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Hamiltonian simulation in the low-energy subspace
Burak Şahinoğlu1✉ and Rolando D. Somma 1✉

We study the problem of simulating the dynamics of spin systems when the initial state is supported on a subspace of low energy
of a Hamiltonian H. This is a central problem in physics with vast applications in many-body systems and beyond, where the
interesting physics takes place in the low-energy sector. We analyze error bounds induced by product formulas that approximate
the evolution operator and show that these bounds depend on an effective low-energy norm of H. We find improvements over
the best previous complexities of product formulas that apply to the general case, and these improvements are more significant
for long evolution times that scale with the system size and/or small approximation errors. To obtain these improvements, we
prove exponentially decaying upper bounds on the leakage to high-energy subspaces due to the product formula. Our results
provide a path to a systematic study of Hamiltonian simulation at low energies, which will be required to push quantum
simulation closer to reality.
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INTRODUCTION
The simulation of quantum systems is believed to be one of the
most important applications of quantum computers1. Many
quantum algorithms for simulating quantum dynamics exist2–11,
with applications in physics12,13, quantum chemistry14–16, and
beyond17. While these algorithms are deemed efficient and run in
time polynomial in factors such as system size, ongoing work has
significantly improved the performance of such approaches. These
improvements are important to explore the power of quantum
computers and push quantum simulation closer to reality.
Leading Hamiltonian simulation methods are based on a

handful of techniques. A main example is the product formula,
which approximates the evolution of a Hamiltonian H by short-
time evolutions under the terms that compose H4,5,18,19. Each such
evolution can be decomposed as a sequence of two-qubit gates12

to build up a quantum algorithm. Product formulas are attractive
for various reasons: they are simple, intuitive, and their
implementations may not require ancillary qubits, which contrasts
other sophisticated methods as those in refs. 7,8. Product formulas
are also the basis of classical simulation algorithms including path-
integral Monte Carlo20.
Recent works provide refined error bounds of product

formulas21–24. These works regard various settings, such as when
H is a sum of spatially local terms or when these terms satisfy Lie-
algebraic properties. Nevertheless, while these improvements are
important and necessary, a number of shortcomings remain. For
example, the best-known complexities of product formulas scale
poorly with the norm of H or its terms, which can be very large or
unbounded, even when the evolved quantum system does not
explore high-energy states. These complexities may be improved
under physically relevant assumptions on energy scales. In fact,
numerical simulations of few spin systems suggest that product
formulas applied to low-energy states lead to much lower errors
than that of the worst case. Figure 1, for example, shows these
errors for a 2 × 6 spin-1/2 Heisenberg model, suggesting that a
complexity improvement is possible under a low-energy assump-
tion on the initial state. Simulation results for related models
present similar features. Nevertheless, our inability of simulating
larger quantum systems with classical computers efficiently

demands for analytical tools to actually demonstrate strict
improvements on complexities of product formulas that apply
generally.
To this end, we investigate the Hamiltonian simulation problem

when the initial state is supported on a low-energy subspace. This
is a central problem in physics that has vast applications,
including the simulation of condensed matter systems for
studying quantum phase transitions25, the simulation of quantum
field theories13, the simulation of adiabatic quantum state
preparation26,27, and more. We analyze the complexities of
product formulas in this setting and show significant improve-
ments with respect to the best-known complexity bounds that
apply to the general case.

RESULTS
Overview
Our main result is that, for a local Hamiltonian on N spins H= ∑lHl

with Hl ≥ 0, the error induced by a pth order product formula is
OððΔ0sÞpþ1Þ, where s is a (short) time parameter and Δ0 is an
effective low-energy norm of H. This norm depends on Δ, which is
an energy associated with the initial state, but also depends on s
and other parameters that define H. The best-known error bounds
for product formulas that apply to the general case depend on the
∥Hl∥’s23. (Throughout this paper, ∥.∥ refers to the spectral norm.)
Thus, an improvement in the complexity of product formulas is
possible when Δ0 � maxl kHlk, which can occur for sufficiently
small values of Δ and s. Such values of s appear in low-order
product formulas (e.g., first order) or, for larger order, when the
overall evolution time t is sufficiently large and/or the desired
approximation error ε is sufficiently small. We summarize some of
the complexity improvements in Table 1.
To obtain our results, we introduce the notion of effective

Hamiltonians that are basically the Hl’s restricted to act on a low-
energy subspace. The relevant norms of these effective operators
is bounded by Δ0. One could then proceed to simulate the
evolution using a product formula that involves effective
Hamiltonians and obtain an error bound that matches ours. A
challenge is that these effective Hamiltonians are generally
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nonlocal and difficult to compute. Methods such as the local
Schrieffer–Wolff transformation28,29 work only at the perturbative
regime and numerical renormalization group methods for spin
systems30,31 have been studied only for a handful of models, while
a general analytical treatment does not exist. Thus, efficient
methods to simulate time evolution of effective Hamiltonians are
lacking. We address this challenge by showing that evolutions
under the effective Hamiltonians can be approximated by
evolutions under the original Hl’s with a suitable choice of Δ0.
This result is key in our construction and may find applications
elsewhere.
Our main contributions are based on a number of technical

lemmas and corollaries that are given in “Methods” and proven in
detail in Supplementary Information.

Product formulas and effective operators
For a time-independent Hamiltonian H ¼ PL

l¼1 Hl , where each Hl

is Hermitian, the evolution operator for time t is U(t)= e−itH.
Product formulas provide a way of approximating U(t) as a
product of exponentials, each being a short-time evolution under

some Hl. For p > 0 integer and s 2 R, a pth order product formula
is a unitary

WpðsÞ ¼ e�isqHlq � � � e�is2Hl2 e�is1Hl1 ; (1)

where each sj 2 R is proportional to s and 1 ≤ lj ≤ L. The number
of terms in the product may depend on p and L, and we assume
L ¼ Oð1Þ, q ¼ Oð1Þ. (The more general case is analyzed in
Supplementary Information.) We define jsj ¼ Pq

j¼1 jsjj and also
assume jsj ¼ OðjsjÞ. The pth order product formula satisfies
kUðsÞ �WpðsÞk ¼ OððhjsjÞpþ1Þ, where h ¼ maxl kHlk4. One way to
construct Wp(s) is to apply a recursion in refs. 18,19. These are
known as Trotter–Suzuki approximations and satisfy the above
assumptions.
By breaking the time interval t into r steps of sufficiently small

size s, product formulas can approximate U(t) as UðtÞ � ðWpðsÞÞr .
We will refer to r as the Trotter number, and this number will
define the complexity of product formulas that simulate U(t)
within given accuracy. Note that the total number of terms in the
product formula is actually qMr ¼ OðMrÞ, where M is the number
of terms in the product decomposition of each e�isjHlj .
Known error bounds for product formulas that apply to the

general case grow with h and can be large. However, error bounds
for approximating the evolved state UðtÞ ψj i may be better under
the additional assumption that ψj i is supported on a low-energy
subspace. We then analyze the case where the initial state satisfies
Π�Δ ψj i ¼ ψj i, where Π≤Λ is the projector into the subspace
spanned by eigenstates of H of energies (eigenvalues) at most Λ ≥
0. We assume Hl ≥ 0. Our results will be especially useful when Δ/h
vanishes asymptotically, and Δ will specify the low-energy
subspace.
The notion of effective operators will be useful in our analysis.

Given a Hermitian operator X and Δ0 � Δ, the corresponding
effective operator is X ¼ Π�Δ0XΠ�Δ0 , which is also Hermitian. We
also define the unitaries UðsÞ ¼ e�isH and WpðsÞ by replacing the
Hl’s by Hl ’s in Wp(s). Note that h ¼ maxl kHlk � Δ0 and
UðtÞ ψj i ¼ UðtÞ ψj i. Then, using the known error bound for product
formulas, we obtain kðUðsÞ �WpðsÞÞ ψj ik ¼ OððΔ0sÞpþ1Þ. This error

Fig. 1 Worst case vs. low-energy Trotter errors: errors induced by product formulas for a 2 × 6 Heisenberg spin-1/2 model. The
Hamiltonian is H=−∑〈i, j〉XiXj+ YiYj+ ZiZj, where Xi, Yi, and Zi are the Pauli operators for the ith spin, and H= H1+ H2, where H1 and H2 are the
interaction terms represented by blue and red bonds, respectively. a The evolution operator for time s, U(s)= e−isH, is approximated by the first
order product formula W1ðsÞ ¼ e�isH1e�isH2 . The plot shows the largest approximation errors when acting on various low-energy subspaces
associated with increasing energies, labeled by n= 1,50, 150, 200, and in the worst case. b Similar results for when the evolution operator
U(s)= e−isH is approximated by the second order product formula W2ðsÞ ¼ e�isH1=2e�isH2e�isH1=2.

Table 1. Improvements of low-energy simulation: comparison
between the best-known complexity23 and the complexity of low-
energy simulation for pth order product formulas.

Order Previous result Low-energy simulation

p= 1 O τ2N
ε

� �
~O τ2

ε

� �
þO τ4=3N2=3

ε1=3

� �

p= 2 O τ3=2N1=2

ε1=2

� �
~O τ3=2

ε1=2

� �
þO τ6=5N3=5

ε1=5

� �

p= 3 O τ4=3N1=3

ε1=3

� �
~O τ4=3

ε1=3

� �
þO τ8=7N4=7

ε1=7

� �

Results show the Trotter number for constant Δ and local Hamiltonians on
N spins with constant degree and strength bounded by J, and τ= ∣t∣J. ε is the
approximation error. The ~O notation hides polylogarithmic factors in τ/ε.
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bound is a significant improvement over the general case if
Δ0 � h, which may occur when Δ≪ h. However, product
approximations of U(t) require that each term is an exponential
of some Hl, which is not the case in WpðsÞ. We will address this
issue and show that the improved error bound is indeed attained
by Wp(s) for a suitable Δ0.

Local Hamiltonians
We are interested in simulating the time evolution of a local N-spin
system on a lattice. Each local interaction term in H is of strength
bounded by J and involves, at most, k spins. We do not assume
that these interactions are only within neighboring spins but
define the degree d as the maximum number of local interaction
terms that involve any spin. Next, we write H ¼ PL

l¼1 Hl , where
each Hl is a sum of M local, commuting terms32 and LM ≤ dN. Each
e�isHl in a product formula can be decomposed as products of
M evolutions under the local, commuting terms with no error.
These local Hamiltonians appear as important condensed

matter systems, including gapped and critical spin chains,
topologically ordered systems, and models with long-range
interactions33–36. For example, for a spin chain with nearest
neighbor interactions, L= 2 and each Hl may refer to interaction
terms associated with even and odd bonds, respectively. In this
case, h ¼ OðNÞ. We will present our results for the case k ¼ Oð1Þ
and d ¼ Oð1Þ in the main text, which further imply L ¼ Oð1Þ32.
Nevertheless, explicit dependencies of our results in k, d, L, and
other parameters that specify H can be found in Supplementary
Note 4.
Table 2 summarizes the relevant parameters for the simulation

of local Hamiltonians with product formulas.

Main result
Theorem 1 Let H ¼ PL

l¼1 Hl be a k-local Hamiltonian as above,
Hl ≥ 0, Δ ≥ 0, 0 ≤ J∣s∣ ≤ 1, and Wp(s) a pth order product formula as in
Eq. (1). Then,

kðUðsÞ �WpðsÞÞΠ�Δk ¼ OððΔ0sÞpþ1Þ ; (2)

where Δ0 ¼ Δþ β1Jlog ðβ2=ðJjsjÞÞ þ β3J
2Njsj and the βi’s are

positive constants, β2 ≥ 1.
The proof of Thm. 1 is in Supplementary Note 3 and we provide

more details about it in the next section, but the basic idea is as
follows. There are two contributions to Eq. (2) in our analysis.
One comes from approximating the evolution operator with a
product formula that involves the effective Hamiltonians and, as
long as Δ0 � Δ, this error is OððΔ0jsjÞpþ1Þ, as explained. The other
comes from replacing such a product formula by the one with the
actual Hamiltonians Hl, i.e., Wp(s). However, unlike Hl , the evolution
under each Hl allows for leakage or transitions from the low-
energy subspace to the subspace of energies higher than Δ0. In
Supplementary Information, we use a result on energy

distributions in ref. 37 to show that this leakage can be bounded
and decays exponentially with Δ0. Thus, this effective norm
depends on Δ and must also depend on s, as the support on high-
energy states can increase as s increases, resulting in the linear
contribution to Δ0 in Thm. 1.
The log ðβ2=ðJjsjÞÞ factor in Δ0 only becomes relevant when

∣s∣ ≪ 1. This term appears in our analysis due to the requirement
that both contributions to Eq. (2) discussed above are of the same
order. Thus, as s→ 0, we require Δ0 ! 1 to make the error due to
leakage zero, which is unnecessary and unrealistic. This term plays
a mild role when determining the final complexity of a product
formula, as the goal will be to make s as large as possible for a
target approximation error. It may be possible that this term
disappears in a more refined analysis.
Let r= t/s be the Trotter number, i.e., the number of steps to

approximate U(t) as ðWpðsÞÞr . Since U(s)Π≤Δ= Π≤ΔU(s)Π≤Δ and if
∥(U(s)−Wp(s))Π≤Δ∥≤ϵ, the triangle inequality implies kðUðtÞ � ðWp

ðsÞÞrÞΠ�Δk � 2rϵ. Thus, for overall target error ε > 0, it will suffice
to satisfy kðUðsÞ �WpðsÞÞΠ�Δk ¼ Oðεs=tÞ. This condition and
Thm. 1 can be used to determine r as follows.
Each term of Δ0 in Thm. 1 can be dominant depending on s

and Δ. First, we consider the first two terms, and determine a
condition in s to satisfy ððΔþ JÞjsjÞpþ1 ¼ Oðεs=tÞ, by omitting the
log factor. Then, we consider another term and determine a

condition in s to satisfy ðJ2Njsj2Þpþ1 ¼ Oðεs=tÞ. These two
conditions alone can be satisfied with a Trotter number

r0 ¼ O jtjðΔþ JÞð Þ1þ1
p

ε
1
p

þ jtjJ ffiffiffiffi
N

p� �1þ 1
2pþ1

ε
1

2pþ1

0
@

1
A : (3)

Last, we reconsider the second term with log , and we require
ðJlog ð1=ðJjsjÞÞjsjÞpþ1 ¼ Oðεs=tÞ. As the first two conditions are
satisfied with a value for s that is polynomial in N and tJ/ε, this last
condition only sets a correction to the first term in r0 in Eq. (3) that
is polylogarithmic in ∣t∣J/ε. Thus, the overall complexity of
the product formula for local Hamiltonians is given by Eq. (3),
where we need to replace O by ~O to account for the last
correction. Note that the number of terms in each Wp(s) is
constant under the assumptions and r is proportional to the total
number of exponentials in ðWpðsÞÞr .
We give a general result on the complexity of product formulas

that provides r as a function of all parameters that specify H in
Thm. 2 of Supplementary Note 4.

The condition Hl ≥ 0
The error bounds for product formulas used in Thm. 1 depend on
the norm of the effective Hamiltonians Hl . The assumption Hl ≥ 0
will then assure that kHlk � Δ0, which is sufficient to demonstrate
the complexity improvements in Eq. (3).
In general, Hl ≥ 0 can be met after a simple shifting Hl→ Hl+ al,

and the assumption seems irrelevant. However, this shifting could
result in a value of Δ (or Δ0) that scales with some parameters such
as the system size N. In this case, the error bound in Thm. 1 would
be comparable to that of the worst case (without the low-energy
assumption) and would not provide an advantage.
Nevertheless, for many important spin Hamiltonians, the

assumption Hl ≥ 0 is readily satisfied. The Heisenberg model of
Fig. 1 is an example, where Hl is a sum of terms like 1− XiXj− YiYj
− ZiZj ≥ 0. More general (anisotropic) Heisenberg models as well as
the so-called frustration-free Hamiltonians that are ubiquitous in
many-body physics also satisfy the assumption38,39, where our
results directly apply. For this class of models, the ground-state
energy is zero. This class contains interesting low-lying states in
the subspace where, e.g., Δ ¼ Oð1Þ.
We provide more details on potential complexity improvements

for the general case (Hl≱ 0) at the end of Supplementary Note 3.

Table 2. Notation: the parameters of the Hamiltonian (local and
constant degree) and product formula simulation.

Symbol Meaning

J Hamiltonian term strength

Δ Low-energy parameter

Δ0ð� ΔÞ Effective low-energy norm

N Number of spins

t Total evolution time

r Number of Trotter steps

s =t/r, unit Trotter time

ε Total simulation error
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DISCUSSIONS
The best previous result for the complexity of product formulas
(Trotter number) for local Hamiltonians of constant degree is
Oðτ1þ1=pN1=p=ε1=pÞ, with τ= ∣t∣J23. Our result gives an improve-
ment over this in various regimes. Note that, a general
characteristic of our results is that they depend on Δ, which is
specified by the initial state. Here we assume that Δ is a constant
independent of other parameters that specify H. The comparison
for this case is in Table 1. For p= 1, we obtain a strict
improvement of order N1/3 over the best-known result. For higher
values of p, the improvement appears for larger values of τ/ε that
may scale with N, e.g., τ=ε ¼ ~ΩðNp�2þ1=ðpþ1ÞÞ. In Supplementary
Note 5, we provide a more detailed comparison between our
results and the best previous results for product formulas as a
function of Δ and other parameters that specify H.
A more recent method for Hamiltonian simulation uses a

truncated Taylor series expansion of e�iHt=r � Ur ¼
PK

k¼0ð�iHt=rÞk=k!7. Here, r is the number of “segments”, and U(t) is
approximated as ðUrÞr . A main advantage of this method is that,
unlike product formulas, its complexity in terms of ε is logarithmic, a
major advantage if precise computations are needed. The complex-
ity of this method for the low-energy subspace of H can only be
mildly improved. A small Δ allows for a truncation value K that is
smaller than that for the general case7. Nevertheless, the complexity
of this method is dominated by r, which depends on a certain 1-
norm ∥H∥1 of H that is independent of Δ. Furthermore, quantum
signal processing, an approach for Hamiltonian simulation also
based on certain polynomial approximations of U(t), was recently
considered for simulation in the low-energy subspace40. While the
low-energy constraint may also result in some mild (constant)
improvement, the overall complexity of quantum signal processing
also depends on ∥H∥1. For local Hamiltonians where k; d ¼ Oð1Þ,
and for constant Δ, the overall complexity of these methods is
~OðτN2Þ, where we disregarded logarithmic factors in τ, N, and 1/ε.
Our results on product formulas provide an improvement over these
methods in various regimes, e.g., when ε is constant.
The obtained complexities are an improvement as long as the

energy Δ of the initial state is sufficiently small. As we discussed,
the assumption Hl ≥ 0 was used and, while our results readily
apply to a large class of spin models, it may be in conflict with
ensuring small values of Δ in some cases. It will be important to
understand this in more detail (see Supplementary Note 3), which
may be related to the fact that, for general Hamiltonians (Hl≱ 0),
an improvement in the low-energy simulation could imply an
improvement in the high-energy simulation by considering −H
instead. Indeed, certain spin models possess a symmetry that
connects the high-energy and low-energy subspaces via a simple
transformation. Whether such “high-energy” simulation improve-
ment is possible or not remains open. In addition, known
complexities of product formulas are polynomial in 1/ε. This is
an issue if precise computations are required as in the case of
quantum field theories or QED. Whether this complexity can be
improved in terms of precision as in refs. 6–8,41 is also open.
Our work is an initial attempt to this problem. We expect to

motivate further studies on improved Hamiltonian simulation
methods in this setting by refining our analyses, assuming other
structures such as interactions that are geometrically local, or
improving other simulation approaches.

METHODS
Leakage to high-energy states
A key ingredient for Thm. 1 is a property of local spin systems, where the
leakage to high-energy states due to the evolution under any Hl can be
bounded. Let Π>Λ0 be the projector into the subspace spanned by eigenstates
of energies greater than Λ0 . Then, for a state ϕj i that satisfies Π�Λ ϕj i ¼ ϕj i,
we consider a question on the support of e�isHl ϕj i on states with energies
greater than Λ0 . This question arises naturally in Hamiltonian complexity and

beyond, and Lemma 1 below may be of independent interest. A general-
ization of this lemma will allow one to address the Hamiltonian simulation
problem in the low-energy subspace beyond spin systems.
Lemma 1 (Leakage to high energies). Let H ¼ PL

l¼1 Hl be a k-local
Hamiltonian of constant degree as above, Hl ≥ 0, and Λ0 � Λ � 0. Then, 8 s 2
R and ∀ l,

kΠ>Λ0e�isHlΠ�Λk � e�α1ðΛ0�ΛÞ=J eα2JjsjN � 1
� �

; (4)

where α1 and α2 are positive constants.
The proof is in Supplementary Note 1. It follows from a result in ref. 37 on

the action of a local interaction term on a quantum state of low-energy, in
combination with a series expansion of e�isHl . While the local interaction
term could generate support on arbitrarily high-energy states, that support
is suppressed by a factor that decays exponentially in Λ0 � Λ.
Another key ingredient for proving Thm. 1 is the ability to replace

evolutions under the Hl’s in a product formula by those under their
effective low-energy versions (and vice versa) with bounded error. This is
addressed by Lemma 2 below, which is a consequence of Lemma 1. The
proof is in Supplementary Note 2, where we also provide tighter bounds
that depend on Δ0 .
Lemma 2 Let H ¼ PL

l¼1 Hl be a k-local Hamiltonian of constant degree as
above, Hl ≥ 0, and Δ0 � Λ0 � Λ � 0. Then, 8 s 2 R and ∀l,

kΠ�Λ0 ðe�isHl � e�isHl ÞΠ�Λk � e�α1ðΛ0�ΛÞ=Jðeα2JjsjN � 1Þ (5)

and

kΠ>Λ0e�isHlΠ�Λk � 3e�α1ðΛ0�ΛÞ=Jðeα2JjsjN � 1Þ ; (6)

where α1 and α2 are positive constants.

Relevance to the main result
The consequences of these lemmas for Hamiltonian simulation are many-
fold and we only sketch those that are relevant for Thm. 1. Consider any
product formula of the form W ¼ Qq

j¼1 e
�isjHlj . Then, there exists a

sequence of energies Λq≥…≥Λ0= Δ such that the action of W on the
initial low-energy state ψj i can be well approximated by that of WΛ ¼Qq

j¼1 Π�Λj e
�isjHlj on the same state. Furthermore, each Π�Λj e

�isjHlj inWΛ can

be replaced by Π�Λj e
�isjHlj and later by e�isjHlj within the same error order,

as long as Λq � Δ0 .
In particular, for sufficiently small evolution times sj and Δ≪ h, the

resulting effective norm satisfies Δ0 � h for local Hamiltonians. This is
formalized by several corollaries in Supplementary Note 3. Starting fromW,

we can construct the product formula W ¼ Qq
j¼1 e

�isjHlj . Lemmas 1 and 2
imply that both product formulas produce approximately the same state
when acting on ψj i, for a suitable choice of Δ0 as in Thm. 1. If W is a
product formula approximation of UðsÞ ¼ e�isH , it follows that
UðsÞ ψj i ¼ UðsÞ ψj i � W ψj i � W ψj i.
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All relevant data used for Fig. 1 are available from the authors.

CODE AVAILABILITY
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