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Fast spin-valley-based quantum gates in Si with micromagnets
Peihao Huang1,2,3✉ and Xuedong Hu4

An electron spin qubit in silicon quantum dots holds promise for quantum information processing due to the scalability and long
coherence. An essential ingredient to recent progress is the employment of micromagnets. They generate a synthetic spin–orbit
coupling (SOC), which allows high-fidelity spin manipulation and strong interaction between an electron spin and cavity photons.
To scaled-up quantum computing, multiple technical challenges remain to be overcome, including controlling the valley degree of
freedom, which is usually considered detrimental to a spin qubit. Here, we show that it is possible to significantly enhance the
electrical manipulation of a spin qubit through the effect of constructive interference and the large spin-valley mixing. To
characterize the quality of spin control, we also studied spin dephasing due to charge noise through spin-valley mixing. The
competition between the increased control strength and spin dephasing produces two sweet-spots, where the quality factor of the
spin qubit can be high. Finally, we reveal that the synthetic SOC leads to distinctive spin relaxation in silicon, which explains recent
experiments.
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INTRODUCTION
A large-scale universal quantum computer can provide enormous
computing power for important applications in the future1.
Electron spin qubits in semiconductor quantum dots (QDs) is a
possibly scalable system due to device miniaturization and the
fabrication technology backed by the semiconductor industry2–6.
A spin qubit in a QD can be operated at a temperature above 1 K
so that more cooling power is available for qubit control, and the
common semiconductor substrate makes a quantum device more
straightforwardly integrable with classical electronics7,8. Addition-
ally, a spin qubit in a QD has a long relaxation time and long
coherence time in isotopically enriched group IV materials (such as
silicon and germanium)9–17, making them ideal hosts for spin
qubits.
For a fault-tolerant quantum computer or the near-term

intermediate-scale quantum (NISQ) devices, high-fidelity elemen-
tary quantum gates is of paramount importance18,19. Recently, the
employment of micromagnets and their associated synthetic
spin–orbit coupling (s-SOC) has enabled fast electric dipole spin
resonance (EDSR) and strong coupling between a spin qubit and a
microwave photon12,20–30. However, further improvement to the
fidelity of quantum gates for spin qubits in Si QDs could be
hindered by the complex environment, particularly the valley
degree of freedom in the conduction band and new decoherence
channels due to charge noise that are opened by the introduction
of micromagnets. For example, the valley states lead to a spin-
valley hot spot (SVH) of spin relaxation31–40, which could be a
detrimental effect. Charge noise-induced dephasing and relaxa-
tion have also been observed experimentally, though clear
theoretical understanding remains lacking38,39,41. The interplay
between s-SOC and valley states remains to be
explored31,33,36,37,40,42.
In this study, we address the aforementioned problems by

studying spin manipulation, dephasing, and relaxation in a silicon
QD in the presence of the valley states, s-SOC, and electrical noise.

We show that, due to an interference effect and the strong spin-
valley mixing (SVM), EDSR and spin-photon coupling via the s-SOC
can be greatly enhanced. We have also studied spin pure
dephasing due to the 1/f charge noise via the SVM and observed
a dephasing hot spot at the SVH of spin relaxation. Accounting for
both the faster decoherence and manipulation, we find the quality
factor for the EDSR (and the spin-photon coupling) peaks on either
side of the relaxation hot spot. Thus, SVM could ultimately benefit
rapid high-fidelity quantum gates. Finally, as a verification of our
theory, we explain the experimental signatures of spin relaxation
in silicon with a nearby micromagnet at both the high and low
magnetic fields. Our results carry clear implications for silicon-
based quantum computing, and we hope they stimulate further
explorations of valley physics and interference effects on solid-
state qubits.

RESULTS
Model Hamiltonian
We consider an electron spin qubit in a gated-defined silicon QD
in the presence of a micromagnet and an applied magnetic field
(Fig. 1a). The model Hamiltonian is

H ¼ HS þ HO þ HSO þ Veðr; tÞ; (1)

where HS is the bare Hamiltonian of the spin qubit, HO= HV+ HD

is the orbital Hamiltonian consists of the valley term HV and the
intra-valley orbital term HD, HSO is the SOC Hamiltonian, and Ve is
the electric potential from noise or a manipulation field33. The
total magnetic field B(r)= B0+ B1(r) consists of a uniform B0 and a
position-dependent B1(r) contribution. The former leads to the
bare spin Hamiltonian HS, HS ¼ 1

2 EZσ � n̂, where EZ= gμBB0 is the
bare Zeeman splitting, B0= ∣BMM+ Bext∣ contains the field BMM

from a fully polarized micromagnet and Bext applied externally, σ
is the electron spin operator, and n̂ is the unit vector along B0
assumed to be in-plane. The latter gives rise to an s-SOC,
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HSO ¼ 1
2 gμBσ � B1ðrÞ. Without loss of generality, we assume the

magnetic field gradient to be in the x-direction, such that

HSO ¼ 1
2
gμBσ � b1x; (2)

where b1≡ ∂B1/∂x= [0, 0, b1t]. The s-SOC provides an electric knob
to control a spin qubit20, while also exposes the qubit to electrical
noises. Note that, besides the s-SOC, the intrinsic SOC (i-SOC) is
always present in the host material43, and will be included in most
of the calculations in this study.

Effective electric dipole of a spin qubit
An important feature of a Si QD is the presence of a low-lying
valley excited state, which affects a spin qubit31–42,44–63. In the
presence of the s-SOC, the spin and the valley states would mix,
making it possible for electrically induced spin-flip transitions20–22.
Similarly, the s-SOC also mixes spin and the intra-valley orbital
states, leading to electrical field-induced spin-flip transitions. We
have shown previously that time-reversal symmetry (T-symmetry)
plays an important role in the mixing between spin and the intra-
valley orbital states30. In particular, the broken T-symmetry of the
s-SOC modifies the behavior of the spin–orbit mixing and thus the
effective magnetic field. However, the previous study relies on
perturbation treatment, which is not applicable when the valley
splitting is nearly degenerate with the spin splitting. Moreover, in
the previous study, the orbital states are assumed to be time-
reversal symmetric, which could be violated when the valley states
are considered. Here, we study the effective dipole due to the
mixing of the spin and the valley states non-perturbatively at
the degenerate point and examine explicitly spin properties in the
presence of the valley states.
We denote the spin eigenstates #j i and "j i, and the two lowest

valley eigenstates v0j i and v1j i with eigenvalues ± EVS/2, where
EVS is the valley splitting. The s-SOC mixes v0 "j i with v1 #j i31–33,
and v0 #j i with v1 "j i [this mixing is omitted in the previous
studies31–33,63], where the coupling matrix elements are Δv0";v1# �
v0 "h jHSO v1 #j i and Δv0#;v1" � v0 #h jHSO v1 "j i. By diagonalizing the

coupled Hamiltonian, the spin-valley eigenstates e1�� �
, e2�� E

, e3�� E
,

and e4�� �
are obtained, with the energy spectrum shown in Fig. 1b.

The transition dipole rv0v1i ¼ v0h jri v1j i (index i= x, y, or z)
between the two eigenvalleys is generally nonvanishing due to
disorders at the interface31,36,51,53,64, so that electric field can
induce transitions between the spin-valley eigenstates. Note that a
detailed calculation of the effect of disorder on the dipole
moment rv0v1i would require sophisticated numerical calcula-
tions36,51,60 beyond the scope of this work. As such we treat the
dipole matrix element as a phenomenological parameter31–33.
The relevant transition dipole for the spin-flip is e1 rij je2D E

when

EZ < EVS, or e1 rij je3D E
when EZ > EVS33. The transition dipole takes

the form (see Methods)

e1 rij je2D E
¼ �jrv0v1i j sin γ� þ γþ

2
: (3)

Here the angles γ ∓ ¼ tan�1ðΔ=ε ∓ Þ capture the mixing of v0 "j i
with v1 #j i and v0 #j i with v1 "j i, with Δ ¼ jΔv0";v1#j ¼ jΔv0#;v1"j ¼
jgμBb1txv0v1=2j the amplitude of the spin-valley coupling matrix
element, and ε∓= EVS∓ EZ the energy detunings as shown in

Fig. 1b. Similarly, we have e1� ��ri e3�� E
¼ �jrv0v1i j cos γ�þγþ

2 . We

emphasize that the “+” sign between γ− and γ+ in the dipole
moments arises from constructive interference between the two
SVM paths, as discussed below. In comparison, for the case of the
i-SOC that presents in the host material, the “+” sign is replaced
by a “−” sign, corresponding to destructive interference between
those mixing paths.
In the limit Δ≪ ε+≡ EVS+ EZ, i.e., weak spin-valley coupling as

compared with valley-orbit coupling and/or Zeeman splitting,
which is usually satisfied in Si QDs, the transition dipole of the spin
qubit for any value of EZ can be written as rs ¼ �jrv0v1 jηSV, where

ηSV � sgnðε�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Cs

2

r
þ Δ

2εþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Cs

2

r
; (4)

with Cs ¼ 1þ Δ2

ε2�

h i�1=2
and sgn(ε−) the sign of ε−. The “+” sign in

front of the second term in ηSV is again from constructive
interference between the two SVM paths. Note the result of ηSV is
valid both at and away from the relaxation hot spot. When ∣ε−∣ ≈
Δ≪ ∣ε+∣, we can recover the previous results31,33. When ∣ε−∣ ≫ Δ,
we have ηSV ¼ EVSΔ

E2VS�E2Z
(for i-SOC, ηSV;i�SOC ¼ EZΔ

E2VS�E2Z
), consistent with

perturbative results.
The sign difference in the results for s-SOC and i-SOC is due to

the different relative phase between the matrix elements Δv0";v1#
and Δ�

v0#;v1" (see Methods), which are in turn determined by the
property of the SOC under time-reversal operation Θ. In particular,
s-SOC breaks the T-symmetry, ΘHs-SOCΘ

−1=− Hs-SOC, so that
Δv0";v1# ¼ Θðv1 #Þh jΘHSOΘ

�1 Θðv0 "Þj i ¼ Δ�
v0#;v1". On the other

hand, i-SOC conserves the T-symmetry, so that
Δv0";v1# ¼ �Δ�

v0#;v1". In short, the breaking of T-symmetry by
s-SOC modifies the relative phase of the matrix elements Δv0";v1#
(for the mixing between e2�� E

and e3�� E
) and Δ�

v0#;v1" (for the mixing

between e1�� �
and e4�� �

), thus substantially modifies the properties of
the spin qubit due to the interference between the two mixing
paths. We emphasize again that the observation here extends the
previous result on the intra-valley SOM, by considering the valley
states and going to the non-perturbative regime.
Having obtained the effective dipole moment, we explore the

consequences of the SVM on spin manipulation, spin pure
dephasing, and spin relaxation, and compare with results due to
the intra-valley SOM.

Enhanced EDSR and spin-photon coupling
EDSR via the SOM has been widely used in experiments for fast
spin manipulation12,20,21,23,65–69. In silicon, s-SOC induces both the
intra-valley SOM and SVM. When an oscillating electric field of
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Fig. 1 Schematics diagrams. a Schematic diagram of an electron
spin qubit in a gate-defined QD in the presence of micromagnets.
An external magnetic field is applied along the x-axis and polarizes
the micromagnets. A uniform magnetic field B0 is along the x-axis,
and a slanting magnetic field B1(r) indicated by orange arrows is
along the z-axis (orthogonal to the xy plane). The slanting field gives
rise to a synthetic SOC, which mixes the spin states and valley states.
The electric field from phonon or photon leads to spin decoherence
or spin manipulation via the synthetic SOC. b The energy level
diagram of the mixed spin-valley eigenstates as a function of the
Zeeman splitting EZ. The SOC couples the spin-valley product states
and results in the eigenstates (denoted as numbers with tildes). The
mixing angles γ± are indicated, where tan γ ± is proportional to the
splitting Δ due to SOC and inversely proportional to the energy
detuning ε±. The broken T-symmetry of the synthetic SOC
determines the relative phases of the mixings and leads to
constructive interference for spin manipulation.
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magnitude E0 cosðωZtÞ is applied, where ωZ= gμBB0/�h is the
Larmor frequency of an electron spin, then, the Rabi frequency ΩR

of the EDSR due to the SVM is

ΩRðE0Þ ¼ ejE0 � rv0v1 jηSV=_: (5)

where ηSV is given by Eq. (4). Moreover, the spin-photon coupling
gs=ΩR(Ezpf) can also be evaluated, if the EDSR is driven by the
electric field Ezpf from vacuum fluctuation of a superconducting
resonator22,25,26,29,70. The Rabi frequency is thus enhanced via the
constructive interference between the SVM paths as compared
with the i-SOC induced EDSR.
As mentioned above, EDSR can arise from both SVM and from

intra-valley SOM. We will evaluate the magnitude of the EDSR due
to SVM, and compare the two channels. We also note here that, in
a device with a micromagnet, the i-SOC is also always present, and
can contribute to EDSR as well [and also to spin relaxation and
dephasing]. Furthermore, the i-SOC can have a significant impact
on the spin splitting in a QD by modifying the g-factor59. However,
in the current study, EDSR and spin relaxation are mainly
dominated by the s-SOC [at least in the devices we consider], as
evidenced by the faster spin relaxation in the experiment in the
presence of micromagnets38. Thus, we neglect the contribution
from the i-SOC when the micromagnets are present.
Figure 2 shows the Rabi frequency ΩR and vacuum Rabi

frequency gs as a function of the magnetic field B0 due to the
s-SOC (Fig. 2a) or the i-SOC (Fig. 2b) for a device with or without a
micromagnet, and using typical quantum dot parameters. Both
the SVM and the intra-valley SOM are considered. At low magnetic
field when EZ≪ EVS, the Rabi frequency ΩR via the s-SOC induced
SVM stays constant, and the vacuum Rabi frequency gs grows
linearly with B0 (the cavity frequency is assumed resonance with
the spin Lamor frequency, thus the photon energy grows with B0).
At B0= 0.1 T, ΩR ~ 108 s−1 while gs ~ 106 s−1. In comparison, for the
i-SOC, ΩR, and gs shows linear B0 and B20 dependence, respectively,
and at 0.1 T, ΩR ~ 105 s−1 and gs= 103 s−1. Rabi frequency ΩR via

the s-SOC induced SVM has a large magnitude and saturates at
low magnetic fields because of the constructive interference
attributed to the broken T-symmetry of the s-SOC. As B0 increases,
ΩR and gs via the s- or i-SOC rise by orders of magnitude near the
SVH. As the magnetic field B0 further increases past the hot spot,
ΩR and gs due to the SVM is reduced due to the reduced mixing,
while the intra-valley SOM gradually becomes the dominant
mechanism for EDSR or spin-photon coupling. Therefore, the
constructive interference and large spin-valley mixing can
substantially increase the Rabi frequency of the EDSR and the
spin-photon coupling.

Spin pure dephasing due to 1/f charge noise
With SVM, pure dephasing for the spin qubit arises at the second-
order of s-SOC. The effective magnetic noise contributing to spin
dephasing due to the SVM is (see Methods)

neff ¼ eV1=f ðrdip=l0Þ sin γ þ γ0

2
sin

γ � γ0

2
; (6)

where V1/f is the voltage fluctuation from the 1/f charge noise, and
rdip ¼ rv0v0 � rv1v1 is the dipole moment of the valley states. For
two states αj i and βj i of interest, the system dephases as
exp½�ϕðτÞ�, and ϕðτÞ ¼ R1

ωc
dωJzzðωÞ½2 sinðωτ=2Þ=ω�271,72,

JzzðωÞ ¼ 2

_2

Z 1

�1
hneffð0ÞneffðτÞi cosðωτÞdτ; (7)

where neff is the effective noise obtained above, Jzz(ω) is the
spectral density for the noise, and the cutoff frequency ωc ≈ 1 s−1

represents the inverse of the measurement time of coherence
dynamics. By evaluating the spin dephasing dynamics according
to the equations, the spin pure dephasing rate 1/Tφ can be
obtained73,74.
Figure 2 also shows the spin pure dephasing rate 1/Tφ as a

function of the magnetic field B0 due to the 1/f charge noise via
the s- or i-SOC induced SVM. [The contribution of the intra-valley
SOM to spin pure dephasing is negligible since the intra-valley
orbital splitting is far off-resonance with the spin splitting, and the
dipole rdip between the orbital states vanishes in harmonic
confinement.] For both forms of SOC, 1/Tφ has similar dependence
on the magnetic field B0 and narrowly peaks at the SVH, which can
be useful for system characterization. Moreover, given that the spin
pure dephasing from other mechanisms is at least 104 s−111,12,75, 1/
Tφ due to the SVM is only relevant near the hot spot. Therefore,
slightly away from the hot spot, before 1/Tφ due to the SVM starts
to dominate spin dephasing, the vacuum Rabi frequency (and also
the Rabi frequency of EDSR) could be enhanced by orders of
magnitude by tuning the valley splitting EVS or the magnetic field
B0 so that system is close to the point of SVH, while spin dephasing
remains roughly constant.

Quantum gate operation near the SVH
The asynchronous rise of EDSR Rabi frequency ΩR and total spin
dephasing near the SVH hints that one could possibly perform fast
and high-fidelity quantum gates in this regime. Considering that
spin relaxation (as shown below) is generally slower than pure
dephasing, even at the hot spot, the total decoherence rate can be
estimated as 1=T�

2 ¼ 1=Tφ þ 1=Tφ;0, where 1/Tφ,0 originates from
other sources such as nuclear spins or charge noise via
longitudinal gradient12. Recent experiments show that 1/Tφ,0 ~
5 × 104 s−1 for a spin qubit in an isotopically purified Si QD12. With
ΩR characterizing how fast a single-qubit gate can be, the single-
qubit quality factor can then be defined as QRabi ¼ ΩRT�

2=π, which
is a measure of how well one can control such a qubit.
Figure 3 shows the quality factor QRabi with the s-SOC or i-SOC

as a function of the external magnetic field. QRabi with the s-SOC
exhibits two sweet-spots near (not at) the SVH, before dephasing
due to the SVM starts to dominate. QRabi increases by an order of

a

b

Fig. 2 Rabi frequencies and spin pure dephasing. Rabi frequency
ΩR of the EDSR, spin-photon coupling gs (i.e., vacuum Rabi
frequency), and spin pure dephasing 1/Tφ as a function of the
magnetic field B0 due to the SVM or the intra-valley SOM for a spin
in a silicon QD with the s-SOC (a) or the i-SOC (b). Both ΩR and gs are
greatly enhanced near the SVH. Away from the SVH, ΩR and gs have
weaker B0 dependence for the s-SOC compared to the i-SOC due to
the broken T-symmetry of the s-SOC. 1/Tφ is also enhanced near the
SVH and has similar B0 dependence for the s-SOC and the i-SOC.
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magnitude as the system approaches the sweet-spots. If the spin
qubit is coupled to a superconducting resonator, with the
resonator decay rate κ and the bare spin decoherence rate 1/
Tφ,0 both ~5 × 104 s−1, the strong coupling limit of gs > κ; 1=T�

2 can
be achieved when the system approaches the SVH. Indeed, Fig. 3
shows that the quality factor Qs�ph ¼ gsT

�
2=ðπÞ of spin-photon

coupling can reach above 102. In short, by using the SVM near the
hot spot, fast high-fidelity quantum gates are within reach for Si
quantum computing.
The trend for the qubit quality factor to reach its peaks near the

SVH holds for the i-SOC as well. Figure 3 also shows that the
quality factors QRabi and Qs-ph without micromagnets can also
be improved by orders of magnitudes near the SVH, which can be
useful for high-fidelity quantum gates without micromagnets,
although the operation speed is slower than the case of the s-SOC.
Besides decoherence, leakage error could occur due to

transitions to states outside the computational basis. However,
the leakage error is suppressed if the detuning between the level
splitting and the driving field frequency is much larger than the
bandwidth of the driving field. Note that the harmful processes
that lead to the leakage error of a spin qubit are transitions
involving simultaneous flipping of the spin and valley states
[Suppose the spin dynamics is of interest and the valley degree of
freedom is traced out, and the g-factor difference is assumed
small between the valleys]. At the sweet-spots, where ϵ−= EVS−
EZ is relatively small, we have ϵ− ≈ 0.03 T ~ 3 μeV, which is still
much larger than the spin-valley coupling amplitude Δ of about
0.1 μeV. As such, the electron eigenstates are close to spin-valley
product states. Near the spin-valley sweet-spot, the estimated Rabi
frequency is on the order of 2π × 107 to 2π × 108 1/s, which
corresponds to a B-field of 0.3 to 3 mT, much less than the
detuning between the microwave and the level splitting (the
levels coupled by the SOC and involves simultaneous spin-valley
flip). Thus, the leakage should be largely suppressed by the energy
detuning. Moreover, leakage error can further be suppressed by
engineered pulses76–79.
We emphasize that the valley splitting in Si can be tuned

electrically using top gates31,40,80,81. Thus, one can electrically tune
the valley splitting to turn on the SVM for spin manipulation and
spin-spin coupling, and turn off the SVM for the idling qubits.
Furthermore, with the SVM boosted EDSR in a single QD instead of

a double QD22,25,28,29,82, a spin qubit-based architecture could be
simplified without sacrificing manipulation speed and tunability.

Spin relaxation
The SVM due to s-SOC means that electrical noises can cause spin
relaxation. In particular, the resulting spin relaxation is

1=T1 ¼ 4πe2

_2
η2SVð_ωZÞ

X
i

rv0v1i

�� ��2Sii;EðωZÞ; (8)

where Sii;EðωÞ � 1
2π

Rþ1
�1 dτEið0ÞEiðτÞ cosðωτÞ is the spectral density

of noisy electric field (i= x, y, z). When EZ > EVS, an additional spin

relaxation channel via the intermediate state e2�� E
arises31,33.

However, its contribution to overall spin relaxation is relatively
weak and is not included here (see Supplementary Note 1), except
for the relaxation due to the 1/f charge noise as shown below.
An important feature of spin relaxation rate 1/T1 is its dependence

on the magnetic field B0. This B0 dependence is determined by the
spectral density Sii,E(ωZ) of the noisy electrical field and the factor
ηSV(�hωZ) that captures the effect of the SVM. Table 1 summarizes the
B0 dependence of 1/T1 via the SVM due to deformation potential
(DP) phonon, piezoelectric (PE) phonon, Johnson noise, or 1/f charge
noise at the zero-temperature limit. At finite temperatures, an extra
term cothðEZ=kBTÞ in spectral density of Johnson and phonon noise
will play a role. In particular, at the high-temperature limit when T >
gμBB0/kB, cothðEZ=kBTÞ � kBT=ðgμBB0Þ, which results in extra 1/B0
dependence for spin relaxation33.
In addition to spin relaxation due to the SVM, it could also arise

due to intra-valley SOM, which can be obtained from the result of
the SVM by replacing EVS and rv0v1i by Ed and rd= rd0Fc(ωZ), where
Ed is the intra-valley orbital splitting, rd0 ¼ _=

ffiffiffiffiffiffiffiffiffi
mEd

p
is the

transition dipole between the lowest two orbitals, and FcðB0Þ ¼
e�ω2

Zr
2
d0=ð2v2j Þ is due to the contribution beyond the electric dipole

approximation and leads to phonon bottleneck effect at higher
magnetic fields43,83,84.
Figure 4 shows the spin relaxation via s-SOC (Fig. 4a) or i-SOC

(Fig. 4b) for devices with or without a micromagnet. The dots are
the experimental data from ref. 38. The lines are theoretical results
for DP phonon, Johnson noise, and 1/f charge noise via the SVM or
the intra-valley SOM (parameters listed in Methods). Our theory
faithfully captures the main features observed in the experiment.
In particular, the broken T-symmetry of the s-SOC leads to a weak
B0 dependence of spin relaxation compared with the case of the
i-SOC as mentioned above. With a micromagnet (Fig. 4a), spin
relaxation at a low B0 field saturates and is dominated by the 1/f
charge noise and Johnson noise. Specifically, 1/f charge noise via
the s-SOC induced intra-valley SOM plays an important role in spin
relaxation at very low B0 field due to the large noise spectral
density at low frequencies. As B0 increases, spin relaxation
becomes dominated by Johnson noise via the intra-valley SOM,
and shows B0 cothðγeB0=kBTeÞ � kBTe=γe dependence that is
independence of B0 at the low field limit (B0≪ kBTe/(gμB)).

Fig. 3 Quality factors for EDSR and spin-photon coupling. Quality
factors for EDSR Rabi driving and spin-photon coupling as a
function of the magnetic field B0 for a spin in a silicon QD with the
s-SOC or the i-SOC. A constant pure dephasing rate of 5 × 104 s−1 is
assumed from other mechanisms12. Sweet-spots are achieved near
(not at) the SVH for the s-SOC, where the quality factors for the EDSR
driving and spin-photon coupling are enhanced substantially. The
quality factors are enhanced for the i-SOC as the system approaches
the SVH and shows no dip at the SVH since the pure dephasing via
SVM is not dominant near the SVH.

Table 1. Magnetic field dependences of spin relaxation for different
noises and SOC. Spin relaxation rate 1/T1 versus the magnetic field B0
due to DP phonon, piezoelectric (PE) phonon, Johnson noise (JN), or 1/
f charge noise via the i-SOC or the s-SOC (at zero-temperature limit). S
(ωZ) is the power spectral density of electric field, ωZ= gμBB0/�h is the
Larmor frequency.

1/T1 DP PE JN 1/f general case

i-SOC (EZ < EVS) B70 B50 B30 B0 / ω2
ZSðωZÞ

i-SOC (EZ > EVS) B30 B0 B�1
0 B�3

0 / ω�2
Z SðωZÞ

s-SOC (EZ < EVS) B50 B30 B0 B�1
0 ∝ S(ωZ)

s-SOC (EZ > EVS) B0 B�1
0 B�3

0 B�5
0 / ω�4

Z SðωZÞ
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In comparison, spin relaxation would not be saturated at the low
magnetic field in the case of the i-SOC, as shown in Fig. 4b.
As the uniform magnetic field B0 further increases (near the

SVH), spin relaxation becomes dominated by the SVM mechan-
isms and rises in a sharp peak, consistent with the experimental
data. At high magnetic fields, when EZ > EVS, our theory again
captures the main features of 1/T1. Here, the additional spin
relaxation (SVM-Add) via an intermediate state due to the 1/f
charge noise is included when EZ > EVS [see Supplementary Note 1
for more information]. Due to the small energy splitting, the 1/f
charge noise can induce appreciable additional spin relaxation
when EZ≳ EVS. However, it fast decreases when B0 is away from
the hot spot. At high magnetic fields, spin relaxation has two
major contributions. One is due to the intra-valley SOM and
Johnson noise that has a linear B30 dependence. The other is due to
phonon noise via the intra-valley SOM, which has a B50
dependence at first but is suppressed at higher B0 due to the
phonon bottleneck effect32,33,43. The suppression of spin relaxa-
tion at higher B0 is indeed visible from the experimental data.
Consequently, the B0-dependence for spin relaxation is always
slower than B50, and slow down even further at higher magnetic
fields. Again notice that 1/T1 has a weaker B0-dependence for the
s-SOC compared to the case of the i-SOC, which is due to the
different T-symmetries of the two SOC mechanisms.

DISCUSSION
Our results suggest that the T-symmetry plays a vital role in the
mixings of spin-valley states and determines spin properties in
silicon. The fast EDSR at low magnetic due to s-SOC induced SVM
makes the system compatible with superconducting circuits.
Furthermore, one can readily extend our results to different

scenarios, such as an electron (or a hole) in a double quantum dot,
where the results of spin dephasing hot spot and spin
manipulation sweet-spots can be applied to the case of mixed
spin and charge states. Our study indicates that the mixing of spin
states to valley states not only improves spin qubit control
compared to a spin qubit well separated from the valley dynamics,
but also save the number of QDs used for qubit encoding (i.e., a
single dot rather than a double dot to confine a spin qubit). It
represents a great example that a hybrid quantum system offers
an improvement over individual quantum systems.
In conclusion, we studied the theory of spin manipulation, pure

dephasing, and relaxation due to SVM via the s-SOC from a
micromagnet. We find the spin transition dipole mediated by the
s-SOC induced SVM (or intra-valley SOM) shows weak magnetic
field dependence arising from the broken T-symmetry of the
s-SOC. EDSR mediated by the s-SOC and SVM is enhanced as a
result of the constructive interference and the large mixing at the
SVH. Furthermore, pure dephasing from the 1/f charge noise is
possible due to SVM and s-SOC, and the SVH for relaxation is also
a spin dephasing hot spot. Combining our results on Rabi
frequency and spin dephasing, we find that the parameter regime
near (but not at) the SVH may provide an optimal point for fast
and high-fidelity quantum gates. Our theory also explains the
experimentally observed field dependence of spin relaxation at
both low and high magnetic fields, which is not captured by
previous theoretical results. We hope our work will stimulate
further explorations of the benefits of hybridized quantum
systems, the valley degree of freedom, and the effects of
symmetry and interference on solid-state qubits.

METHODS
To study spin decoherence and manipulation in the system, we first obtain
the spin-valley eigenstates in the presence of spin-valley coupling without
environmental noises and then evaluate the effective electric dipole matrix
elements between the spin-valley mixed states. From the effective dipole
moments and the potential from the electrical noise and manipulation
field, the spin relaxation, manipulation, and dephasing dynamics is
evaluated.

Spin-valley eigenstates and transition dipoles
Consider the mixing between the states v0 "j i and v1 #j i due to the SOC,
the detuning of the states v0 "j i and v1 #j i is ε= EVS− EZ. The coupling
matrix element is Δv0";v1# . Since Δv0";v1# is in general a complex number, we
denote Δv0";v1# ¼ Δeiδ� , where δ� ¼ arctan½ImðΔv0";v1#Þ=ReðΔv0";v1#Þ� is the
phase and Δ ¼ jΔv0";v1#j is the magnitude of the matrix element. Then, the
eigenstates in the subspace can be obtained

e3�� E
¼ cosðγ�=2Þe�iδ�=2 v1 #j i þ sinðγ�=2Þeiδ�=2 v0 "j i; (9)

e2�� E
¼ � sinðγ�=2Þe�iδ�=2 v1 #j i þ cosðγ�=2Þeiδ�=2 v0 "j i; (10)

where γ� ¼ arctanðΔ=εÞ. The energy splitting between the two eigenstates

is eε ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 þ Δ2

p
.

Similarly, there is also mixing between the states v0 #j i and v1 "j i due to
the SOC. The detuning of the two states is ε0 ¼ EVS þ EZ, and coupling
matrix element is Δv0#;v1" ¼ Δ0eiδþ , where Δ0 ¼ jΔv0#;v1"j ¼ Δ, and
δþ ¼ arctan½ImðΔv0#;v1"Þ=ReðΔv0#;v1"Þ�. Then, the eigenstates in the sub-
space is obtained similarly with modified mixing angles γ+ and δ+, where
γþ ¼ arctanðjΔv0#;v1"j=ε0Þ. The energy splitting of the two eigenstates iseε0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε02 þ Δ2
p

.
According to the expression of the spin-valley eigenstates obtained

above, the transition dipole matrix element between spin-valley eigen-
states ~1

�� �
and ~2

�� �
is

e1 rij je2D E
¼ � jrv0v1i j cosϕi sin

γ�þγþ
2

� ��
þ i sinϕi sin

γ��γþ
2

� �	
;

(11)

where rv0v1i ¼ ðrv1v0i Þ� � v0h jri v1j i ¼ jrv0v1i jeiϕr;i is the dipole matrix element
between the valley states, and ϕi= ϕr,i− (δ−+ δ+)/2. Similarly, from the

a

b

Fig. 4 Spin relaxation versus magnetic field in silicon. Spin
relaxation 1/T1 in a silicon QD as a function of the magnetic field B0
due to the s-SOC (a) or the i-SOC (b) and DP phonon, Johnson noise
(JN), and 1/f charge noise via the SVM or the intra-valley SOM. When
EZ > EVS, we also include the additional spin relaxation from 1/f
charge noise (SVM-Add+ 1/f) via an intermediate state, whose
magnitude is appreciable near the hot spot but fast decreases as B0
goes away from hot spot. The dots are the experimental data from
ref. 38. 1/T1 due to the s-SOC induced SVM (or intra-valley SOM)
shows weaker dependence with B0 than the case of the i-SOC, which
explains the saturation of 1/T1 at low magnetic fields and the B0
dependence at high magnetic fields when micromagnets present.
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expression of spin-valley eigenstates, the dipole matrix element between
~1
�� �

and ~3
�� �

can be obtained by changing sinðγ� ± γþÞ=2 to cosðγ� ± γþÞ=2
in the expression of e1� ��ri e2�� E

.
The dipole moment that is relevant to spin dephasing ise1� ��r e1�� �� e2 rj je2D E

, in which

e2 rj je2D E
¼ cos2ðγ�=2Þrv0v0 þ sin2ðγ�=2Þrv1v1 ; (12)

e1� ��r e1�� � ¼ cos2ðγþ=2Þrv0v0 þ sin2ðγþ=2Þrv1v1 : (13)

Therefore, the dipole moment contributing to pure dephasing is

e1� ��r e1�� �� e2 rj je2D E
¼ sin

γ� þ γþ
2


 �
sin

γ� � γþ
2


 �
rdip; (14)

which is proportional to rdip ¼ ðrv1v1 � rv0v0 Þ. Then, the noise contributing

to spin dephasing is neff ¼ eEnoise � e1� ��r e1�� �� e2 rj je2D E
 �
. The 1/f charge

noise is an important source of pure dephasing. Suppose the noisy electric
field from the 1/f charge noise on a single quantum dot is on the same
order as the noise on a double quantum dot, and the noisy voltage
fluctuation in a double quantum dot is V1/f (on the order of 1 μeV), then, we
have ∣Enoise∣ ~ V1/f/l0, where l0 is the typical length scale during the noise
measurement on a double quantum dot.

Broken T-symmetry of the s-SOC
Now we prove that, for synthetic SOC, we have Δ�

v0";v1# ¼ Δv0#;v1" for the
mixing matrix element, so that δ−+ δ+= 0. For the dipole matrix element
between the valley states, we find that rv0v1i is real, rv0v1i ¼ rv1v0i , so that
ϕr,i= 0, and ϕi= ϕr,i− (δ−+ δ+)/2= 0. Note that the phases ϕr,i and δ−+
δ+ actually depends on the convention of the global phase of the valley
states, but the overall phase ϕi stay unchanged.
For the valley states in silicon, assuming the separability of the orbital and

valley degree of freedom, the wave-function in the effective mass theory is
hrjni ¼ P

ja
j
nFjnðrÞψjðrÞ, where j runs from 1 to 6 for different valley states,

and n is index for the different orbital states. In the case of a silicon QD,
where the electron experiences strong confinement in the vertical direction
and an anisotropy of the effective mass, the valley states x, x, y, y are much
higher in energy than the z, z valley states. Then, we can consider only the z
and z valley states by neglecting the others. The wave functions of the
lowest two valley states are40 v0j i ¼ 1ffiffi

2
p F0ðrÞj i e�ik0z u�zj i þ eiϕeik0z uzj i� 	

, and

v1j i ¼ 1ffiffi
2

p F1ðrÞj i e�ik0z u�zj i � eiϕeik0z uzj i� 	
eiϕv1 , where F0(r) and F1(r) are the

envelope functions, and ϕ is the phase difference between the two valley
states, and ϕv1 is the global phase of the state v1j i. Without loss of
generality, we choose the global phase ϕv1 ¼ π=2. Next, we consider the
properties of the time-reversal operator Θ.
For the purpose of our discussion, the time-reversal operator is denoted as

Θ= σyK, where K is the complex-conjugate operator that forms the complex
conjugate of any coefficient that multiplies a ket (and stands on the right of
K)85,86. Under the time-reversal operation, the coordinate operator r is
symmetric, i.e., ΘrΘ−1= r; While the spin operator σ is asymmetric, i.e. ΘσΘ−1

=−σ. For spin states, Θ "j i ¼ i #j i, Θ #j i ¼ �i "j i. The valley states under the
time-reversal is Θ v0j i ¼ 1ffiffi

2
p F0ðrÞj i eik0z uzj i þ e�iϕe�ik0z u�zj i� 	 ¼ e�iϕ v0j i,

and Θ v1j i ¼ � iffiffi
2

p F1ðrÞj i eik0z uzj i � e�iϕe�ik0z u�zj i� 	 ¼ e�iϕ v1j i. [Note that

the envelope functions F0ðrÞj i and F1ðrÞj i are assumed to be real. This is
justified by the fact that the cyclotron radius near spin-valley hot spot is much
larger than the QD radius (especially in the growth direction considering that
we have an in-plane field) so that magnetic field effect on electron orbitals
can be neglected.] Since the s-SOC is asymmetric under time-reversal
operation, i.e., ΘHs-SOCΘ

−1=−Hs-SOC, the spin-valley mixing matrix element is

Δv0";v1# ¼ Θðv1 #Þh jΘHs�SOCΘ
�1 Θðv0 "Þj i ¼ Δv1";v0#:

Consequently, δ−+ δ+= 0. On the other hand, the dipole matrix element
rv0v1 satisfies the relation rv0v1 ¼ Θðv1Þh jΘrΘ�1 Θðv0Þj i ¼ rv1v0 , i.e., rv1v0i is
real and ϕr,i= 0. Therefore, ϕi=ϕr,i− (δ−+ δ+)/2= 0, and the dipole matrix

elements are given by e1� ��ri e2�� E
¼ �rv0v1 sinðγ�=2þ γþ=2Þ and

e1 rij je3D E
¼ rv0v1 cosðγ�=2þ γþ=2Þ. When γ−≫ γ+, these matrix elements

take the approximate expressions of e1� ��ri e2�� E
� �rv0v1 sinðγ�=2Þ and

e1 rij je3D E
� rv0v1 cosðγ�=2Þ, consistent with the results in our previous study33.

In comparison, for the case of the intrinsic SOC, Δv0";v1# ¼ �Δ�
v0#;v1",

which means that ϕi= ϕr,i− (δ−+ δ+)/2= π/2. Thus, the sign in front of γ+
changes in e1 rij je2D E

and e1 rij je3D E
.

SOC matrix elements
When the x and y axes are defined along the [100] and [010]
crystallographic directions, the i-SOC is Hi-SOC= HR+ HD, where HR=
αR(pxσy− pyσx) and HD= αD(− pxσx+ pyσy) are the Rashba and the
Desselhaus SOC due to structural inversion asymmetry (SIA) and bulk
inversion asymmetry (BIA), and αR and αD are the coupling constants43.
There is no BIA in bulk silicon. However, a Dresselhaus-like term can appear
when an electron is near an interface59,87–89. In the following, we consider
both the contributions of Rashba and Desselhaus SOC to the mixing of the
spin-orbital states.
When the coordinate is redefined so that the x and y-axes are along the

[110] and ½110� directions, the SOC Hamiltonian is rewritten as43

Hi�SOC ¼ α�pyσx þ αþpxσy ; (15)

where α±= αD ± αR. In the experiment reported in ref. 38, the magnetic field
is along the [110] direction. As such the σy term is transverse to B0 and
leads to the mixing of spin–orbit states. Thus we consider the orbital states
0xj i, 1xj i due to the confinement along the [110] direction. The intra-valley
spin–orbit coupling matrix element Δ0";1# � 0x "h jHi�SOC 1x #j i due to the
i-SOC is thus

Δ0";1# ¼ αþ 0xh jpx 1xj i "h jσy #j i ¼ �Edx01=λso; (16)

where x01 ¼ _=
ffiffiffiffiffiffiffiffiffiffiffi
m�Ed

p
and λso= �h/(m*α+) is the spin–orbit length.

Similarly, Δ0#;1" � 0x #h jHi�SOC 1x "j i ¼ Edx01=λso ¼ �Δv0";v1#, which exhi-
bits the same relation as the spin-valley coupling matrix elements [the
relation obtained based on the T-symmetry].
The s-SOC is Hs�SOC ¼ 1

2 gμBb1tσzx, where b1t≡ ∂Bz/∂x is the transverse
magnetic field gradient along the x axis, i.e., [110]. The coupling matrix
element Δ0";1# � 0x "h jHs�SOC 1x #j i due to the s-SOC is then

Δ0";1# ¼ β1t 0xh jx 1xj i "h jσz #j i ¼ β1tx01; (17)

where β1t � 1
2 gμBb1t. Similarly,

Δ0#;1" � 0x #h jHs�SOC 1x "j i ¼ β1tx01 ¼ Δ0";1# , which exhibits the same
relation as the spin-valley coupling.

Noise model
The deformation phonon Hamiltonian has been studied in the litera-
ture31,32,37,43. For electrical noises, such as Johnson noise or 1/f charge
noise, the photon wave vector is much larger than the size of a QD. The
noise Hamiltonian can thus be expressed in the limit of dipole
approximation as

VeðrÞ ¼ �r � FðtÞ; (18)

where F(t) is the electric field due to a given electrical noise.
Here we give explicitly the power spectral densities of the electrical

noises that give rise to spin relaxation and dephasing in the system.
Suppose the noise of the circuits outside the dilution refrigerator is well-
filtered. Johnson noise should then be mostly due to the low-temperature
circuit (such as the metallic gate on top of the QD) inside the dilution
refrigerator. The corresponding spectral density Sii,E of electrical field is
Sii;E ωð Þ ¼ SV;JNðωÞ=ðel0Þ2, where i= X, Y, or Z directions, SV,JN(ω) is the
spectral density of the voltage fluctuation due to Johnson noise, e is the
electron charge, and l0 is the distance between the gate and the QD that
converts the voltage fluctuations to the fluctuations of the electric field at
the dot. The spectral density SV;JNðωÞ ¼ 1

2π

Rþ1
�1 V 0ð ÞV tð Þ cos ωtð Þdt of the

voltage fluctuations due to Johnson noise is33

SV;JN ωð Þ ¼ 2ξω_2f cðωZÞ coth _ω=2kBTð Þ; (19)

where ξ= R/Rk is a dimensionless constant, Rk= h/e2= 26 kΩ is the
quantum resistance, and R is the resistance of the circuit. f cðωÞ ¼
1=½1þ ω=ωRð Þ2� is a natural cutoff function for Johnson noise, where ωR=
1/RC is the cutoff frequency, and C is the equivalent capacitor in parallel
with the resistance R.
Another electrical noise that is ubiquitous in solid state material is the 1/f

charge noise. The typical noise spectral density is

SV ;1=f ¼ A=ω; (20)

where
ffiffiffi
A

p
is the strength of the noise. We assume that the charge noise is

from the slow fluctuators in dielectric material near the metallic gates.
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The corresponding spectrum of electric field is estimated as Sii;E ωð Þ ¼
SV;1=f ðωÞ=ðel0Þ2, where l0 is the distance between the dielectric material
and the QD.

Physical parameters
The following values of parameters are used if not specified. We choose g
= 2, m*= 0.19m0, and Ed= 3meV for the effective g-factor, the effective
mass, and the horizontal orbital confinement of an electron in a silicon QD.
The transition dipole moments between valley states are rx= ry= rz=
1 nm, and the dipole moment rv0v0i � rv1v1i ¼ 1 nm. The valley splitting is
EVS= 0.1 meV. The vertical confinement length of the QD is dz= 5 nm. For
the SOC constants, we choose the Rashba constant as αR= 20m/s, and the
Dresselhaus constant αD= 80m/s for rough estimation. We choose b1t=
1.8 mT/nm for the magnetic field gradient38. A magnetic field BMM= 0.1 T
is assumed from a fully polarized micromagnet38 so that the total magnetic
field B0= Bext+ BMM, where Bext is the externally applied magnetic field.
For the evaluation of EDSR Rabi frequency, we choose E0= 10,000 V/m

for the maximum electric field of the microwave driving. While for spin-
photon coupling, we use Ezpf ¼ Vzpf=l0 ¼ ω0

ffiffiffiffiffiffiffiffi
_Z0

p
=l0, where Vzpf is the

voltage due to the zero-point fluctuation (ZPF) in the resonator, ω0 and Z0
the frequency and the characteristic impedance of the resonator, and l0
the length for the voltage drop22,70. We choose resonator impedance Z0=
50Ω, and the resonator frequency the same as the spin Larmor frequency.
For 1/f charge noise, we choose the noise amplitude

ffiffiffi
A

p ¼ 3μeV=
ffiffiffiffiffiffiffi
Hz

p
,

and the length scale l0= 30 nm inspired by the geometry and size of the
quantum dot [assuming the source of noise is distributed in the dielectric
material near the QD]38. For phonon noise, we choose v1= 5900m/s and
v2= v3= 3750m/s for the speed of the different acoustic phonon
branches, ρc= 2200 kg/m3 for the mass density, Ξd= 5.0 eV and Ξu=
8.77 eV for the dilation and shear deformation potential constants32,33. The
phonon temperature is set to be zero for simplicity. Next, we give explicitly
the values of the physical parameters during the fitting of spin relaxation
results.
For the fitting of the s-SOC results38, we choose the valley splitting EVS=

0.096087meV (equal to the Zeeman energy at 0.83 T). BMM= 0.14 T is
assumed from a fully polarized micromagnet (if a different BMM field was
chosen, the data of spin relaxation can be fitted equally well, but the other
fitting parameters will be slightly modified). We choose the orbital splitting
Ed= 2.8 meV [The magnetic field gradient is finite only when the electron
is moving along the x-axis. For the spin relaxation (or EDSR) due to the
s-SOC induced spin–orbit mixing, the relevant confinement is along the x-
axis, and can be chosen differently from the value 2meV of the orbital
confinement reported in the experiment. Here Ed is the only adjustable
parameter to fit the spin relaxation at high magnetic fields, if the phonon
parameters and b1t= 1.8 mT/nm (from the experimental estimation38) are
kept fixed], the valley transition dipole moment rv0v1x ¼ 1:3 nm, and the
dipole moment jrv0v0i � rv1v1i j ¼ 0:8 nm. Resistance for Johnson noise RJN=
3.0Ω, electron temperature of Johnson noise Te= 115mK. Charge noise
amplitude

ffiffiffi
A

p ¼ 1 μeV/
ffiffiffiffiffiffiffi
Hz

p
, low cutoff frequency ωc0= 1 Hz, and the

length l0= 30 nm, which is inspired by the geometry and size of the
quantum dot.
For the fitting of the i-SOC results, we choose the orbital splitting Ed=

3.9 meV, the valley splitting EVS= 0.105927meV (equivalent to a Zeeman
energy at 0.915 T), valley transition dipole moment rv0v1x ¼ 1:1 nm, and the
dipole moment jrv0v0i � rv1v1i j ¼ 0:3 nm. Resistance for Johnson noise RJN=
5Ω, electron temperature of Johnson noise Te= 115mK; Charge noise
amplitude

ffiffiffi
A

p ¼ 4:5 μeV/
ffiffiffiffiffiffiffi
Hz

p
, the length l0= 30 nm, low cutoff fre-

quency ωc0= 1 Hz; Rashba and Desselhaus SOC coupling constants are
αR= 50m/s and αD= 280m/s.
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