respectively. To get the Fisher

information, FOptC ðBzÞ ¼ ½∂Bz p1ðBzÞ�2
p1ðBzÞ þ ½∂Bz p2ðBzÞ�2

p2ðBzÞ (here FC is the classi-
cal Fisher information which equals to the QFI under the optimal
measurement)2, we also need to get ∂Bz pmðBzÞ experimentally.
This is achieved by the difference method, i.e., by repeating the
experiment at two neighboring points, Bz ± δ, where δ is a small
shift (taken as 0.03 experimentally, see Supplementary
Note 5 for details). The differentiation is then obtained as
∂Bz pmðBzÞ � pmðBzþδÞ�pmðBz�δÞ

2δ .
The experiment is repeated under Bx= 0.1, 0.2, and 0.3, where for

each Bx, Bz is varied non-uniformly from 0.1 to 2.7. As shown in Fig. 3a,
under all Bx, the QFI around the critical point is significantly higher
than the QFI away from the critical point. The total relative deviation
of the experimental data from the numerical simulations is about
8.8% (see Supplementary Note 5). To show the practical advantage,
we also plot the QFI per unit of time, FQ(T)/T, in Fig. 3b, which is also
significantly higher around the critical point. This shows the critical
point indeed provides an advantage in quantum metrology.
To demonstrate the scaling of the QFI with respect to the time,

we perform another set of experiments where we adiabatically
evolve the system from Bz0= 20 to the critical point, Bzc= 1, with

0.0 0.2 0.4 0.6 0.8 1.0
s

1.0

2.0

3.0

B
z
(s
)

(a)
numerical

local

linear

0 20 40 60
T

0.0

0.5

1.0

F
id
e
lit
y

(b)

numerical

local

linear

Fig. 1 Different adiabatic paths and the corresponding fidelity. a
The linear adiabatic path, the local adiabatic path, and the
numerically optimized path with Bx= 0.1 and Bz is adiabatically
decreased from 3 to 0.5. b Fidelity between the adiabatically evolved
state and the actual ground state under these three paths when the
total evolution time varies, here the unit is 2/(πJ).
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Bx tuned at different values to control the evolution time (since
T∝ 1/Bx for the numerical adiabatic path). By experimentally
obtaining the QFI under different Bx, we plot the relation of the
QFI with the evolution time. As it can be seen from Fig. 3c, the QFI
scales quadratically with the time. The total relative deviation of
the experimental result from the numerical simulation is about
5.1% (see Supplementary Note 5). To better illustrate the scaling,
we also plot

ffiffiffiffiffiffi
FQ

p
with respect to the time in Fig. 3d, where

ffiffiffiffiffiffi
FQ

p /
T can be clearly seen. The coefficient of determination51 of the
linear fitting is 98.6%, and the slope of the fitted line is 0.31 with
an uncertainty of 0.0032. This clearly shows that the adiabatic
scheme achieves the Heisenberg scaling near the critical point. We
also numerically compare our protocol with the standard scheme
of quantum metrology at the presence of noises (see Supple-
mentary Note 7), and show it can surpass the standard scheme
due to its robustness against decays.

DISCUSSION
Our work reports a joint theoretical and experimental study of
critical quantum metrology by employing a first-order QPT in a
minimal two-spin system. By introducing a small transverse
magnetic field, we can not only encode the unknown
parameter in the ground state but also tune the energy gap
to control the evolution time of the local adiabatic passage
which relieves the critical slowing down. With a numerically
optimized path, we have implemented an adiabatic protocol to
approach the critical point, where the precision achieves the
Heisenberg scaling as 1/T, i.e., QFI scales as T2. Due to the
inherent robustness against decays of the adiabatic protocol29,
the coherent evolution time is prolonged and the Heisenberg
scaling can still be achieved near the critical point in a noisy

environment. In contrast, in the standard scheme the Heisen-
berg scaling is not achievable in general for systems subject to
noise, which can be recovered with quantum error correc-
tion15. However, this is practically more challenging than our
adiabatic scheme. It’s worthy to mention that the first-order
QPT in our employed model can occurs in a small quantum
system and the energy gap near the critical point opens
linearly with the small transverse field, which are promising
properties for critical quantum metrology. Of course, increas-
ing the quantum system size N would bring more possibilities
but greater challenges for the better performance of quantum
metrology over classical methods. Due to the advantages of
easy implementation, inherent robustness against decays and
tunable energy gap, our adiabatic scheme is promising for
exploring potential applications of critical quantum metrology
on various physical systems, such as NV centers52, cold
atoms53, and superconducting circuits54.
As a proof of principle, we assume a prior knowledge of the

unknown estimated parameter in our critical quantum metrol-
ogy protocol here. With little or no knowledge of the unknown
estimated parameter, we can use a two-step adaptive
method40,41 in our present experimental setting to achieve the
optimal measurement (saturating the QCRB), i.e., an initial static
stage, and a second fully adaptive sequential stage. The ground
state can be adaptively driven to the vicinity of the critical point
of the first-order QPT, starting with a rough estimation of the
unknown parameter from the static stage. Essentially, the
adiabatic speed can be tuned based on the estimated value of
the parameter with a slightly large constant to accommodate
the possible difference between the estimated value and the
true value (see Supplementary Note 2 for the details).

Fig. 2 Physical system and quantum circuit. a Molecular structure and relevant parameters of 13C-labeled chloroform. b Experimental scheme
and quantum circuit for the critical quantum metrology with adiabatic evolution on NMR. Here, φ1 ¼ arctan½ðBz � 1Þ=0� � π=4;φ2 ¼ jθ� π=2j,
where θ ¼ ffiffiffi

2
p

Bx=ð1� BzÞ. The specific pulse sequence for implementing in experiment can be seen in ‘Methods’ and Supplementary Note 4.
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The adiabatic quantum metrology also connects the precision
limit to the speed of the adiabatic evolution, various bounds in
quantum metrology thus can also be used to study the speed limit
of the adiabatic passage under noisy evolutions, which is another
interesting direction to pursue. Evolutions that are beyond the
adiabatic approximation, such as shortcuts to adiabaticity55, quench
dynamics28, can also be investigated for further improvement of
the critical metrology.

METHODS
Numerical optimization of adiabatic paths and experimental
implementation
For the adiabatic path, Had½AðsÞ� ¼ ½1� AðsÞ�Hi þ AðsÞHf , the numerical
path is obtained through the following steps:

● 1: Set the step size for the change of A(s) as ΔA ≈ 0.001, the step size of
the evolution time as Δt, and a threshold for the fidelity as Pc, which is
taken as 0.9999 in our case.

● 2: Start from the ground state of Hi , gð0Þj i, increase A(s) by ΔA and
evolve the state under the Hamiltonian for Δt units of time, which
leads to a state ϕ0ðΔAÞj i ¼ e�iHadðΔAÞΔt gð0Þj i. Compute the fidelity
between the state and the instantaneous ground-state gðΔAÞj i, which
is Pt ¼ j gðΔAÞjϕ0ðΔAÞh ij. If Pt ≥ Pc, continue to increase A(s) by ΔA until
Pt ¼ j g½ðn1 þ 1ÞΔA�h je�iHad ½ðn1þ1ÞΔA�Δt gð0Þj ij< Pc. Set A1= n1ΔA.

● 3: Similarly, start from the ground state of HadðA1Þ, and increase A(s)

till Pt ¼ j g½A1 þ ðn2 þ 1ÞΔA�h je�iHad ½A1þðn2þ1ÞΔA�Δt gðA1Þj ij< Pc. Set A2=
A1+ n2ΔA= n1ΔA+ n2ΔA. Similarly, we can get A3, A4,⋯ , An,⋯ .

● 4: When AN= ∑i=1,2,...,NniΔA ≥ 1, set AN= 1.

It can be proved that the time required for the numerical optimized path
is in the order of 1

Bx
, which attains the Heisenberg scaling with FQ ~ T2 (see

Supplementary Note 1 for details).
It is difficult to experimentally realize so many segments in the numerical

adiabatic path optimized above, consequently, we use the linear interpolation

to construct M+ 1 segments for the experimental implementation. Here the
adiabatic evolution was realized with M+ 1 discrete steps, in the ith step the
evolution is governed by the Hamiltonian HadðA½i�Þ with A½i� ¼ Að i

MÞ, which
corresponds to a constant field, Bz ½i� ¼ ½1� Að iMÞ�Bz0 þ Að i

MÞBzf .
The evolution of each segment UiðΔtÞ ¼ e�i½Bz ½i�ðσ

1
zþσ2z ÞþBxðσ1xþσ2x Þþσ1zσ

2
z �Δt ,

here Δt= T/(M+ 1), is implemented approximately as Uexp
i ðΔtÞ ¼

e�iBxðσ
1
xþσ2x ÞΔt=2e�i½Bz ½i�ðσ

1
zþσ2z Þþσ1zσ

2
z �Δte�iBx ðσ

1
xþσ2x ÞΔt=2. Here Δt and M need to

be optimized to satisfy: (i) Δt is sufficient small so that Ui(Δt) and
Uexp
i ðΔtÞ is sufficiently close for all Bz[i]; (ii) Δt is not too small so that the

number of the total segments, M+ 1, is not too big; and (iii) the total
time (M+ 1)Δt is not too large at the presence of the decoherence. We
include the relaxation effect in the optimization, where for 13C we take
T1 and T2 as 18.5 s and 0.2 s, respectively, and for 1H we take T1 and T2
as 9.9 s and 0.6 s, respectively.
For the case of Bx= 0.1, upon the optimization Δt is chosen as 0.36 (in

the unit of 2/πJ) for which the fidelity between Ui(Δt) and Uexp
i ðΔtÞ is above

99.8% for all Bz[i]. We then increase the number of steps until it achieves
the maximal average fidelity with M+ 1= 100. The total adiabatic
evolution time is then T=MΔt= 36. Since for the numerical path we
have T � c

Bx
, then c ≈ T × Bx= 3.6 in this case.

Similarly, for Bx= 0.2, 0.3, we take the same constant c= 3.6 and the
same number of segments (i.e., M+ 1= 100) for consistency. The total
adiabatic evolution time for Bx= 0.2 is then T= 3.6/0.2= 18 and for Bx=
0.3, T= 3.6/0.3= 12.

Experimental realization of optimal measurement
In the experiment, the direct local observable is

Oloc ¼ σx � 1j i 1h j; (12)

which can be diagonalized as

Oloc ¼
X

1�m�4

λm vmloc
�� �

vmloc
� ��; (13)

here λ1 ¼ 1; λ2 ¼ �1; λ3 ¼ λ4 ¼ 0; v1loc
�� � ¼ þ; 1j i; v2loc

�� � ¼ �; 1j i; v3loc
�� � ¼

þ; 0j i; v4loc
�� � ¼ �; 0j i with ±j i ¼ 0j i± 1j iffiffi

2
p .
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Fig. 3 Experimental measured QFI of adiabatically generated ground state. a Experimentally obtained QFI at different Bz with Bx= 0.1, 0.2,
and 0.3 (denoted by •, ▿, ⬠, respectively), along with the corresponding numerical simulations (denoted by dashed lines) together for
comparation. b The obtained QFI per unit of time at different Bz with Bx= 0.1, 0.2, and 0.3. c Experimentally obtained QFI (denoted by ⋆), and
d its square root (denoted by ×) near the critical point with different adiabatic time t, which is achieved by tuning Bx. The solid lines in (c) and
(d) represent the fittings with a quadratic function and a linear function, respectively.
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The unitary operator that transforms the optimal observable to the local
observable can be constructed as

UOðBzÞ ¼
X4
m¼1

jvmloc ihvmOpt ðBzÞj (14)

where jv1Opt ðBzÞi and jv2Opt ðBzÞi are the basis of the optimal measurement
given in the main text, and jv3Opt ðBzÞi and jv4Opt ðBzÞi are two additional
vectors to form a complete orthonormal basis. Hence, the effective optimal
observable we employed can be expressed as

OOptðBzÞ ¼
X

1�m�4

λmjvmOpt ðBzÞihvmOpt ðBzÞj: (15)

Without loss of generality, we can take

v1Opt ðBzÞ
��� E

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�sin θ

2

q
11j i þ cosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1�sin θÞ
p 01j iþ 10j iffiffi

2
p ;

v2Opt ðBzÞ
��� E

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsin θ

2

q
11j i þ cosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þsin θÞ
p 01j iþ 10j iffiffi

2
p ;

v3Opt ðBzÞ
��� E

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�sin θ

2

q
00j i þ cosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1�sin θÞ
p 01j i� 10j iffiffi

2
p ;

v4Opt ðBzÞ
��� E

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin θ

2

q
00j i þ cosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þsin θÞ
p 01j i� 10j iffiffi

2
p

(16)

with θ ¼ ffiffiffi
2

p
Bx=ð1� BzÞ.

It is easy to verify that UO(Bz)∈ SO(4), which can be decomposed as
UOðBzÞ ¼ MðA� BÞMy 56 with A, B∈ SU(2) and

M ¼ 1ffiffiffi
2

p

1 i 0 0

0 0 i 1

0 0 i �1

1 � i 0 0

0
BBB@

1
CCCA: (17)

Any operator in SU(2) can be realized with three rotations via the Euler
decomposition, we can thus write A= Rx(αA)Ry(βA)Rx(γA) and B= Rx(αB)
Ry(βB)Rx(γB)57. Then,

UOðBzÞ ¼ M½RxðαAÞRyðβAÞRxðγAÞ � RxðαBÞRyðβBÞRxðγBÞ�My: (18)

M can be decomposed as M ¼ UCNOT½US � ðUHUSÞ� with UH ¼
1ffiffi
2

p 1 1
1 �1

� �
;US ¼ 1ffiffi

2
p 1 0

0 i

� �
and UCNOT as the CNOT gate,

UCNOT ¼
ffiffi
i

p
R1z ðπ=2ÞR2z ð�π=2ÞR2xðπ=2Þe�i

π
4σ

1
z σ

2
z R2yðπ=2Þ; (19)

here RjαðβÞ ¼ e�i
β
2σ

j
α denotes a rotation of the jth spin around the axis α∈

{x, y, z} with β-angle58.
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