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Quantum Zeno effects across a parity-time symmetry breaking
transition in atomic momentum space
Tao Chen1, Wei Gou 1, Dizhou Xie1, Teng Xiao 1, Wei Yi 2,3, Jun Jing4✉ and Bo Yan1,5,6✉

We experimentally study quantum Zeno effects in a parity-time (PT) symmetric cold atom gas periodically coupled to a reservoir.
Based on the state-of-the-art control of inter-site couplings of atoms in a momentum lattice, we implement a synthetic two-level
system with passive PT symmetry over two lattice sites, where an effective dissipation is introduced through repeated couplings to
the rest of the lattice. Quantum Zeno (anti-Zeno) effects manifest in our experiment as the overall dissipation of the two-level
system becoming suppressed (enhanced) with increasing coupling intensity or frequency. We demonstrate that quantum Zeno
regimes exist in the broken PT symmetry phase, and are bounded by exceptional points separating the PT symmetric and PT
broken phases, as well as by a discrete set of critical coupling frequencies. Our experiment establishes the connection between PT-
symmetry-breaking transitions and quantum Zeno effects, and is extendable to higher dimensions or to interacting regimes, thanks
to the flexible control with atoms in a momentum lattice.
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INTRODUCTION
Coherent evolution of a quantum system can be frozen when
frequently interrupted by measurements or perturbations. Such a
phenomenon, famed as the quantum Zeno effect, has been
experimentally observed in various physical systems1–5, and has
found widespread utilities in quantum information6–16 and
quantum simulation17–21. In a complementary fashion, with an
appropriate repetition rate of measurements, the evolution of the
system can also be accelerated under what is known as the anti-
Zeno effect22. Intriguingly, both quantum Zeno and anti-Zeno
effects are alternatively accessible through continuous strong
couplings or fast unitary kicks3,17,23 that couple a system to an
auxiliary Hilbert space. With the auxiliary Hilbert space playing the
role of environment, these processes give rise to dissipative
system-reservoir couplings, under which the time evolution of the
system is effectively driven by a non-Hermitian Hamiltonian. Since
a dissipative system under non-unitary evolution driven by a non-
Hermitian Hamiltonian is not norm-preserving and necessarily
decays, the quantum (anti-)Zeno effects therein manifest as the
suppression (enhancement) of decay.
Although evidence of quantum Zeno effects have been

theoretically demonstrated and experimentally observed in non-
Hermitian settings24,25, surprisingly little is discussed on its
interplay with parity-time (PT) symmetry, despite the latter being
a ubiquitous property of non-Hermitian systems while holding
great promise for future applications26–28. A PT symmetric, non-
Hermitian system possesses two distinct phases: the parity-time
symmetric (PTS) phase, with entirely real eigenenergy spectrum;
and the parity-time broken (PTB) phase, where eigenenergies are
complex in general. The two phases are separated by exceptional
points, with coalescing eigenstates and eigenenergies. While
quantum Zeno effects naturally emerge in the deep PTB regime
that can be mapped to an open system possessing continuous

and strong coupling with a dissipative reservoir29, the fate of
quantum Zeno (anti-Zeno) effects is less well known in the PTS
regime or near exceptional points, both of which typically occur at
much smaller dissipation strengths29–31. A very recent theoretical
study shows that exceptional points of a PT symmetric
Hamiltonian also mark the boundary between quantum Zeno
and anti-Zeno regimes32, suggesting a deep connection between
the two previously independent fields of study. Here we
experimentally confirm such a connection in a PT symmetric,
synthetic two-level system, embedded in a momentum lattice of
cold atoms.

RESULTS
PT symmetry breaking transitions in a dissipative two-level
system
We focus on a two-level system under time-periodic dissipation32,
as illustrated in Fig. 1a. The time-dependent Hamiltonian is

H=_ ¼ � iγðτÞ
2

Iþ tσx þ
iγðτÞ
2

σz; (1)

where I and σx,z are the identity and Pauli matrices respectively, τ
is the evolution time, and t is the inter-state coupling rate. The
time-periodic dissipation rate γ is given by

γðτÞ ¼
γ0 jT � τ < jT þ τ0

0 jT þ τ0 � τ < ðj þ 1ÞT

�
; (2)

where j 2 Z, the modulation period T= 2π/Ω with Ω the
modulation frequency, γ0 characterizes the modulation intensity,
and τ0 is the duty time interval with nonzero γ in each cycle;
see Fig. 1b.
Hamiltonian (1) is passive PT symmetric, in that it is purely

dissipative, but is directly related to the standard PT symmetric
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Hamiltonian �hϵ± with balanced gain and loss. Explicitly,
PT HPTPT �1 ¼ HPT , with the PT symmetry operator PT ¼ σxK
where K is complex conjugation. Since PT symmetry of H is
determined by the imaginary parts of the quasienergies _ϵ± of
the corresponding Floquet Hamiltonian31,32, we adopt a dimen-
sionless parameter λ ¼ jImðϵþ � ϵ�Þj=t to characterize the PT-
symmetry breaking transition. Here e�iϵ± T=_ are eigenvalues of the

non-unitary time-evolution operator U ¼ T e�i
R T

0
HðτÞ=_dτ , where

T is the time-ordering operator. For λ= 0, the system lies in the
PTS phase, while λ > 0 corresponds to a PTB phase.
Figure 1c shows a numerically calculated phase diagram with a

fixed τ0t. The white PTS region is separated into several blocks
(marked as Mj), by a series of critical modulation frequencies Ωj=
2t/j (j 2 Nþ) at which the PTS phase vanishes and PT-symmetry
breaking is at its maximum. The colored PTB regimes are further
divided by the critical modulation frequencies into Lj and V j

regions, respectively, corresponding to quantum Zeno and anti-
Zeno regimes, as we explicitly demonstrate later. For any fixed

Ω ≠Ωj, a PTS to PTB transition (Mj ! Lj or Mj ! V jþ1) is crossed
when increasing γ0 from weak to strong. However, for a fixed γ0, the
PTS and PTB phases alternate (Mj ! Lj ! V j ! Mj�1 !
Lj�1 ! � � �) with increasing modulation frequency Ω. While the
phase diagram is distinct from that of PT symmetric systems under a
continuous dissipation29, a crucial observation is that quantum Zeno
regimes exist in the PTB phases, and are bounded by critical
frequencies, as well as by exceptional points pertaining to the PT
symmetry breaking transitions.

Experimental implementation
To experimentally simulate the non-unitary dynamics driven by
Hamiltonian (1), we embed the dissipative Hamiltonian (1) into a
larger Hilbert space composed of atomic momentum states. As
illustrated in Fig. 2a, a momentum lattice is generated by
imposing multiple pairs of counter-propagating, far-detuned
Bragg lasers (with the wavelength λ0= 1064 nm) on a
Bose–Einstein condensate (BEC) of ~10587Rb atoms in a weak

Fig. 1 PT phase diagram. a Schematic illustration of the dissipative two-level system under Hamiltonian (1). b The loss rate γðτÞ in panel (a) is
time-periodic with a square-wave modulation. The modulation period T ¼ 2π=Ω (Ω is the modulation frequency), and γðτÞ ¼ γ0 during the
duty time interval ½0; τ0�. c Theoretical phase diagram in the Ω� γ0 plane. Color contour shows the dimensionless parameter λ (see main text
for definition). Here we set τ0t=ð2πÞ ¼ 0:1. Regions with vanishing λ correspond to the PTS phase (Mj), while the colored regions (Lj and V j)
correspond to the PTB phase. The horizontal dashed lines indicate critical coupling frequencies separating the Lj (quantum Zeno) and V j
(quantum anti-Zeno) regimes.

Fig. 2 Realization of a dissipative two-level system in momentum-state lattice. a Schematic of the experimental setup. A Bose–Einstein
condensate interacts with a pair of counter-propagating Bragg lasers in an optical dipole trap. The beam propagating along the −x direction
contains multiple frequency components (ωj with j ¼ 1; 2; :::) whose intensities and frequencies can be precisely controlled (see Supplemental
Information). b Each Bragg laser pair fωþ;ωng triggers a resonant two-photon Bragg transition, coupling two neighboring momentum states
jpn�1i $ jpni along the momentum lattice. c The resulting 8-site momentum lattice is mapped into a dissipative two-level system with
tunable loss rate γðτÞ, by treating the sites fj0i; j1ig as the system, and jn � 2i as a reservoir.
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optical dipole trap33–35. The frequencies of the Bragg lasers are
carefully designed to couple 8 discrete momentum states
pn ¼ 2n�hk(k= 2π/λ0 and n= 0, 1,...7), which form a synthetic
lattice of finite size, with individually tunable Bragg-assisted
tunneling strength tn between adjacent sites n� 1j i and nj i; see
Fig. 2b, c. A unitary kick is then introduced through a square-wave
modulation t2= tz(τ) for the inter-site coupling 1j i $ 2j i. Con-
sistent with Eq. (2), tz(τ)= t0 for jT ≤ τ < jT+ τ0, while vanishes for
other time intervals. Treating momentum-lattice sites n � 2j i as a
reservoir (within which the coupling strength tn>2= t), we find
that dynamics within the two-dimensional subspace spanned by
f 0j i; 1j ig to be dissipative, and effectively driven by Hamiltonian
(1) with γ0 � t20=t

36. While the above expression of γ0 is
perturbatively valid for t0≪ t, we find it capable of capturing
the dissipative properties qualitatively well at short evolution
times even for t0 ~ t. As such, we implement an effectively
dissipative two-level system in momentum space, whose dissipa-
tion originates from unitary kicks that, with kick frequency Ω and
intensity γ0, periodically couple the system with a reservoir.
We study both the PT symmetry breaking transition and the

quantum Zeno (anti-Zeno) effects through the dissipative
dynamics. Specifically, we initialize the atoms in the state 0j i,
and let them evolve for a short time τe, before applying a time-of-
flight image to record the atomic probability distribution Pn for
each momentum lattice site, normalized by the total atom
population over the momentum lattice (see Methods). Under
the passive PT symmetric Hamiltonian (1), the PTS and PTB phases
can be dynamically differentiated by the corrected probability31

Pc
s ¼ ðP0 þ P1Þ exp γ0τ0

τe
T

� �
; (3)

which reflects the time evolution of the squared state norm within
the synthetic subspace driven by the Hamiltonian HPT. It follows

that (see middle panels in Fig. 3), Pc
s should be on the order of

unity in the PTS phase, while it should exponentially grow with
time in the PTB phase. To further characterize quantum Zeno and
anti-Zeno regimes, we probe the effective loss rate γ via

e�γτe=2 ¼ 1� Pr ; (4)

where Pr is the total population loss of the dissipative two-level
system during the time evolution up to τe, with Pr ¼

P
n�2Pn. As

we detail in the Supplementary Information, while quantum Zeno
and anti-Zeno effects are typically defined as the change in decay
of a given unstable state rather than that of the whole system, the
effective loss rate γ extracted from Eq. (4) constitutes a reasonably
good indicator of the quantum Zeno to anti-Zeno transition (as
well as the PT phase transition), as long as τe is sufficiently long.
While we typically fix τe to be two or three modulation periods,
limited by both the finite size of the reservoir and the
decoherence time of the system25,37, it is already long enough
to reveal the transition point in our experiment.

Quantum Zeno effect across PT phase transitions
In Fig. 3a, we show the experimentally constructed corrected
probability Pc

s and the effective loss rate γ across the PT phase
transition M0 ! L0 at a high kick frequency Ω/t= 10 and with
increasing kick intensity γ0. The corrected probability (middle
panel) becomes exponentially large beyond the exceptional point
at γ0/t ~ 2 (dash-dotted vertical line from upper panel). In the PTS
(PTB) phase M0 (L0), the effective loss rate of the synthetic two-
level system increases (decreases) with increasing γ0 (see lower
panel), indicating quantum anti-Zeno (Zeno) regime. The effective
loss rate γ peaks near the exceptional point, consistent with the
theoretical prediction that the quantum Zeno to anti-Zeno
transition should coincide with the PTB-PTS transition.

Fig. 3 Observation of the correspondence between quantum (anti-)Zeno effects and the PT phases. Here by varying the kick parameters,
the PT phases and (anti-)Zeno effects are respectively indicated by numerically calculated dimensionless parameter λ (upper panel), measured
corrected Probability Pc

s (middle panel), and the measured effective loss rate γ (lower panel). a Dependence of λ, Pc
s and γ on the kick intensity

γ0 under a large kick frequency Ω/t= 10. The exceptional point is at γ0/t= 2 (dash-dotted line). b Dependence of λ, Pc
s and γ on during the

duty time under a small kick frequency Ω/t = 2.5. The exceptional point is at γ0/t= 2.8 (dash-dotted line). c Dependence of λ, Pc
s and γ on the

kick frequency Ω with a fixed γ0/t ∼ 9 . The evolution τe = 3T for panel (a), while τe = 2T for panels (b) and (c). For all experiments, we take t =
2π × 1.03(2) kHz, and the duty time is τ0t/(2π) = 0.1. In panels (a) and (b), we vary γ0 by choosing different values of t0. The solid (dashed) lines
in the middle panels are numerical simulations with the experimentally applied τe (a longer τe = 10T), while the dashed (solid) lines in the
lower panels are numerical simulations with Hamiltonian (1) (an effective Hamiltonian including higher-order, non-resonant coupling terms;
see Methods). The vertical dash-dotted line in panel (c) indicates the critical kick frequency Ω1 = 2t. All error bars here indicate one standard
deviation from multiple measurements.
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However, such is not the case at lower kick frequencies. As
illustrated in Fig. 3b, when γ0 is tuned at a fixed Ω/t= 2.5, γ increases
monotonically across the transition M0 ! V1 at γ0/t= 2.8 (dash-
dotted line), suggesting both the PT symmetric M0 and the PT
broken V1 belong to the quantum anti-Zeno regime. Note that at
the critical kick frequencies, for instance Ω1= 2t, γ also increases
with increasing γ0. Thus, quantum anti-Zeno effects survive at the
boundaries between V j and Lj in the PTB phase.
Apart from tuning γ0, both the PT-symmetry breaking transition

and quantum Zeno to anti-Zeno transition can be crossed by
changing the kick frequency, which amounts to traversing the
phase diagram Fig. 1 vertically. Figure 3c shows the measured
γ across multiple PT phase transitions by increasing Ω with a fixed
γ0/t ~ 9. The measured effective loss rate γ peaks near the PT-
symmetry phase boundary between Mj and Lj , consistent with
the coincidence of the two transitions according to the theoretical
phase diagram. Furthermore, a local minimum in γ is found near
the critical kick frequency Ω1= 2t (lower panel), where a “slow
mode,” i.e., the eigenstate with the smaller imaginary eigenvalue,
dominates the dynamics32. We emphasize that the occurrence of
quantum anti-Zeno effect in the PTB regime is unique to slow
modulations. For fast modulations (Ω/t≫ 1, where the transition
M0 ! L0 lies), increasing the kick rate is similar to enlarging the
dissipation rate in the continuous case23,32. There, only a single
transition point from the quantum anti-Zeno to Zeno regime
exists, whic _ h occurs exactly at the exceptional point.
Experimental measurements in Fig. 3 qualitatively agree with

theoretical predictions, since both the weak-coupling (i.e., the
coupling strength �htn ≪ 8Er with Er= �h2k2/2m) and weak-
interaction (the interaction strength much smaller compared with
the �htn) conditions are satisfied throughout our experiments.
Nevertheless, quantitative deviations exist, which mainly derive
from two sources. First, the kick intensity γ0 in the effective
Hamiltonian (1) would deviate from the perturbative expression
γ0 � t20=t when either the coupling t0 or the evolution time
becomes sufficiently large. This is the main reason for the slight
discrepancy between the location of the maximum loss rate in
Fig. 3a, either numerically simulated (dashed and solid lines) or
experimentally measured, and that of the theoretically predicted
exceptional point using the perturbative kick intensity (dash-
dotted). Second, high-order, non-resonant coupling terms play an
important role in our experiment, as is manifest in Fig. 3 where the
experimental data agree better with simulations considering the
non-resonant coupling terms (solid lines). As non-resonant
couplings enable the 0j i $ �1j i transition, the population of
the �1j i state leads to an underestimation of loss for a finite
evolution time. Other factors, for example, interaction-induced
self-trapping in the momentum lattice and the momentum
broadening due to the weak trap potential25,37,38, also lead to
underestimations of the loss rate. These experimental imperfec-
tions lead to an overestimation of the corrected probability Pc

s
(middle panels in Fig. 3), while the overall measured profiles still
qualitatively agree with the theoretical predictions on the PT
phase transition.

Correspondence between quantum (anti-)Zeno effects and PT
phases
Finally, we map out the phase diagram for quantum Zeno to anti-
Zeno transition by sweeping t0 (hence γ0) for a set of fixed Ω, and
plotting the quantity κγ with κ ¼ sgnðΔγ=Δγ0Þ; see Fig. 4. Here
the difference Δγ=Δγ0 is calculated from experimental data for
each fixed Ω. By definition, κγ < 0 (κγ > 0) represents the quantum
Zeno (anti-Zeno) regime. At the lower-right corner of Fig. 4, κγ is
close to zero, due to a vanishing tz and a disconnected reservoir.
At the upper-left corner, κγ also approaches zero, as loss to the
reservoir is suppressed, which is equivalent to the standard
quantum Zeno effect in the case of continuous, strong couplings.

Most importantly, by superimposing the boundaries of PT
transitions (black dashed) and the critical kick frequency (blue
dashed), it is clear that our measured phase diagram in Fig. 4
agrees well with the theoretical prediction in Fig. 1c, thus
confirming the following correspondence

V jðPTBÞ;MjðPTSÞ $ anti-Zeno;

LjðPTBÞ $ Zeno :
(5)

Such a relationship reveals the deep connection between PT
transition and quantum Zeno effects.
However, we note that both quantum Zeno and anti-Zeno

effects can occur in dissipative systems without PT symmetry and
devoid of exceptional points39,40. For instance, by considering a
system with an additional diagonal detuning δσz (δ being
real)41,42, slow-decaying modes emerge that give rise to anti-
Zeno effects40, even in the absence of PT symmetry. Therefore, the
elegant correspondence in Eq. (5) should be understood in the
context of PT symmetric systems.

DISCUSSION
To conclude, we have experimentally established the connection
between the quantum Zeno effect and PT phases in a dissipative
Floquet system: while the PTS phase generally leads to the
quantum anti-Zeno effect, both quantum Zeno and anti-Zeno
effects can occur in the PTB region. Crucially, the quantum-Zeno
regimes are bounded by a discrete set of critical coupling
frequencies, and by exceptional points. Besides shedding new
lights on the relation of quantum measurements and dynamics of
non-Hermitian systems, our experiment also offers a new way of
simulating PT physics using cold atoms, which is readily extendable
to higher dimensions (see Supplementary Information). While
quantum Zeno effects and the associated quantum Zeno sub-
space23 generally exist for multi-level systems, the scalability of the
correspondence considered here to higher dimensions is an
interesting open question that we leave to future studies.

Fig. 4 Phase diagram for quantum anti-Zeno to Zeno transition
from experimental data. Color contour is the measured κγ
(see main text for definition). The black dashed lines indicate the
exceptional points [see Fig. 1(c)], and the blue dashed line
corresponds to the critical kick frequency Ω1 ¼ 2t. The blue (red)
regions correspond to quantum Zeno (anti-Zeno) regimes. All γ are
measured after the system evolves for two modulation periods,
while we set t ¼ 2π ´ 1:03ð2Þ kHz and τ0t=ð2πÞ ¼ 0:1 for all
measurements. The measured critical anti-Zeno to Zeno transition
points are consistent with the exceptional points between the Mj
and Lj regions.
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Furthermore, the above analyses are all within the scope of
single-particle physics, without considering the effect of interac-
tions. Specifically, many-body interactions in the momentum
lattice assume the form of density-dependent, attractive on-site
potentials38. When the atomic density or the scattering length is
large enough, atoms in momentum space exhibit the so-called
interaction-induced localization37,38. Since the quantum Zeno
dynamics can also be regarded as a form of localization (or
stabilization) within the quantum Zeno subspace43–45, it will be
interesting to study the interplay between interactions and
quantum Zeno effects in future experiments46–49.

METHODS
Experimental settings
The 87Rb BEC is prepared in an optical dipole trap. The multiple discrete
momentum states are coupled with multi-frequency Bragg laser pairs. The
different frequency components are imprinted by two acoustic optical
modulators. One shifts the frequency of the incoming beam by −100 MHz,
and another shifts it by 100MHz− ∑nνn/2π (n ≥ 1) with νn= 4(2n− 1)�hk2/
2m (see the main text). As a consequence, the transition between the two
momentum states, n� 1j i $ nj i, can be resonantly triggered by the {ω+,
ωn} laser pair.
After the system evolves for a finite time τe, we directly resolve the

populations in each momentum state by letting the atoms fall freely in
space for 20ms with all lasers switched off, before the atoms are imaged
by a camera. Atoms with different momenta get separated in the x-
direction along which the Bragg beams are applied (see Fig. 1 in the main
text). To obtain the relative populations in each state, we integrate the
image in the y-direction, and then fit the data with a 10-peak Gauss

function, AðxÞ ¼
P8

n¼�1 An exp � x�nd
a

� �2h i
. Normalizing the resulting

amplitude An by
P8

n¼�1 An , we finally get the atom population
distribution on each site, Pn.

Effective Hamiltonian with off-resonant terms
Following the theory of light-atom interaction in ref. 33, we obtain the
effective time-dependent full Hamiltonian

Heff ¼
P
n

P
i
�h ΩþΩi

4jΔj e
i½ðωþ�ωi�4ð2n�1Þ�hk2=2mÞtþðϕþ�ϕi Þ� n� 1j i nh j

þH:c:
(6)

with ϕ+ and ϕi the phases of beams with frequencies ω+ and ωi,
respectively (see Fig. 2 in the main text). We simply let ϕ+= 0, and ϕi be
the modulated phase relative to ϕ+ from the AOM. As we choose ωi=ω+
− 4(2i− 1)�hk2/2m, the simplified ideal model can be obtained by
considering only the resonant terms, i.e., letting i= n, as

Hð0Þ ¼
X
n

�htn n� 1j i nh j þ H:c: (7)

with tn ¼ e�iϕnΩþΩn=4jΔj. This gives the general tight-binding form for a
momentum-state chain. If we simply treat the n ≥ 2 part as an effective
reservoir, and apply the second-order perturbation with t2= tz and tn≠2= t,
the loss rate of site 1j i should approximately be γ0 � t2z=t

36. Then we
obtain the dissipative two-level Hamiltonian in the main text.
Clearly, the ℓth-order non-resonant terms, responsible for the transition

n� 1j i $ nj i, can be induced by {ω+,ωn−ℓ} and {ω+,ωn+ℓ} laser pairs with
detunings of ∓8ℓ_k2/2m, respectively. These terms are given by

Hð‘Þ ¼
X
n

�htn± ‘e
± i8‘ð�hk2=2mÞt n� 1j i nh j þ H:c: ; (8)

leading the full Hamiltonian Heff= ∑ℓH
(ℓ). In our experiment, 8�hk2/2m

corresponds to ~2π × 16.2 kHz.
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