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Lost photon enhances superresolution
A. B. Mikhalychev 1✉, P. I. Novik1, I. L. Karuseichyk1, D. A. Lyakhov2, D. L. Michels2 and D. S. Mogilevtsev1

Quantum imaging can beat classical resolution limits, imposed by the diffraction of light. In particular, it is known that one can
reduce the image blurring and increase the achievable resolution by illuminating an object by entangled light and measuring
coincidences of photons. If an n-photon entangled state is used and the nth-order correlation function is measured, the point-
spread function (PSF) effectively becomes

ffiffiffi
n

p
times narrower relatively to classical coherent imaging. Quite surprisingly, measuring

n-photon correlations is not the best choice if an n-photon entangled state is available. We show that for measuring (n− 1)-photon
coincidences (thus, ignoring one of the available photons), PSF can be made even narrower. This observation paves a way for a
strong conditional resolution enhancement by registering one of the photons outside the imaging area. We analyze the conditions
necessary for the resolution increase and propose a practical scheme, suitable for observation and exploitation of the effect.
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INTRODUCTION
Diffraction of light limits the spatial resolution of classical optical
microscopes1,2 and hinders their applicability to life sciences at
very small scales. Quite recently, a number of super resolving
techniques, suitable for overcoming the classical limit, have been
proposed. The approaches include, for example, stimulated-
emission depletion microscopy3, super resolving imaging based
on fluctuations4 or antibunched light emission of fluorescence
markers5, structured illumination microscopy6,7, and quantum
imaging8–12.
Quantum entanglement is known to be a powerful tool for

resolution and visibility enhancement in quantum imaging and
metrology8–16. It has been shown that using n entangled photons
and measuring the n-th order correlations, one can effectively
reduce the width of the point-spread function (PSF)

ffiffiffi
n

p
times9,14,15,17 and beat the classical diffraction limit. The increase
of the effect with the growth of n can naively be explained as
summing up the "pieces of information” carried by each photon
when measuring their correlations. Such logic suggests that being
given an n-photon entangled state, the intuitively most winning
measurement strategy is to maximally exploit quantumness of the
illuminating field and to measure the maximal available order of
the photon correlations (i.e., the nth one).
Surprisingly, it is not always the case. First, it is worth

mentioning that effective narrowing of the PSF and resolution
enhancement can be achieved with classically correlated photons9

or even in the complete absence of correlations between fields
emitted by different parts of the imaged object (as it is for the
stochastic optical microscopy4). Moreover, the maximal order of
correlations is not necessarily the best one18,19. In this contribu-
tion, we show that, for an entangled n-photon illuminating state, it
is possible to surpass the measurement of all n-photon correla-
tions by loosing a photon and measuring only n− 1 remaining
photons. According to our results, measurement of (n− 1)th-order
correlations effectively leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� 1Þ=np

times narrower PSF
and better resolution, quantified by Fisher information-based
approach, than for commonly considered n-photon detection. It is
even more strange in view of the notorious entanglement

fragility20: if even just one of the entangled photons is lost, the
correlations tend to become classical.
The insight for understanding that seeming paradox can be

gained from a well-established ghost-imaging technique21–28 and
from a more complicated approach of quantum imaging with
undetected photons29–32. In both approaches, one of the
entangled photons gains information about the object and
"transmits” it through entanglement to the other photon,
detected by a position-sensitive detector, by modifying its state.
In our case, detecting n− 1 photons and ignoring the remaining
nth one effectively comprises two possibilities (see the imaging
scheme depicted in Fig. 1): the nth photon can either fly relatively
close to the optical axis of the imaging system towards the
detector or go far from the optical axis and fail to pass through the
aperture of the imaging system. In the first case, the photon can
be successfully detected and provide us its piece of information. In
the second case, it does not bring us the information itself, but
effectively modifies the state of the remaining n− 1 photons (as in
refs. 33–40). It effectively produces position-dependent phase shift,
thus performing wave-function shaping37 and leading to an effect
similar to structured illumination6,7, PSF shaping41, or linear
interferometry measurement42, and enhancing the resolution.
We show that for n > 2 photons, the sensitivity-enhancement
effect leads to higher information gain than just detection of the
nth photon, and measurement of (n− 1)-photon correlations
surpasses n-photon detection. We refer to such (n− 1)-photon
detection as a "lost photon” case since one of the photons is
ignored during the measurement.
The discussed sensitivity-enhancement effect can be used to

increase resolution in practical imaging schemes. One can devise a
conditional measurement set-up by placing a bucket detector
outside the normal pathway of the optical beam (e.g., near the
lens outside of its aperture) and post-selecting the outcomes
when one photon gets to the bucket detector and the remaining
n− 1 ones successfully reach the position-sensitive detector, used
for the coincidence measurements. We show that such a post-
selection scheme indeed leads to an additional increase of
resolution relatively to (n− 1)-photon detection. This is again an
n-photon detection technique, but now inspired by the "lost
photon” considerations and being more efficient than the
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traditional measurement of the nth order correlations. Resolution
enhancement by post-selecting the more informative field
configuration is closely related to the spatial mode demultiplexing
technique43–45. However, in our case, the selection of a more
informative field part is performed by detection of a photon while
all the remaining photons are detected in the usual way rather
than by filtering the beam itself. Also, our technique bears some
resemblance to the multi-photon ghost-imaging23.
Analysis of the PSF represents a fruitful approach for drawing

useful conclusions based on our intuition, but, generally, it does
not represent an accurate measure of resolution (see e.g.,
refs. 18,19). For drawing quantitative conclusions about the
resolution enhancement of the proposed technique relatively to
traditional measurements of n and (n− 1)-photon coincidences,
we employ the Fisher information, which has already proved itself
as a powerful tool for analysis of quantum imaging problems and
for meaningful quantification of resolution18,19,41,43,44,46–49. Our
simulations show that for imaging a set of semi-transparent slits
(i.e., for multi-parametric estimation problem), one indeed has a
considerable increase in the information per measurement and
the corresponding resolution enhancement. While the genuine
demonstration of the discussed effects requires at least 3
entangled photons, which can be generated by a setup with
complex nonlinear processes (e.g., cascaded spontaneous para-
metric down-conversion (SPDC)50, a combination of SPDC with up-
conversion51, cascaded four-wave mixing52, or the third-order
SPDC53–55), a relatively simple biphoton case is still suitable for
observing resolution enhancement for a specific choice of the
region where the nth photon (here, the second one) is detected.

RESULTS
Imaging with entangled photons
We consider the following common model of a quantum imaging
setup (Fig. 1). An object is described by a transmission amplitude
A(s), where s is the vector of transverse position in the object
plane. For simplicity’s sake, we consider a commonly encountered
case of an object with a real-valued transmission amplitude 0 ≤ A
(s) ≤ 1 (see e.g., refs. 9–12,23,25,28). It is illuminated by linearly
polarized monochromatic light in an n-photon entangled
quantum state

Ψnj i / R
d2k1 � � � d2knδ

ð2Þðk1 þ � � � þ knÞ
´ aþðk1Þ � � � aþðknÞ 0j i / R

d2s aþðsÞð Þn 0j i; (1)

where a+(k) and a+(s) are the operators of photon creation in the
mode with the transverse wavevector k and at transverse position
s, respectively. An optical system with the PSF (Green’s function) h
(s, r) maps the object onto the image plane, where the field
correlations are detected.
Features of the field passing through the analyzed object (and,

thus, the object parameters) can be inferred from the measurement
of intensity correlation functions accomplished by simple coincidence
photo-counting. The detection rate of the n-photon coincidence at a
point r is determined by the value of the nth-order correlation

function (see “Methods” section for details):

GðnÞðrÞ /
Z

d2sAnðsÞhnðs; rÞ
����

����
2

: (2)

The signal, described by Eq. (2), includes the nth power of the
PSF, which is

ffiffiffi
n

p
times narrower than the PSF itself. At least for the

object of just two transparent point-like pinholes, such narrowing
yields

ffiffiffi
n

p
times the better visual resolution of the object than for

imaging with coherent light (see e.g., refs. 8,15).
Alternatively, one may try to ignore one of the photons and

measure correlations of the remaining (n− 1) ones. The rate of (n
− 1)-photon coincidences is described by the (n− 1)th-order
correlation function:

Gðn�1ÞðrÞ /
Z

d2sA2ðn�1ÞðsÞ hðs; rÞj j2ðn�1Þ: (3)

Here, the 2(n− 1)th power of the PSF is present. For n > 2, the
resolution enhancement factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� 1Þp

is larger than the factorffiffiffi
n

p
achievable for n-photon detection. For n= 2, we get n= 2(n−

1) and recover the common result (see also Fig. 2f below): imaging
with biphotons yields practically the same effective width of PSF as
one would have for incoherent (thermal light) imaging (however,
biphotons are advantageous if one is interested in the phase
information about the object)8,9,56,57. Notice that the resolution for
imaging with biphotons (n= 2) is better than for the standard
coherent imaging with uncorrelated photons (n= 1)8–11.
The result obtained looks quite counter-intuitive: each photon

carries some information about the illuminated object while
discarding one of the photons leads to additional information
gain. This seeming contradiction is just a consequence of applying
classical intuition to the quantum dynamics of an entangled
system. Due to quantum correlations, an entangled photon can
affect the state of the remaining ones and increase their
"informativity” even when it is lost without being detected. Here
we show that in our imaging scheme such an enhancement by
loss is indeed taking place. Moreover, an additional resolution
increase can be achieved through conditioning by detecting the
photon outside the aperture of the imaging system (see Fig. 1).

Effective state modification
Let us consider the change of the (n− 1) photons state depending
on the "fate” of the nth photon in more detail. We follow the
approach discussed in ref. 35, which consists of splitting the
description of an n-photon detection process into 1-photon
detection, density operator modification, and subsequent (n− 1)-
photon detection for the modified density operator. If we detect
(n− 1)-photon coincidence, the nth photon can be: (1) trans-
mitted through the object into the imaging system aperture, (2)
transmitted through the object outside the imaging system
aperture, or (3) absorbed by the imaged object. Here, the
"numbering” of photons has solely operational meaning: we are
not aiming at distinguishing them, and the "nth photon” is not a
particular photon, rather than just the last one remaining after
n− 1 photons have already been considered.
For the first possibility, the nth photon can reach the detector

and potentially be registered at a certain point r0. The effective
state of the remaining photons is (see “Methods” section):

Ψ
ð1Þ
n�1ðr0Þ

��� E
/

Z
d2sAðsÞhðs; r0ÞðaþðsÞÞn�1 0j i: (4)

If we are interested in the detection of all the n photons (i.e.,
post select the cases when the nth photon is successfully detected
at the position r0 ¼ r), the information gain due to the nth photon
detection results from the factor h(s, r) introduced into the
effective state (Eq. 4) of the remaining photons. It forces the
photons to pass through the particular part of the object, which is

Fig. 1 General scheme of an imaging setup. See the text for
details. A magnified or demagnified image of an object placed at
the object plane OP is formed by the optical system at the image
plane IP.
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mapped onto the vicinity of the detection point r, and effectively
reduces the image blurring.
If, according to the second possibility, the nth photon goes

outside the aperture of the imaging system and has the transverse
momentum component k, the affective state of the remaining
photons is

Ψ
ð2Þ
n�1ðkÞ

��� E
/

Z
d2sAðsÞeik�sðaþðsÞÞn�1 0j i: (5)

An important feature of Eq. (5) is the factor eik⋅s, which
effectively introduces the periodic phase modulation of the field,
illuminating the object, and leads to a similar effect as intensity
modulation for the structured illumination approach6,7.
To take into account possible absorption of the nth photon

by the imaged object, one can introduce an additional mode
and model the object as a beamsplitter (see e.g., ref. 29).
Similarly, to the two previously considered cases, the following
expression can be derived for the effective (n− 1)-photon

Fig. 2 Model example. Imaging two pinholes (a), separated by the distance 2d, with the n-photon entangled state of light. The n-photon
coincidence detection leads to constructive interference of the light passing through the pinholes (b). The interference is absent for (n− 1)-
photon detection (c). For a particular value of the transverse momentum of one of the entangled photons, the conditional detection of the
remaining n− 1 photons may exhibit destructive interference (d). Dot-dashed lines represent separate contributions from the pinholes; the
dashed line shows the interference signal; the solid line represents the sum of all the contributions. For the simulations, we used the PSF
hðs; rÞ / exp½�ðs� rÞ2=ð5d2Þ� and n= 4. Note, that the peaks in panels c and d are n/(n− 1)= 4/3 times wider than in panels b, but the image
contrast is better due to the absence of constructive interference. Panel e summarizes the results, showing the total signals from panels b, c,
and d for their comparison: G(n)(x) (solid line), G(n−1)(x) (dot-dashed line), and G(n−1, 1)(x) (dashed line). Panel f shows the same signals for n= 2
and PSF hðs; rÞ / exp½�ðs� rÞ2=ð2:5d2Þ� with its width ensuring the same image contrast for the nth order correlations (shown by the solid
line) as in previous panels. As expected for n= 2, G(n−1)(x) does not outperform G(n)(x) in terms of the image contrast.
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density operator:

ρ
ð3Þ
n�1 ¼

Z
d2s½1� A2ðsÞ�ðaþðsÞÞn�1 0j i 0h jðaðsÞÞn�1: (6)

By averaging over the three discussed possibilities (see
“Methods” section), one can obtain the following expression for
the effective state of the remaining (n− 1) photons:

ρn�1 ¼
Z

d2sðaþðsÞÞn�1 0j i 0h jðaðsÞÞn�1; (7)

which is a separable (non-entangled, classically correlated) one: a
mixture of states with (n− 1)-photon excitations of spatial modes.
The detailed derivation of the result, while being quite trivial

from a formal point of view, helps us to get to the following
physical conclusions:

● The effective state of n− 1 photons (and the (n− 1)th order
correlation function) is modified, even if the nth photon is not
detected by the observer, and depends on its "fate” (the way
the photon actually passes). The "which path” information is
generated due to the photon’s interaction with its surround-
ing (the object, the detector, etc.), but maybe unavailable to
the observer unless the two conditions are satisfied: (i) the
photon successfully gets to the detector and (ii) the observer
is measuring n-photon coincidences instead of ignoring the
nth photon.

● The effective state of n− 1 photons might be changed in a
way, which provides the object resolution enhancement.

● When n-photon coincidences are measured, the nth photon
detection actually leads to the postselection due to the
discarding of possibilities leading to the photon loss.

● For n > 2, the advantage gained from registering more photon
coincidences with the nth photon detection does not
compensate for the information loss caused by discarding
outcomes corresponding to the strongly modified (n− 1)-
photon state, which is more sensitive to the object features
(see Eqs. (2) and (3)).

Further, we discuss how the advantageous outcomes can be
postselected, instead of being discarded, for resolution
enhancement.

Model example
To gain a better understanding of the processes of resolution
enhancement by a photon loss and postselection, let us consider
a standard model object illuminated by an n-photon entangled
state and consisting of two pinholes, which are separated by the
distance 2d and positioned at the points d and −d (Fig. 2a). If
the pinholes are small enough, the light passing through the
object can be decomposed into just two field modes,
corresponding to the spherical waves emerging from the two
pinholes and further denoted by the indices "+” and "−” for the
upper and the lower pinhole, respectively. For simplicity’s sake,
we assume that the PSF is a real-valued function and that the
light state directly after the object has the form of a NOON-state
of the discussed modes "+” and "−”:

Φnj i / nj iþ 0j i� þ 0j iþ nj i�: (8)

The nth-order correlation signal contains separate contributions
from the single pinholes and a cross-term, caused by constructive
interference and leading to an additional blurring of the image
(Fig. 2b):

GðnÞðrÞ / h2nðd; rÞ þ h2nð�d; rÞ þ 2hnðd; rÞhnð�d; rÞ: (9)

While the scheme in Fig. 1 with the object from Fig. 2a may
resemble the classical double-slit interference experiment, it
contains a lens, which effectively ensures near-field imaging by
compensating any phase difference introduced by the spatial

separation of the considered pinholes. In the resulting image, the
interference is governed by the phases of the input light only and
remains constructive for any separation d if the light state is given
by Eq. (8).
The (n− 1)th-order correlations include only separate single-

pinhole signals and produce a sharper image for n > 2 (Fig. 2c):

Gðn�1ÞðrÞ / h2ðn�1Þðd; rÞ þ h2ðn�1Þð�d; rÞ: (10)

Let us interpret these results in terms of detecting n− 1
photons conditioned by the nth photon detection. According to
Eq. (4), if the photon is detected at the point r of the image plane,
it transforms the state of the remaining photons into

Φ
ð1Þ
n�1ðrÞ

��� E
/ hðd; rÞ n� 1j iþ 0j i�
þ hð�d; rÞ 0j iþ n� 1j i�:

(11)

The state coherence is preserved, while the blurring, caused by
constructive interference, is slightly reduced due to certain "which
path” information provided by the nth photon detection.
If the nth photon is characterized by the transverse momentum

k, jkj> kmax, and does not get into the imaging system aperture,
the effective modified state of the remaining photons is (see
Eq. (5)):

Φ
ð2Þ
n�1ðkÞ

��� E
/ eik�d n� 1j iþ 0j i�
þ e�ik�d 0j iþ n� 1j i�;

(12)

Now, the phase shift between the two modes depends on k and
can lead to destructive interference, which enhances the contrast
of the image. For example, when k ⋅ d= π/2, one has maximally
destructive interference and the detected signal is proportional to
∣h(n−1)(d, r)− h(n−1)(−d, r)∣2 with 100% visibility of the gap
between the two peaks (Fig. 2d). Such an advantageous situation
can be postselected by placing an additional detector in the far-
field outside the aperture in the direction k/∣k∣ from the object.
Discarding the information about the nth photon (measuring

G(n−1)) corresponds to averaging over the possibilities to have the
photon passing to the detector and missing it, and yields the
following mixed state of the remaining photons:

ρn�1 / n� 1j iþ n� 1h j � 0j i� 0h j
þ 0j iþh0j � jn� 1i� n� 1h j: (13)

I.e., the cross-terms with constructive and destructive interference
cancel each other, and the resulting mixed state allows for some
resolution gain over the pure nth photon NOON state.

Application to quantum imaging
To illustrate the possible application of the ideas to practical
quantum imaging, we consider an object represented by a set of
semitransparent slits (Fig. 3a, c). The resolution of the modeled
optical system is limited by diffraction at the lens aperture, which
admits only the photons with the transverse momentum k not
exceeding kmax: jkj � kmax.
We compare the following three strategies: (i) measuring G(n)(r)

along the direction perpendicular to the slits (the signal is
described by Eq. (2)); (ii) measuring G(n−1)(r) at the same points
(Eq. (3)); (iii) measuring coincidence signal G(n−1, 1)(r,Ω) of n− 1
photons detected at the point r of the detection plane and the nth
photon being anywhere in certain region Ω outside the lens
aperture. For the latter case, the signal can be written as

Gðn�1;1Þðr;ΩÞ / R
d2sd2s0AnðsÞAnðs0Þ

´ hn�1ðs; rÞhn�1ðs0; rÞÞgðs� s0Þ; (14)

where

gðs� s0Þ ¼
Z

k2Ω
d2k eik�ðs�s0Þ: (15)
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Integration in Eq. (15) corresponds to detection of the nth
photon by a bucket detector, similarly to multiphoton ghost
imaging23–25. The difference is that the remaining n− 1 photons
do also pass through the investigated object before getting to the
position-resolving detector in our case. The scheme can also be
considered as a generalization of hybrid near-field and far-field
imaging when the entangled photons are analyzed partially in
position space and partially in momentum space. Note, that
G(n−1, 1) does not turn into G(n) even in the limiting case when the
region Ω shrinks to a single point: the first case corresponds to far-
field detection of the nth photon (i.e., Ω defines a point in k-space,
not a particular position r), while in the latter case all the n
photons are localized in the position space by the detector.
Simulated images are shown in Fig. 3b, d. One can clearly see

that (n− 1)-photon detection yields better visual resolution than

measurement of the nth-order coincidences, while G(n−1, 1)

provides additional contrast enhancement. While using a narrower
region Ω may additionally increase the contrast of the image and
the information content per a single detection event (see Fig. 4
below), it also reduces the number of detected coincidences (see
Fig. 5). On the other hand, even a relatively large bucket detector,
used for the shown simulations, is sufficient for noticeable
enhancement of resolution.
Of course, the effective narrowing of the PSF by measuring

correlation functions does not necessarily mean a corresponding
increase in precision of inferring of the analyzed parameters
(positions of the object details, channel characteristics, etc.)18,19.
However, at least for certain imaging tasks (such as, for example, a
cornerstone problem of finding a distance between two point
sources in the far-field imaging), narrowing of the PSF can indeed

Fig. 3 Application of the resolution-enhancement ideas to a realistic setup. Model objects (a, c), imaging scheme for (n− 1)-photon
coincidence conditioned by detecting a photon in the region Ω (e), and simulation results (b, d). Sets of semitransparent slits with
transmission amplitudes 0.5 ÷ 1 (a) and 0.9 ÷ 1 (c) were used as model objects. The signal (G(n)—dotted lines, G(n−1)—dashed lines, G(n−1, 1)—
solid lines) was simulated for the object from panel a, kmaxd ¼ 1, and n= 3 (b) and 4 (d). The detection region for the nth photon is
Ω ¼ fk : kmax � jkj � 2kmaxg. The axis x is directed across the slits. The coordinate x is normalized by the slit size d indicated in plot a.
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lead to an increase of the informational content per measurement,
and to the potentially unlimited resolution with increasing of n19.
To describe the resolution enhancement in a quantitative and

more consistent way, we employ Fisher information. Let the
transmission amplitude of the object be decomposed as
A(s)= ∑μθμfμ(s), where the basis functions fμ(s) can represent
e.g., slit-like pixels for the considered example47. Then the
problem of finding A(s) becomes equivalent to the reconstruction
of the unknown decomposition coefficients θμ. If one has a certain
signal S(r), sampled at the points {ri}, Fisher information matrix
(FIM)58,59, normalized by a single detection event, can be
introduced as

Fμν ¼
X
i

1
SðriÞ

∂SðriÞ
∂θμ

∂SðriÞ
∂θν

� �
=
X
i

SðriÞ: (16)

Here, the "detection event” corresponds to the registration of a
coincidence signal of n or n− 1 photons (depending on the
measurement type) within the specified time frame, rather than
the detection of every single photon.
Cramér-Rao inequality59,60 bounds the total reconstruction error

(the sum of variances of the estimators for all the unknowns {θμ})
by the trace of the inverse of FIM:

Δ2 ¼
X
μ

Δθμ � 1
N
TrF�1; (17)

where N is the number of registered coincidence events. When
the size of the analyzed object features (e.g., the slit size d in Fig.
3a) tends to zero, the bound in Eq. (17) diverges (the effect is
termed "Rayleigh’s curse”). The achievable resolution can, there-
fore, be determined by the feature size d, which TrF�1 starts

Fig. 4 Dependence of the trace of inverse FIM on the normalized slit size d/dR. The results are shown for detection of nth-order correlations
(blue dotted lines), (n− 1)th-order correlations (green dashed lines), and (n− 1)th-order correlations, conditioned by detection of the nth
photon in the region Ω ¼ fk : kmax � jkj � 2kmaxg (black solid lines) and Ω ¼ fk : kmax � jkj � 1:5kmaxg (red dot-dashed lines) for n= 4 (a, b),
3 (c, d), and 2 (e, f). The objects, shown in Fig. 3a (for plots a, c, and e) and Fig. 3c (for plots b, d, and f), were decomposed in terms of 10 basis
functions, representing slit-like pixels with equal widths d. The object size, the basis functions widths, and the step of the signal sampling
points were scaled in the same way with d. Horizontal dotted lines indicate the threshold TrF�1 � Nmax ¼ 105, used for quantification of
resolution. For comparison, panels b, d, f also show (by double-dot-dashed purple lines) the trace of inverse FIM for traditional coherent-light
imaging for detection of 108 photons (instead of a single coincidence event for all other lines).
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growing rapidly with the decrease of d. A more rigorous definition
can be given by specifying a certain reasonable threshold Nmax for
the maximal required number of registered coincidence events N
(e.g., we take Nmax ¼ 105 for further examples) and imposing the
restriction TrF�1 � Nmax (see “Methods” section).
The dependence of the predicted reconstruction error on the

normalized object scale d/dR (where dR ¼ 3:83=kmax is the
classical Rayleigh limit for the considered optical system) is
shown in Fig. 4. The sampling points for the signal are taken with
the step d/2 along a line perpendicular to slits. As expected,
ignoring nth photon and measuring (n− 1)-photon coinci-
dences brings about larger achievable information per measure-
ment, and correspondingly lower errors in object parameter
estimation, yielding (10 ÷ 20)% better resolution for n= 3 and 4.
According to the theoretical predictions, for n= 2 no resolution
increase is observed.
Also, our results confirm that the proposed hybrid scheme is

indeed capable of increasing the resolution for n= 3 and 4 by
conditioned detection of the nth photon. Additional information
that can be gained relative to the measurement of (n− 1)-
photon correlations is about (10 ÷ 15)%. However, that gain
vanishes in the regime of deep superresolution (d ≲ 0.2dR): the
black solid and red dot-dashed lines intersect with the green
dashed one for small d/dR in Fig. 4. The reason for such behavior
is that the effective phase shift, introduced by detection of
the nth photon with the transverse momentum k outside of the
aperture of the imaging system, becomes insufficient for the
resolution enhancement for ∣k∣d≪ 1.
For n= 2, the scheme also can give certain advantages (Fig. 4e,

f), which, however, are not so prominent because they do not
stem from the fundamental requirement of having a better
resolution for G(n−1) than for G(n). Still, taking into account the
difficulties in the generation of 3-photon entangled states50–55, an
experiment with biphotons can be proposed for initial tests of the
approach.
The plots, shown in Fig. 4, represent information per single

coincidence detection event. Therefore, certain concerns about
the rates of such events may arise: waiting for a highly
informative, but very rare event can be impractical. Fig. 5 shows
the ratio of the overall detection probabilities pn−1,1/pn, where
pn−1,1 corresponds to (n− 1)-photon coincidence, conditions by
detection of a photon outside the aperture, and pn describes the
traditional measurement of n-photon coincidences. For a signal S
(ri), the overall detection probability is defined as p= ∑iS(ri) and
represents the denominator of Eq. (16). When plotting Fig. 5, we

do not include the measurement of G(n−1) in the comparison,
because the ratio of probabilities for (n− 1) and n-photon
detection events strongly depends on details of a particular
experiment, such as the efficiency of the detectors.
The rate of (n− 1)-photon coincidences, conditioned by the

detection of a photon outside of the aperture, is indeed 3 ÷ 20
times smaller than the rate of n-photon coincidences. However,
for the considered multi-parametric problem, the "Rayleigh
curse” leads to a very fast decrease of information when the
slit size d becomes smaller than the actual resolution limit, and
the effect of rate difference is almost negligible. For example, for
n= 4, the object, shown in Fig. 3a, and the threshold
TrF�1 � 105, the minimal slit width d for successful resolution
of transmittances equals 0.212dR for the measurement of G(n),
0.170dR for the measurement of G(n−1, 1) with the nth photon
detected in the region Ω ¼ fk : kmax � jkj � 2kmaxg, and 0.177dR
for the same measurement of G(n−1, 1) when the reduced
detection rate is taken into account. Notice, that all the
mentioned values of the resolved feature size d are quite far
beyond the classical resolution limit dR.
At the first glance, the reported percentage of the resolution

enhancement does not look very impressive or encouraging.
However, one should keep in mind that the increase of the
number of entangled photons from n= 2 to n= 3, while requiring
significant experimental efforts, leads to the effective PSF
narrowing just by 22% for the measurement of G(n). The transition
from a 3-photon entangled state to a 4-photon one yields only
15% narrower PSF. Moreover, the actual resolution enhancement
is typically smaller than the relative change of the PSF width18,19,
especially for high orders of the correlations, where it may saturate
completely. The proposed approach provides a similar magnitude
of the resolution increase on the cost of adding a bucket detector
to the imaging scheme, which is much simpler than changing the
number of entangled photons.
A similar concern about the soundness of the results may be

elicited by recalling a simple problem of resolving two-point
sources, commonly investigated theoretically41,43,48. For such a
simple model situation, the error of inferring the distance d
between the sources scales as Δd∝ d−1N−1/241, where N is the
number of detected events. Therefore, to resolve twice smaller
separation of the two sources with the same error, one just needs
to perform a 4 times longer experiment and collect 4N events. The
situation becomes completely different when a more practical
multiparametric problem is considered47: the achievable resolu-
tion becomes practically insensitive to the data acquisition time
(as soon as the number of detected events becomes sufficiently
large). For example, for the situation described by the solid black
line in Fig. 4a, a 100-fold increase of the acquisition time leads to a
14% larger resolution. Moreover, as one can see from the double-
dot-dashed purple lines in Fig. 4b, c, d, traditional coherent-light
imaging with intensity detection does not provide sufficient
information about the object features in the superresolution
regime (d≲ 0.4dR) even for 108-times increase of the number of
detected photons. That observation indicates that appropriately
used entangled photons sources can outperform classical light
sources, which are brighter even by many orders of magnitude.
The effect is especially important for biological samples, vulner-
able to photodestruction.

DISCUSSIONS
We have demonstrated how to enhance the resolution of imaging
with an n-photon entangled state by loosing a photon and
measuring the (n− 1)th-order correlation function instead of the
nth-order coincidence signal. The resolution gain occurs despite
the breaking of entanglement as a consequence of the photon
loss. We have explained the effect in terms of the effective
modification of the remaining photons state when one of the

Fig. 5 Dependence of the overall detection probabilities ratio on
the normalized slit size d/dR (see details in the text). The nth
photon is detected in the region Ω ¼ fk : kmax � jkj � 2kmaxg (solid
black and dashed green lines) or Ω ¼ fk : kmax � jkj � 1:5kmaxg
(dot-dashed red and dotted blue lines) for n= 4. The objects are
shown in Fig. 3a (for solid black and dot-dashed red lines) and Fig.
3c (for dashed green and dotted blue lines).
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entangled photons is lost. Measurement of (n− 1)-photon
coincidences for an n-photon entangled state not only discards
some information carried by the ignored nth photon but also
makes the resulting signal more informative in the considered
imaging experiment. The latter effect prevails for n > 2 and leads
to an increase of the information per measurement and to
decrease of the lower bounds for the object inference errors.
The (n− 1)-photon detection represents a mixture of different

possible outcomes for the discarded nth photon, including its
successful detection at the image plane (resulting in the n-photon
coincidence signal). The information per a single (n− 1)-photon
detection event is averaged over the discussed possibilities and,
for n > 2, is larger than the information for a single n-photon
coincidence event. It means that certain outcomes for the nth
photon provide more information per event than the average
value, achieved for G(n−1). We prove that proposition construc-
tively by proposing a hybrid measurement scheme, which
provides resolution increase relatively to detection of (n− 1)-
photon coincidences. Intentional detection of a photon outside
the optical system, used for imaging of the object, introduces an
additional phase shift and increases the sensitivity of the
measurement performed with the remaining photons. Our
simulations show that the effect can be observed even for n=
2, thus making its practical implementation much more realistic.
We believe that our observation will pave a way for practical
exploitation of entangled states by devising a super resolving
imaging scheme conditioned on detecting photons not only
successfully passing through the imaging system, but also those
missing it.

METHODS
Expressions for field correlation functions
For the imaging setup, shown in Fig. 1, the positive-frequency field
operators E(r) at the detection plane are connected to the operators E0(s)
of the field illuminating the object as

EðþÞðrÞ ¼
Z

d2sEðþÞ
0 ðsÞAðsÞhðs; rÞ: (18)

The nth-order correlation function for the n-photon entangled state
(Eq. 1) is calculated according to the following standard definition:

GðnÞðrÞ ¼ Ψnh j Eð�ÞðrÞ
h in

EðþÞðrÞ
h in

Ψnj i; (19)

where Eð�ÞðrÞ ¼ ½EðþÞðrÞ�þ is the negative-frequency field operator. By
substitution of Eq. (18) into Eq. (19), one can obtain the expression (Eq. 2)
in the Results section.
The (n− 1)th-order correlation function is calculated according to the

expression

Gðn�1ÞðrÞ ¼ hΨnj Eð�ÞðrÞ
h in�1

EðþÞðrÞ
h in�1

jΨni; (20)

which yields Eq. (3) after substitution of Eq. (18).

Effective (n− 1)-photon state
The density operator, describing the effective (n− 1)-photon state
averaged over the possible "fates” of the nth photon, discussed in the
main text, is

ρn�1 ¼ ρ
ð1Þ
n�1 þ ρ

ð2Þ
n�1 þ ρ

ð3Þ
n�1; (21)

where the operators ρ
ðkÞ
n�1 are indexed according to the introduced

possibilities and normalized in such a way that TrρðkÞn�1 is the probability of
the kth "fate”.
According to the approach, discussed in ref. 35, detection of the nth

photon at the position r0 of the detector effectively modifies the states of
the remaining (n− 1) photons in the following way:

Ψ
ð1Þ
n�1ðr0Þ

��� E
/ eðþÞðr0Þ Ψnj i: (22)

Substitution of Eqs. (1) and (18) yields Eq. (4).

If we ignore the information about the position r0 of the photon
detection, the contribution to the averaged density operator (Eq. 21) is

ρ
ð1Þ
n�1 ¼

Z
d2r0 Ψð1Þ

n�1ðr0Þ
��� E

Ψ
ð1Þ
n�1ðr0Þ

D ���: (23)

For the possibility, described by Eq. (5) and corresponding to the nth
photon passage outside the aperture of the imaging system, the
contribution to the averaged density operator (Eq. 21) is

ρ
ð2Þ
n�1 ¼

Z
jkj> kmax

d2k Ψ
ð2Þ
n�1ðkÞ

��� E
Ψ
ð2Þ
n�1ðkÞ

D ���; (24)

where kmax is the maximal transverse momentum transferred by the
optical system: kmax ¼ kR=so ; k is the wavenumber of the light, R is
the radius of the aperture, and so is the distance between the object and
the lens used for imaging.
Calculating integrals in Eqs. (23), (24), and (6), and taking into account

the connection between the PSF shape and kmax (see e.g., ref. 8), one can
obtain Eq. (7) for the effective (n− 1)-photon state.

Model of the point-spread function
For the simulations, illustrated by Figs. 3, 4, and 5, we assume for simplicity
that the magnification of the optical system is equal to 1, neglect the
phase factor in PSF, and use the expression

hðs; rÞ ¼ R
jkj�kmax

d2k eik�ðsþrÞ

¼ 2πk2maxsomb kmax sþ rj jð Þ;
(25)

where somb(x)= 2J1(x)/x, J1(x) is the first-order Bessel function and kmax is
the maximal transverse momentum transferred by the optical system.

Quantification of resolution
Let us assume that a reasonable number of detected coincidence events
N in a quantum imaging experiment is limited by the value Nmax and the
acceptable total reconstruction error (see Eq. (17)) is Δ2≤ 1. Therefore,
Eq. (17) implies the following threshold for the trace of the inverse of FIM:

TrF�1 � NΔ2 � Nmax: (26)

Therefore, one can define the spatial resolution, achievable under the
described experimental conditions, as the minimal feature size d, for which
the condition (Eq. 26) is satisfied.
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