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Iterative quantum amplitude estimation
Dmitry Grinko1,2,3, Julien Gacon1,2, Christa Zoufal 1,2 and Stefan Woerner 1✉

We introduce a variant of Quantum Amplitude Estimation (QAE), called Iterative QAE (IQAE), which does not rely on Quantum Phase
Estimation (QPE) but is only based on Grover’s Algorithm, which reduces the required number of qubits and gates. We provide a
rigorous analysis of IQAE and prove that it achieves a quadratic speedup up to a double-logarithmic factor compared to classical
Monte Carlo simulation with provably small constant overhead. Furthermore, we show with an empirical study that our algorithm
outperforms other known QAE variants without QPE, some even by orders of magnitude, i.e., our algorithm requires significantly
fewer samples to achieve the same estimation accuracy and confidence level.
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INTRODUCTION
Quantum Amplitude Estimation (QAE)1 is a fundamental quantum
algorithm with the potential to achieve a quadratic speedup for
many applications that are classically solved through Monte Carlo
(MC) simulation. It has been shown that we can leverage QAE in
the financial service sector, e.g., for risk analysis2,3 or option
pricing4–6, and also for generic tasks such as numerical integra-
tion7. While the estimation error bound of classical MC simulation
scales as Oð1= ffiffiffiffi

M
p Þ, where M denotes the number of (classical)

samples, QAE achieves a scaling of Oð1=MÞ for M (quantum)
samples, indicating the aforementioned quadratic speedup.
The canonical version of QAE is a combination of Quantum

Phase Estimation (QPE)8 and Grover’s Algorithm. Since other QPE-
based algorithms are believed to achieve exponential speedup,
most prominently Shor’s Algorithm for factoring9, it has been
speculated as to whether QAE can be simplified such that it uses
only Grover iterations without a QPE-dependency. Removing the
QPE-dependency would help to reduce the resource requirements
of QAE in terms of qubits and circuit depth and lower the bar for
practical applications of QAE.
Recently, several approaches have been proposed in this

direction. In ref. 10 the authors show how to replace QPE with a
set of Grover iterations combined with a Maximum Likelihood
Estimation (MLE), in the following called Maximum Likelihood
Amplitude Estimation (MLAE). In ref. 11, QPE is replaced by the
Hadamard test, analog to Kitaev’s Iterative QPE12,13 and similar
approaches14,15.
Both in refs. 10 and 11 propose potential simplifications of QAE

but do not provide rigorous proofs of the correctness of the
proposed algorithms. In ref. 11, it is not even clear how to control
the accuracy of the algorithm other than possibly increasing the
number of measurements of the evolving quantum circuits. Thus,
the potential quantum advantage is difficult to compare and we
will not discuss it in the remainder of this paper.
In ref. 16, another variant of QAE was proposed. There, for the

first time, it was rigorously proven that QAE without QPE can
achieve a quadratic speedup over classical MC simulation.
Following16, we call this algorithm QAE, Simplified (QAES).
Although this algorithm achieves the desired asymptotic complex-
ity exactly (i.e., without logarithmic factors), the involved constants
are very large, and likely to render this algorithm impractical
unless further optimized—as shown later in this paper.

In the following, we propose a new version of QAE—called
Iterative QAE (IQAE)—that achieves better results than all other tested
algorithms. It provably has the desired asymptotic behavior up to a
multiplicative log ð2=αlog 2ðπ=4ϵÞÞ factor, where ϵ> 0 denotes the
target accuracy, and 1− α the resulting confidence level.
Like in ref. 16, our algorithm requires iterative queries to the

quantum computer to achieve the quadratic speedup and cannot
be parallelized. Only MLAE allows the parallel execution of the
different queries as the estimate is derived via classical MLE
applied to the results of all queries. Although parallelization is a
nice feature, the potential speedup is limited. Assuming the length
of the queries is doubled in each iteration (like for canonical QAE
and MLAE) the speedup is at most a factor of two since the
computationally most expensive query dominates all the others.
With MLAE, QAES, and IQAE we have three promising variants of

QAE that do not require QPE and it is of general interest to
empirically compare their performance. Of similar interest is the
question of whether the canonical QAE with QPE—while being
(quantum) computationally more expensive—might lead to some
performance benefits. To be able to better compare the
performance of canonical QAE with MLAE, QAES, and IQAE, we
extend QAE by a classical MLE postprocessing based on the
observed results. This improves the results without additional
queries to the quantum computer and allows us to derive proper
confidence intervals.
QAE was first introduced in ref. 1 and assumes the problem of

interest is given by an operator A acting on n+ 1 qubits such that

A 0j in 0j i ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
ψ0j in 0j i þ ffiffiffi

a
p

ψ1j in 1j i; (1)

where a∈ [0, 1] is the unknown, and ψ0j in and ψ1j in are two
normalized states, not necessarily orthogonal. QAE allows estimat-
ing a with high probability such that the estimation error scales as
Oð1=MÞ, where M corresponds to the number of applications of A.
To this extent, an operator Q ¼ AS0AySψ0

is defined where Sψ0
¼

I� 2 ψ0j in ψ0h jn� 0j i 0h j and S0 ¼ I� 2 0j inþ1 0h jnþ1 as introduced
in1. In the following, we denote applications of Q as quantum
samples or oracle queries.
The canonical QAE follows the form of QPE: it uses m ancilla

qubits—initialized in equal superposition—to represent the final
result, it defines the number of quantum samples as M= 2m and
applies geometrically increasing powers of Q controlled by the
ancillas. Eventually, it performs an inverse QFT on the ancilla
qubits before they are measured, as illustrated in Fig. 1.
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Subsequently, the measured integer y∈ {0,…,M− 1} is mapped
to an angle ~θa ¼ yπ=M. Thereafter, the resulting estimate of a is
defined as ~a ¼ sin2ð~θaÞ. Then, with a probability of at least 8/π2 ≈
81%, the estimate ~a satisfies

ja� ~aj � 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞp
M

þ π2

M2 ;
(2)

which implies the quadratic speedup over a classical MC simulation,
i.e., the estimation error ϵ ¼ Oð1=MÞ. The success probability can
quickly be boosted to close to 100% by repeating this multiple
times and using the median estimate2. These estimates ~a are
restricted to the grid sin2 yπ=Mð Þ : y ¼ 0; ¼ ;M=2

� �
through the

possible measurement outcomes of y.
Alternatively, and similarly to MLAE, it is possible to apply MLE

to the observations for y. For a given θa, the probability of
observing yj i when measuring the ancilla qubits is derived in1 and
given by

P½ yj i� ¼ sin2ðMΔπÞ
M2sin2ðΔπÞ ; (3)

where Δ is the minimal distance on the unit circle between the
angles θa and π~y=M, and ~y ¼ y if y ≤M/2 and ~y ¼ M=2� y
otherwise. Given a set of y-measurements, this can be leveraged
in an MLE to get an estimate of θa that is not restricted to grid
points. Furthermore, it allows using the likelihood ratio to derive
confidence intervals17. This is discussed in more detail in
Supplementary Section 1. In our tests, the likelihood ratio confidence
intervals were always more reliable than other possible approaches,
such as the (observed) Fisher information. Thus, in the following, we
will use the term QAE for the canonical QAE with the application of
MLE to the y measurements to derive an improved estimate and
confidence intervals based on the likelihood ratio.
All variants of QAE without QPE—including ours—are based on

the fact that

QkA 0j in 0j i ¼ cosðð2k þ 1ÞθaÞ ψ0j in 0j i þ sinðð2k þ 1ÞθaÞ ψ1j in 1j i;
(4)

where θa is defined as a ¼ sin2ðθaÞ. In other words, the probability
of measuring 1j i in the last qubit is given by

P½ 1j i� ¼ sin2ðð2k þ 1ÞθaÞ: (5)

The algorithms mainly differ in how they derive the different
values for the powers k of Q and how they combine the results
into a final estimate of a.
MLAE first approximatesP½ 1j i� for k= 2j and j= 0, 1, 2,…,m− 1,

for a given m, using Nshots measurements from a quantum
computer for each j, i.e., in total, Q is applied Nshots(M− 1) times,
where M= 2m. It has been shown in ref. 10 that the corresponding
Fisher information scales as OðNshotsM2Þ, which implies a lower
bound of the estimation error scaling as Ωð1=ð ffiffiffiffiffiffiffiffiffiffiffi

Nshots
p

MÞÞ.
Crucially10, does not provide an upper bound for the estimation
error. Confidence intervals can be derived from the measurements

using, e.g., the likelihood ratio approach, see Supplementary
Section 1.
In contrast to MLAE, QAES requires the different powers of Q to

be evaluated iteratively and cannot be parallelized. It iteratively
adapts the powers of Q to successively improve the estimate and
carefully determines the next power of Q. However, instead of a
lower bound, a rigorous error upper bound is provided. QAES
achieves the optimal asymptotic query complexityOðlog ð1=αÞ=ϵÞ,
where α > 0 denotes the probability of failure. In contrast to the
other algorithms considered, QAES provides a bound on the
relative estimation error. Although the algorithm achieves the
desired asymptotic scaling exactly, the constants involved are very
large—likely too large for practical applications unless they can be
further reduced.
In the following, we introduce a new variant of QAE without

QPE. As for QAES, we provide rigorous performance proof.
Although our algorithm only achieves the quadratic speedup up
to a multiplicative factor log ð2=αlog 2ðπ=4ϵÞÞ, the constants
involved are orders of magnitude smaller than for QAES. More-
over, in practice, this doubly logarithmic factor is small for any
reasonable target accuracy ϵ and confidence level 1− α, as we will
show in the following.

RESULTS
Algorithm description
IQAE leverages similar ideas as refs. 10,11,16 but combines them in a
different way, which results in a more efficient algorithm while still
allowing for a rigorous upper bound on the estimation error and
computational complexity. As mentioned before, we use the
quantum computer to approximate P½ 1j i� ¼ sin2ðð2k þ 1ÞθaÞ for
the last qubit in QkA 0j in 0j i for different powers k. In the
following, we outline the rationale behind IQAE, which is formally
given in Algorithm 1. The main sub-routine FINDNEXTK is outlined
in Algorithm 2.
Suppose a confidence interval [θl, θu]⊆ [0, π/2] for θa and a

power k of Q, as well as an estimate for sin2ðð2k þ 1ÞθaÞ. We can
translate our estimates for sin2ðð2k þ 1ÞθaÞ into estimates for
cosðð4k þ 2ÞθaÞ. However, unlike in Kitaev’s Iterative QPE, we
cannot estimate sinðð4k þ 2ÞθaÞ, and the cosine alone is only
invertible without ambiguity if we know that the argument is
restricted to either [0, π] or [π, 2π], i.e., the upper or lower half-
plane. Thus, we want to find the largest k such that the scaled
interval ½ð4k þ 2Þθl; ð4k þ 2Þθu�mod2π is fully contained either in [0,
π] or [π, 2π]. If this is given, we can invert cosðð4k þ 2ÞθaÞ and
improve our estimate for θa with high confidence. This implies an
upper bound of k, and the heart of the algorithm is the procedure
used to find the next k given [θl, θu], which is formally introduced
in Algorithm 2 and illustrated in Fig. 2. In the following theorem,
we provide convergence results for IQAE that imply the
aforementioned quadratic speedup. The respective proof is given
in Supplementary Section 2.

Theorem 1
(Correctness of IQAE). Suppose a confidence level 1− α∈ (0, 1), a
target accuracy ϵ > 0, and a number of shots Nshots∈ {1, ...,Nmax(ϵ, α)},
where

Nmaxðϵ; αÞ ¼ 32

ð1� 2 sinðπ=14ÞÞ2 log
2
α
log 2

π

4ϵ

� �� �
: (6)

In this case, IQAE (Algorithm 1) terminates after a maximum number
of ⌈log 2ðπ=8ϵÞ⌉ rounds, where we define one round as a set of
iterations with the same ki, and each round consists of at most
Nmax(ϵ, α)/Nshots iterations. IQAE returns [al, au] with au− al ≤ 2ϵ and

P½a =2 ½al ; au�� � α: (7)

Thus, ~a ¼ ðal þ auÞ=2 leads to an estimate for a with ja� ~aj � ϵ

Fig. 1 Canonical QAE. Circuit with m ancilla qubits and n+ 1 state
qubits.
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with a confidence of 1− α.
Furthermore, for the total number of Q-applications, Noracle,
it holds that

Noracle<
50
ϵ
log

2
α
log 2

π

4ϵ

� �� �
: (8)

Algorithm 1
Iterative Quantum Amplitude Estimation

Function IQAE (ϵ, α, Nshots, ci):

// ci is a chosen confidence interval method, which can be either

Clopper-Pearson18,19 or Chernoff-Hoeffding20

i= 0 // initialize iteration count

ki= 0 // initialize power ofQ
upi= True // keeps track of the half-plane

[θl, θu]= [0, π/2] // initialize conf. interval

T= ⌈log 2ðπ=8ϵÞ⌉ // max. number of rounds

calculate Lmax according to Eqs. (9) and (10) // max. error on every iteration

while θu− θl > 2ϵ do

i= i+ 1

ki, upi = FindNextK (ki−1, θl, θu, upi−1)

set Ki= 4ki+ 2

if Ki > ⌈Lmax=ϵ⌉ then

N= ⌈NshotsLmax/ϵ/Ki/10⌉ // no-overshooting condition

else

N= Nshots

approximate ai ¼ P½ 1j i� for the last qubit of QkiA 0j in 0j i by measuring N times

if ki= ki−1then

combine the results of all iterations j ≤ i with kj= ki into a single result,

effectively increasing the number of shots

if ci = "Chernoff-Hoeffding" then

ϵai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2N log ð2Tα Þ

q
amax
i ¼ minð1; ai þ ϵai Þ

amin
i ¼ maxð0; ai � ϵai Þ

if ci = "Clopper-Pearson" then

amax
i ¼ I�1ð α

2T ;Nai ;Nð1� aiÞ þ 1Þ
amin
i ¼ I�1ð1� α

2T ;Nai þ 1;Nð1� aiÞÞ // see Supplementary Eqs. (33)–(36)

calculate the confidence interval ½θmin
i ; θmax

i � for fKiθagmod2π from ½amin
i ; amax

i �
and boolean flag upi by inverting a ¼ ð1� cosðKiθÞÞ=27D2

θl ¼ Kiθlb cmod2πþθmin
i

K i

θu ¼ Kiθub cmod2πþθmax
i

K i

½al ; au� ¼ ½sin2ðθlÞ; sin2ðθuÞ�
return [al, au]

Algorithm 2
Procedure for finding ki+1

Function FindNextK (ki, θl, θu, upi, r= 2):

Ki= 4ki+ 2 // current θ-factor

θmin
i ¼ Kiθl // lower bound for scaled θ

θmax
i ¼ Kiθu // upper bound for scaled θ

Kmax ¼ π
θu�θl

j k
// set an upper bound for θ-factor

K ¼ Kmax � ðKmax � 2Þmod 4 // largest potential candidate of the form

4k+ 2

while K ≥ rKi do
q= K/Ki // factor to scale ½θmin

i ; θmax
i �

if fq � θmax
i gmod 2π � π and fq � θmin

i gmod 2π � π then
// ½θmin

iþ1 ; θ
max
iþ1 � is in upper half-plane

Ki+1= K

upi+1= True

ki+1= (Ki+1− 2)/4

return (ki+1, upi+1)

if fq � θmax
i gmod2π � π and fq � θmin

i gmod 2π � π then
// ½θmin

iþ1 ; θ
max
iþ1 � is in lower half-plane

Ki+1= K

upi+1= False

ki+1= (Ki+1− 2)/4

return (ki+1, upi+1)

K= K− 4

return (ki, upi) // return old value

More intuitively, the heart of our algorithm—the sub-routine
FINDNEXTK—allows us to maximize Fisher Information I on a
given iteration in a greedy fashion. The way to see this is to notice,
that I is proportional to NshotsK

2, where K := 4k+ 210.
Note that the maximum number of applications of Q given in

Theorem 1 is a loose upper bound since the proof uses Chernoff-
Hoeffding bound to estimate sufficiently narrow intermediate
confidence intervals in Algorithm 1. Using more accurate
techniques instead, such as Clopper-Pearson’s confidence interval
for Bernoulli distributions18, can lower the constant overhead in
Noracle by a factor of 3 (see Supplementary Section 3) but is more
complex to analyze analytically.
In Algorithm 2, we require that Ki+1/Ki≥ r= 2, otherwise we

continue with Ki. The choice of the lower bound r is optimal in the
proof, i.e., it gives us the lowest coefficient for the upper bound
(see Supplementary Section 2). Moreover, the chosen lower bound
was working very well in practice.
In Algorithm 1 we imposed the "no-overshooting" condition in

order to ensure, that we do not make unnecessary measurement
shots at the last iterations of the algorithm. This condition also
allows us to keep constants small in the proof (see Supplementary
Eq. (11)). It utilizes a quantity Lmax—the maximum possible error,
which could be returned on a given iteration using Nshots

measurements. It is calculated before the start of the algorithm
for chosen ϵ, α and number of shots Nshots. It also depends on the
type of chosen confidence interval. For Chernoff-Hoeffding one
can write a direct analytical expression:

LmaxðNshots; ϵ; αÞ:¼ arcsin
2

Nshots
log

2TðϵÞ
α

� �� �1=4

; (9)

which is derived from Supplementary Eqs. (15) and (21). For
Clopper-Pearson, one can only calculate it numerically:

LmaxðNshots; ϵ; αÞ:¼ max
θ

hNshots;ϵ;αðθÞ; (10)

where function h is defined in Supplementary Section 3. It is
derived by analogy with Supplementary Eq. (39), where instead of
Nmax(ϵ, α) one should use Nshots.

Fig. 2 FindNextK. Given an initial interval [θl, θu], ki, and Ki= 4ki+ 2,
FINDNEXTK determines the largest feasible k with K= 4k+ 2 ≥ 2Ki
such that the scaled interval ½Kθl ; Kθu�mod2π lies either in the upper or
in the lower half-plane, and returns k if it exists and ki otherwise. The
top left circle represents our initial knowledge about Kiθa, while
other circles represent extrapolations for different values of q= K/Ki.
The top middle picture represents a valid q, the top right circle
represents an invalid q, and so on. Note that the bottom right circle
violates the condition q � θmax

i � θmin
i

		 		 � π, i.e., the interval is too
wide and cannot lie in a single half-plane. The output of FINDNEXTK
in the middle bottom circle and the left bottom figure show the
improved result in the next iteration after additional measurements.
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Theorem 1 provides a bound on the query complexity, i.e., the
total number of oracle calls with respect to the target accuracy.
However, it is important to note that the computational complex-
ity, i.e., the overall number of operations, including classical steps
such as all applications of FINDNEXTK and computing the
intermediate confidence intervals, scales in exactly the same way.

Numerical experiments
Next, we empirically compare IQAE, MLAE, QAES, QAE, and
classical MC with each other and determine the total number of
oracle queries necessary to achieve a particular accuracy. We are
only interested in measuring the last qubit of QkA 0j in 0j i for
different powers k, and we know that P½ 1j i� ¼ sin2ðð2k þ 1ÞθaÞ.
Thus, for a given θa and k, we can consider a Bernoulli distribution
with corresponding success probability or a single-qubit Ry-
rotation with angle 2(2k+ 1)θa to generate the required samples.
All algorithms mentioned in this paper are implemented and
tested using Qiskit21 in order to be run on simulators or real
quantum hardware, e.g., as provided via the IBM Quantum
Experience.
For IQAE and MC, we compute the (intermediate) confidence

intervals based both on Chernoff-Hoeffding20 and on Clopper-
Pearson18. For QAE and MLAE, we use the likelihood ratio17, see
Supplementary Section 1. For QAES, we report the outputted
accuracy of the algorithm.
To compare all algorithms we estimate a= 1/2 with a 1− α=

95% confidence interval. For IQAE, MLAE, and QAE, we set Nshots=
100. As shown in Fig. 3, IQAE outperforms all other algorithms.
QAES, even though achieving the best asymptotical behavior,
performs worst in practice. On average, QAES requires about 108

times more oracle queries than IQAE which is even more than for
classical MC simulation with the tested target accuracies. MLAE
performs comparable to IQAE, however, the exact MLE becomes
numerically challenging with increasing m. In order to observe the
scaling of the quantum part of the algorithm, we collect more data
points via the usage of a geometrically smaller search domain
around estimated θ with each new round instead of brute force
search on the whole initial domain for θ. Lastly, QAE with MLE-
postprocessing performs a bit worse than IQAE and MLAE, which
answers the question raised at the beginning: Applying QPE in the
QAE setting does not lead to any advantage but only increases the
complexity, even with an MLE-postprocessing. Thus, using IQAE
instead does not only reduce the required number of qubits and
gates, but it also improves the performance. Note that the MLE
problem resulting from canonical QAE is significantly easier to
solve than the problem arising in MLAE since the solution can be
efficiently computed with a bisection search, see Supplementary
Section 1. However, to evaluate QAE we need to simulate an

increasing number of (ancilla) qubits, even for the very simple
problem considered here, which makes the simulation of the
quantum circuits more costly.
In the remainder of this section, we analyze the performance of

IQAE in more detail. In particular, we empirically analyze the total
number of oracle queries when using both Chernoff-Hoeffding the
Clopper-Pearson confidence intervals, as well as the resulting k-
schedules.
More precisely, we run IQAE for all a∈ {i/100∣i= 0,…, 100}

discretizing [0, 1], for all ϵ∈ {10−i∣i= 3,…, 6}, and for all α∈ {1%,
5%, 10%}. We choose Nshots= 100 for all experiments. For each
combination of parameters, we evaluate the resulting number of
total oracle calls Noracle and compute

Noracle

log ð2=αlog 2ðπ=4ϵÞÞ=ϵ
; (11)

i.e., the constant factor of the scaling with respect to ϵ and α.
We evaluate the average, as well as the worst-case overall
considered values for a. The results are illustrated in Figs. 4 and 5.
The empirical complexity analysis of Chernoff-Hoeffding IQAE
leads to:

Navg
oracle �

2
ϵ
log

2
α
log 2

π

4ϵ

� �� �
; and (12)

Nwc
oracle �

6
ϵ
log

2
α
log 2

π

4ϵ

� �� �
; (13)

where Navg
oracle denotes the average and Nwc

oracle the worst-case
complexity, respectively. Furthermore, the analysis of Clopper-Pearson

Fig. 3 Comparison of QAE variants. The resulting estimation error for a= 1/2 and 95% confidence level with respect to the required total
number of oracle queries. We also include theoretical upper bounds for two versions of IQAE (CH= Chernoff-Hoeffding, CP= Clopper-
Pearson). Note that QAES provides a relative error estimate, while the other algorithms return an absolute error estimate. For MLAE and
canonical QAE we use the likelihood ratio confidence intervals. For MLAE we count the number of oracle calls for the largest power of Q
operator, which corresponds to the parallel execution of the algorithm. For IQAE, MLAE, and canonical QAE we used Nshots= 100.

Fig. 4 Analysis of constant overhead for Chernoff-Hoeffding
IQAE. The average (blue) and worst-case (orange) constant over-
head for IQAE runs with different parameter settings.
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IQAE leads to:

Navg
oracle �

0:8
ϵ

log
2
α
log 2

π

4ϵ

� �� �
; and (14)

Nwc
oracle �

1:4
ϵ

log
2
α
log 2

π

4ϵ

� �� �
; (15)

To analyze the k-schedule, we set a= 1/2, ϵ= 10−6, α= 5%, and
again Nshots= 100. Figure 6 shows for each iteration the resulting
average, standard deviation, minimum, and maximum of Ki+1/Ki,
over 1000 repetitions of the algorithm, for the Ki defined in
Algorithm 2. As explained before, we want to achieve as high a
possible value of Ki+1/Ki for each iteration. Therefore, it can be
seen that Nshots= 100 seems to be too small for the first round, i.e.,
another iteration with the same Ki is necessary before approaching
an average growth rate slightly larger than four.

DISCUSSION
We introduced Iterative Quantum Amplitude Estimation, a new
variant of QAE that realizes a quadratic speedup over classical MC
simulation. Our algorithm does not require QPE, i.e., it is solely
based on Grover iterations, and allows us to prove rigorous error
and convergence bounds. We demonstrate empirically that our
algorithm outperforms the other existing variants of QAE, some
even by several orders of magnitude. This development is an
important step towards applying QAE on quantum hardware to
practically relevant problems and achieving a quantum advantage.
Our algorithm achieves the quadratic speedup up to a

log ð2=αlog 2ðπ=4ϵÞÞ-factor. In contrast, QAES, the other known
variant of QAE without QPE and with a rigorous convergence
proof, achieves optimal asymptotic complexity at the cost of very
large constants. It is an open question for future research whether
there exists a variant of QAE without QPE that is practically
competitive while having an asymptotically optimal performance
bound. Another difference between IQAE and QAES is the type of
error bound: IQAE provides an absolute and QAES a relative
bound. Both types are relevant in practice, however, in the context
of QAE, where problems often need to be normalized, a relative
error bound is sometimes more appropriate. We leave the
question of a relative error bound for IQAE open to future
research.
Another research direction that seems of interest is the

existence of parallel versions of QAE. More precisely, is it possible
to realize the powers of the operator Q distributed somehow in
parallel over additional qubits, instead of sequential application on
the quantum register? However, as shown in ref. 22, this does not
seem to be possible.
Another open question for further investigation is the optimal

choice of parameters for IQAE. We can set the required minimal
growth rate for the oracle calls, as well as the number of classical

shots per iteration, and both affect the performance of the
algorithm. Determining the most efficient setting may further
reduce the required number of oracle calls for particular target
accuracy.
We also demonstrated that the gap between the bound on the

total number of oracle calls provided in Theorem 1 and the actual
performance is not too big. The proof technique for the upper
bound almost achieves the actual performance. However, one
may still ask whether an even tighter analytic bound is possible.
To summarize, we introduced and analyzed a new variant of

QAE without QPE that outperforms the other known approaches.
Moreover, we provide a rigorous convergence theory. This helps
to reduce the requirements on quantum hardware and is an
important step towards leveraging quantum computing for real-
world applications.
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