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Quantum Hall phases emerging from atom–photon
interactions
Alexander V. Poshakinskiy1, Janet Zhong2, Yongguan Ke2,3, Nikita A. Olekhno 4, Chaohong Lee 3,5, Yuri S. Kivshar 2,4✉ and
Alexander N. Poddubny1,2,4✉

We reveal the emergence of quantum Hall phases, topological edge states, spectral Landau levels, and Hofstadter butterfly spectra
in the two-particle Hilbert space of an array of periodically spaced two-level atoms coupled to a waveguide (waveguide quantum
electrodynamics). While the topological edge states of photons require fine-tuned spatial or temporal modulations of the
parameters to generate synthetic magnetic fields and the quantum Hall effect, here we demonstrate that a synthetic magnetic field
can be self-induced solely by atom–photon interactions. The fact that topological order can be self-induced in what is arguably the
simplest possible quantum structure shows the richness of these waveguide quantum electrodynamics systems. We believe that
our findings will advance several research disciplines including quantum optics, many-body physics, and nonlinear topological
photonics, and that it will set an important reference point for the future experiments on qubit arrays and quantum simulators.
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INTRODUCTION
Recent technological advances have underpinned the rapid
development of cavity quantum electrodynamics (QED) and
circuit QED, which allow to exploit quantum properties of light
for applications in information processing1–3. A closely related
subfield with growing theoretical and experimental interest is
waveguide QED4,5, which studies one-dimensional arrays of
natural or artificial atoms coupled to a waveguide. Existing
platforms for waveguide QED systems include cold atoms6, defect
centers7, superconducting qubits2,3,8–12, and emerging structures
based on exciton-polaritons13.
Waveguide QED is promising for many applications in quantum

information processing. It can allow us to efficiently generate14–16,
detect17, slow18, and store quantum light19. It is also useful as a
platform for quantum simulators of complex many-mode
physics20,21. A crucial advantage of waveguide QED systems is
that they can exhibit long-range coupling between distant atoms
mediated by light. This makes the dispersion of atomic excitations
and their interactions markedly different from those in the typical
case of nearest-neighbor coupling in circuit QED1 or in conven-
tional condensed matter systems. Thus, previously uncharted
physical regimes can be naturally accessed in these wavequide-
based quantum simulators.
The goal of this work is to explore the potential of waveguide

QED to simulate quantum many-body topological phases of
interacting matter. Topological phases underpin many concepts of
modern matter physics. Topological edge states of electrons are
usually created using magnetic fields22 or spin–orbit interac-
tions23–25. Studies of the quantum Hall effect and topological
insulators have also inspired rapid progress in topological
photonics where the central goal is to create robust edge states
of light immune to disorder26–29. Since the effects of magnetic
fields on light are weak, the realization of topological concepts in
photonics requires artificial structures or metamaterials30.

Alternative approaches rely on time modulation of structure
parameters31–34 or engineered nonlinearities35,36. These techni-
ques create effective gauge fields in real or synthetic dimensions,
and mimic the effects of magnetic fields or spin–orbit couplings
for photons.
Here, we uncover that the hallmarks of quantum Hall phases,

Landau energy levels, topological edge states, and the Hofstadter
butterfly spectrum37–39 naturally arise in a finite one-dimensional
array of closely spaced two-level atoms (qubits) coupled to
photons in a waveguide, shown in Fig. 1a. The striking feature of
our prediction is that the quantum Hall phase can emerge solely
from interactions of indistinguishable particles without any
external magnetic fields or special fine tuning or modulation of
spatial or temporal parameters.
While the proposed idea requires highly coherent structures, it

could potentially be tested in already available arrays of super-
conducting qubits coupled to waveguides40 using the existing
approaches to probe spatial profile of two-photon quantum
states41. Our results open the way to engineer complex multi-
photon states and realize their topological protection against
disorder.

RESULTS
Interaction-induced topological states
Here, we show how to realize topological quantum Hall phases
from atom–photon interactions. In waveguide QED setups (shown
schematically in Fig. 1a), photons become strongly coupled to
atoms and create light-matter quasi-particles called polaritons.
These polaritons are not independent but are strongly interacting,
because one atom cannot absorb two photons simultaneously42,
leading to on-site repulsion. While the considered model is
paradigmatic for quantum optics4,5,43, its two-particle Hilbert
space was not analyzed until recently. As shown in Fig. 1c, d, when
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the polariton wave vector is comparable with that of light, a
collective atomic state is easily excited optically, and it generally
gets “darker” for larger wave vectors. In a two-particle “bright”
state, the wave vectors of both excitations are small, which
corresponds to Dicke superradiance44,45. Two-particle dark states
where both wave vectors are large were predicted only last year.
These states originate from the fermionization of strongly
interacting polaritons46. It has also been suggested that interac-
tions in the corner regions47 of the diagram of Fig. 1d can localize
one of the two polaritons in the center of the array48.
In this paper, we predict topological edge states driven by

polariton–polariton interactions in the regions indicated by
butterflies in Fig. 1d. In this region for a finite array, one polariton
forms a standing wave with multiple nodes and a periodic
potential for the other indistinguishable polariton, see Fig. 1b, e.
As a result, the interaction is described by the self-induced Aubry-
André-Harper49 model that is mathematically equivalent to the
quantum Hall problem on a lattice50,51.
The periodic modulation is an intrinsic feature that arises

naturally due to the polariton–polariton interactions, in sharp
contrast to previous studies52,53 where the modulation is imposed
deliberately either by engineering the lattice53,54 or applying
external fields29,33. We show that the full Hofstadter butterfly-like
spectrum could be obtained in a single shot from just a fixed
atomic array, eliminating the need to continuously tune an
external magnetic field in a conventional setup33,39.

Two-polariton states
The considered periodic one-dimensional array of N two-level
atoms (qubits) coupled to light is described by an effective Dicke-
type Hamiltonian46,47,55

H ¼
XN
n¼1

ω0σ
y
nσn � iΓ0

XN
n;m¼1

eiω0djn�mj=cσy
nσm; (1)

where c is the speed of light, σy
n is the operator creating excitation

of the atom n with the resonance frequency ω0, ðσy
nÞ

2 ¼ 0 and Γ0

is the radiative decay rate of a single atom. While for d= 0 the
Hamiltonian (1) is equivalent to the conventional Dicke model44,
even small interatomic spacings 0 < d≪ 2πc/ω0 make the model
considerably richer.
Single-particle eigenstates of Eq. (1) in the infinite array

(N→∞) are polaritons with the energy dispersion
εðkÞ ¼ Γ0 sinφ=ðcos k � cosφÞ55,56, which is shown schematically
in Fig. 1e. The eigenstates are Bloch waves with real energies,
characterized by continuous distribution of the wave vectors
− π/d < k < π/d. The dispersion consists of two polaritonic
branches, resulting from the avoided crossing of light with the
atomic resonance where both branches are described by the same
expression ε(k). The upper branch corresponds to ∣k∣ <ω0d/c and
in this work we focus on the lower branch with large wave vectors,
∣k∣ >ω0d/c. In the finite array of N atoms, the wave vectors are
quantized, kjd= πj/N, j= 1, 2,…N57, and the single-particle
eigenstates are standing waves, as shown in Fig. 2a–d. Owing to
the possibility of radiative decay into the waveguide, the
eigenstates of the finite array (shown in Fig. 2a) have non-zero
imaginary energies, Imε< 046. Our main results below are obtained
for strongly subradiant states where jImεj � Γ0. They are not
qualitatively affected by the radiative losses and remain valid even
when the non-Hermitian part of the Hamiltonian Eq. (1) is
neglected (see Supplementary Fig. 5). Crucially, the spectrum in
Fig. 2a condenses near the resonance ε=ω0, where the group
velocity of polaritons decreases.
Next, we proceed to the double-excited states

Ψ ¼ P
n;mψnmσ

y
nσ

y
m 0j i. Their spectrum, obtained from the Schrö-

dinger equation HΨ= 2εΨ, is shown in Fig. 2e–h in different
energy scales. The spectrum consists of distinct groups of states
with close energies. The distributions of the two-particle
eigenvalue energies are plotted in the complex plane in
Fig. 2e–g, and their shape resembles the sum of two
single-particle eigenvalues (the single-particle spectra is plotted
in Fig. 2a). This means that most states in Fig. 2e–g can be
described by ε ≈ (εj+ εi)/2, where εj and εi are the single-particle
energies from Fig. 2a. However, the dense part of the group,
which corresponds to εi→ω0 (see red arrows in Fig. 2f), is
drastically transformed by the interaction. Three characteristic
states from the group with j= 7 are presented in Fig. 2i–k. While
the state in Fig. 2i is just a symmetrized product of two standing
waves, weakly modified by interaction, the role of the interaction
dramatically increases for Reε� ω0 > � 0:66Γ0 in Fig. 2h. The
spectrum is split by interaction into relatively delocalized states
with smaller radiative decay rate (yellow ellipse in Fig. 2h, k) and
states with larger radiative losses where one of the two polaritons
is localized at the edge of the structure (blue ellipse in Fig. 2h, j).
This interaction-induced transformation of the two-polariton

spectrum is our central result. The delocalized states are almost
(j− 1)-fold degenerate, where j is the group number and
correspond to the Landau levels in the effective magnetic field.
The states in Fig. 2j come in degenerate pairs corresponding to
topological edge states localized at the opposite sides of the array.

Landau levels, topological edge states, and Hofstadter
butterfly
We now present an analytical model explaining the topological
origin behind the interaction-induced edge states in Fig. 2j. In
the basis xj i ¼ 1ffiffiffi

N
p

PN
n¼1 expðiω0djx � nj=cÞσy

n 0j i, x= 1, 2,…N48,58,
the following ansatz can be used for the two-polariton state

ψxy ¼ ψðjÞ
y χx þ ψðjÞ

x χy ; x; y ¼ 1¼N (2)

where ψ
ðjÞ
x and χx are the wavefunctions of the first and second

polaritons. The former corresponds well to the standing wave
ψ
ðjÞ
x ¼ cos kjðx � 1

2Þ. To determine the latter, we derive the
Schrödinger equation that accounts for interaction between the

Fig. 1 Emergence of two-polariton quantum phases from inter-
actions. a Double-excited one-dimensional array of two-level atoms
(qubits) in a waveguide. b Two-polariton quantum states where
each indistinguishable polariton induces a potential for the other
one. c and d Classification of single- and double- excited states of
the atomic array depending on the wave vector of the excitations.
Butterflies in d indicate the regions where the quantum Hall phase
and Hofstadter-like butterfly spectrum emerge from the interaction
of two excitations. Regions of “twilight” states47 and interaction-
induced localization48 are also shown. e Single-particle polariton
dispersion. Interaction of a lower-branch polariton with small k and
that with large k is illustrated.
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polaritons. It is given by (see “Methods” for more details)

χxþ1 þ χx�1 � 2χx

þ ω0þωj�2ε
2φΓ0

þ 4
Nk2j

cos2½kjðx � 1
2Þ�

� ��1

χx ¼ 0;
(3)

where ωj � ω0 � 2φΓ0=k
2
j is the real part of the eigenfrequency of

the single-polaritonic state ψ(j) and φ=ω0d/c. Equation (3)
describes a motion of a particle on a lattice in an external
potential of a standing wave with the period N/j. It has a striking
similarity to the Harper equation for an electron moving in a
square lattice subjected to the perpendicular magnetic field59:

χxþ1 þ χx�1 þ 2 cosð2πxα� kyÞχx ¼ εχx: (4)

Here, α is the magnetic flux through the unit cell and ky is the
wave vector in the perpendicular direction. For small magnetic
fields α≪ 1, the discreteness of the problem plays no role and the
energy spectrum of Eq. (4) is a ladder of degenerate Landau levels
for electrons moving along quantized cyclotron orbits. In the finite
structure, the edge states of topological nature arise in the gaps
between the Landau levels. Such states correspond to electrons
moving along skipping orbits at the structure edge, and are the
origin for the quantum Hall effect22.
In our system, the ratio j/N of the group number to the total

number of atoms in Eq. (3) plays the same role as the magnetic
field flux in Eq. (4). The spectrum also consists of degenerate
Landau levels and the topological edge states in the gaps
between them, see Fig. 3a. The result of exact numerical
diagonalization of the two-polariton Hamiltonian Eq. (1) [bold
symbols in Fig. 3a] agrees quantitatively with the solution of
Eq. (3) [open symbols in Fig. 3a]. Thus, the states Eq. (2) exhibit

nontrivial topology induced by interaction for each of the two
indistinguishable polaritons.
The energy spectrum of the Harper Eq. (4) becomes very rich

when the magnetic flux α increases. The Landau levels split and
transform into a celebrated Hofstadter butterfly38, shown also in
Supplementary Fig. 2. The butterfly has a self-similar structure with
q allowed energy bands at the rational fluxes α= p/q37 and a
Cantor-set spectrum for irrational fluxes. Even though in our case
the effective magnetic flux j/N is rational, we can still extract an
analog of the Hofstadter butterfly from the two-polariton
spectrum in Fig. 2e–g. We separate the groups of states in
Fig. 2e–h formed by different standing waves (i.e., different
effective magnetic fields) and align them horizontally, the details
are presented in “Methods” and Supplementary Fig. 3. The
resulting butterfly is shown in Fig. 3b and it qualitatively
resembles the Hofstadter butterfly (Supplementary Fig. 2).
In accordance with Figs 2 and 3a, for small magnetic fluxes j/N

the butterfly in Fig. 3b features distinct Landau levels with
edge states in the gaps between them. These edge states
correspond to red points in Fig. 3b. At high magnetic fields the
Landau levels split, but the spectrum still retains a surprisingly
delicate structure.

Polariton–polariton entanglement
The internal structure of the two-polariton states is represented
by their entanglement entropy60, S ¼ �PN

ν¼1 jλνjln jλνj, obtained
from the Schmidt expansion ψnm ¼ PN

ν¼1

ffiffiffiffi
λν

p
ψν
nψ

ν
m; (∑λν= 1). The

result, presented in Fig. 4b, demonstrates a rich variety of
eigenstates with different localization degrees, indicated by
the color. Characteristic examples of wavefunctions are shown in

hb
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Fig. 2 Single- and two-polariton energy spectra. a complex energy spectrum of single-polariton modes. Three characteristic eigenstates are
shown in panels b–d. e–h Two-polariton energy spectrum zoomed in different scales. i, j, k Spatial color maps of different characteristic two-
polariton eigenstates ∣ψnm∣2. Calculation has been performed for N= 125 atoms and ω0d/c= 0.02. Energy is measured in units of Γ0.
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Fig. 4a. The entropy of entanglement gives an indication of the
number of distinct constituent single-particle states in a two-body
state, so it is low for the scattering states, where two polaritons are
quasi-independent. The topological states Eq. (2) also have an
intrinsically low entropy, being just a product of a standing wave
and a localized or an edge state. However, the states Eq. (2) can
mix with each other resulting in larger entanglement entropy. This
entangled mixing becomes especially prominent for the Landau
level states, cf. points LL, ClS, and ES in Fig. 4b. When the real part
of energy approaches ω0 from the negative side, the mixing
between different standing waves increases since the spectrum
gets denser, and the states become chaotic-like, see also the top
right corner of Fig. 1d. These chaotic-like states are characterized
by an irregular wavefunction in the real space and a dense Fourier
spectrum in the reciprocal space; they can not be reduced to a
product of just two single-polariton states. The specific mechan-
ism of chaotization requires a separate study. At very small
negative energies ε−ω0 ~−φΓ0 the single-particle dispersion
changes from ε∝−1/k2 to ε∝− (k − π/d)2 because both
polaritons get closer to the Brillouin zone edge, and the fermionic
correlations46 emerge from chaos. The dense group of two-
polariton states in the right panel of Fig. 4b, where Re ε> 0, is
formed by the interaction with the quasi-superradiant mode with
Re ε� ω0 � 71Γ0 in Fig. 2a. One of the states in this group has an
entanglement entropy even higher than that of the chaotic-like
states, as seen by the point labeled MES at Re ε� ω0 � 35Γ0.
Similar to the chaotic-like state, the most entangled state can not
be reduced to a product of just several single-polariton states, but
its wavefunction looks more regular.

DISCUSSION
We have discovered an interaction-induced internal topological
order for the two-polariton states in a light-coupled one-
dimensional atomic array.
Our results indicate that the platform of waveguide quantum

electrodynamics has tremendous uncovered potential for quantum
simulators of many-body interacting systems. The underlying
Dicke-type model demonstrates an incredible diversity of quantum
states with different topologies, lifetimes, and entanglement. Its
unexplored richness may mean it will become as celebrated
as well-known many-body physics models such as the Heisenberg
model, Bose-Hubbard model, or the Luttinger liquid. The
waveguide-mediated long-ranged couplings, intrinsic for the wave-
guide QED setup are quite uncharacteristic for traditional quantum
systems and there is much more to explore. For example, we have
focused here only on the regime of extremely subwavelength
distances between the atoms, where two-polariton bound states58,61

play no role. Polariton–polariton interactions could be even more
interesting in Bragg-spaced lattices, where the non-Markovian effects
are drastically enhanced62–64. The ultra-strong coupling regime43 is
also unexamined for these quantum waveguides to the best of our
knowledge.
On the more practical side, the discovered topological two-

polariton states could be used to engineer quantum optical
correlations and protect them against the disorder and decoher-
ence. First, since one of the two polaritons is in a deeply
subradiant state, the radiative losses for the considered states can
be practically neglected (see more detailed analysis in the
Supplementary Information). It may also be possible to suppress
the radiative losses more strongly by exploring the quantum
regime of recently proposed high-quality states65. Second, our
calculation (see Supplementary Figs 6 and 7) indicates that the
interaction-induced edge states of the polaritons are protected
from certain kinds of disorder. While the inhomogeneous broad-
ening of the qubit energies relatively easily destroys topological
states, they are quite robust against the fluctuations of the qubit
positions. Even though the fine structure of the Landau level
states is smeared out by the fluctuations, the edge states remain
well localized. It is thus very interesting to study whether the
proposed concept can be used to generate complex multi-photon
states with built-in nontrivial topology. In the considered two-
polariton case, one polariton is localized at the edge and another
one is in the standing wave state or vice versa. One can also
envisage topological N11N states, where one polariton in the
standing wave state induces topological localization of N > 1
polaritons. Such quantum states could find applications in
quantum metrology like high-N00N states66.

METHODS
Analytical model for polariton–polariton interactions
In this section, we start from the Hamiltonian Eq. (1) in the main text47,55

and proceed to derive Eq. (3) that describes the interaction between the
two polaritons. Substituting the ansatz Ψj i ¼ P

ψmnσ
y
nσ

y
m 0j i into the

Schrödinger equation HΨ= 2εΨ we obtain the two-polariton Schrödinger
equation in the form47,48

Hmn0ψn0n þ ψmn0Hn0n � 2δmnHnn0ψn0n ¼ 2ðε� ω0Þψmn: (5)

We note that Eq. (5) with the non-Hermitian Hamiltonian can be rigorously
derived using conventional input-output approaches of quantum
optics67,68. For example, another equivalent way to obtain the same
results for double-excited states is to use the Linbdlad formalism for the
density matrix of the system68. The double-excited eigenstates of the
Hamiltonian Eq. (5) correspond to the resonances of the scattering matrix
for two photons incident in the waveguide and interacting with the atomic
array47,67. In order to obtain spatial resolution, the double-excited states
could also be probed by addressing individual qubits41 directly, rather than
using the waveguide modes. In this case, it might be useful to explore the
quantum tomography approach proposed in ref. 69.

Fig. 3 Self-induced Hofstadter butterfly. a Energy spectrum for the
two-polariton states in the group of states corresponding to j= 11,
calculated from the approximate Eq. (3) and by the exact
diagonalization of the two-particle Hamiltonian Eq. (1). b Butterfly
energy spectrum obtained by the exact diagonalization as a
function of group number j, determining the effective magnetic
field. Localization degree is determined as the inverse participation
ratio of the vector χ in Eq. (2) and is shown by color. Thin horizontal
line in b indicates magnetic field j/N= 11/200, corresponding to
panel a. Calculation has been performed for N= 200 and φ= 0.02,
energy is measured in the units of Γ0.
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This system is readily solved numerically after the wavefunction ψ is
rewritten in the basis of N(N− 1)/2 localized states of the type

½eψ�mn ¼ ½eψ�nm ¼ 1ffiffiffi
2

p ; n≠m:

Our next goal is to go beyond refs. 47,48,58 and obtain Eq. (3). To this end,
we notice that48,58

K � H�1 � 1
2φΓ0

∂2; where ∂2 �

�1 1 0 ¼
1 �2 1 ¼

. .
.

¼ 1 �2 1

¼ 0 1 �1

0
BBBBBB@

1
CCCCCCA
: (6)

Here, the matrix ∂2 represents the one-dimensional discrete Laplacian (or
the operator of discrete second-order derivative). This means that for a
vector ψn with a smooth dependence on n, one has

½∂2ψ�n ¼ ψnþ1 þ ψn�1 � 2ψn �
d2ψn

dn2
:

Thus, for a short-period array with φ≪ 1 the operator K reduces to the
second derivative operator. The inverted Hamiltonian K in Eq. (6) is a sparse
matrix with only nearest-neighbor couplings. This fact inspires us to
perform the transformation

ψ ¼ Kψ0K (7)

Fig. 4 Diversity of two-polariton states. a Characteristic wavefunctions for different types of two-polariton states, indicated in b by
abbreviations. b Entanglement entropy depending on the state energy. Color shows the inverse participation ratio that characterizes the
localization degree. Left and right panels correspond to the states with Re ε < ω0 and Re ε >ω0, respectively. Standing wave numbers
j are indicated near corresponding groups of states. Calculation has been performed for N= 125, ω0d/c= 0.02. Energy is measured in the units
of Γ0.
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that means change of the basis to

xj i ¼ 1ffiffiffiffi
N

p
XN
n¼1

eiω0djx�nj=cσyn 0j i; where x ¼ 1; 2; ¼N: (8)

This basis inherits the distribution of the electric field emitted by a given atom.
Indeed, expðiω0djx � nj=cÞ is just the Green function for a photon in one
dimension. Since the wave equations for the electric field are local, the
transformed two-polariton Schrödinger equation will be local as well, i.e., it will
involve only sparse matrices. Substituting Eq. (7) into Eq. (5) we find48,58

Kxx0ψ
0
x0y þ ψ0

xy0Ky0y � 2δxyψxy0Ky0x ¼ 2ðε� ω0ÞKxx0ψ
0
x0y0Ky0y ; (9)

where summation over the dummy indices x0 and y0 is assumed. Next, we
look for the solution to the transformed equation (9) in the form

ψ0
xy ¼ ψðjÞ

y χx þ ψðjÞ
x χy ; x; y ¼ 1¼N; (10)

corresponding to Eq. (2) in the main text. Here, one of the two excitations is a
single-particle eigenstate of the matrix H with the eigenfrequency Ωj. The
corresponding single-polariton eigenfrequency is ωj=ω0+Ωj. Using the
definition K � H�1, we find

KψðjÞ ¼ 1
Ωj

ψðjÞ: (11)

The state is normalized as
P

x ½ψðjÞ
x �2 ¼ 1. The normalization does not involve

complex conjugation, because the original matrix H is not Hermitian but
symmetric. As such, its eigenvectors ψ(j) satisfy the non-conjugated
orthogonality condition jjj0h i � PN

x¼1 ψ
ðjÞ
x ψ

ðj0 Þ
x ¼ δjj0 : Owing to the transla-

tional symmetry the vector ψ(j) is just a standing wave56:

ψðjÞ
x �

ffiffiffiffi
2
N

r
cos

πjðx � 1=2Þ
N

: (12)

We note, that the ansatz (10) and (12), where the eigenstate ψ(j) does not take
into account the interaction effects, works only for the transformed
Schrödinger Eq. (9). This ansatz does not adequately describe the solutions
to the original Eq. (5) because the wavefunction ψ0 does not turn to zero
for x= y.
Substituting Eq. (10) into Eq. (9), multiplying the result by ψ

ðjÞ
y and

summing over y we obtain

χx
Ωj
þ Kxyχy þ 2

Ωj
ψ
ðjÞ
x ψ

ðjÞ
y χy

h i
� 2ψðjÞ;2

x
1
Ωj
χx þ Kxyχy

h i
¼ 2ðε�ω0Þ

Ωj
Kxyχy þ 1

Ωj
ψ
ðjÞ
x ψ

ðjÞ
y χy

� �
:

(13)

We are going to consider strongly localized eigenstates that are
orthogonal to the standing wave ψ(j). Moreover, for relatively small j the
function χ changes with x much faster than ψ(j). Hence, we neglect the
terms / ψ

ðjÞ;2
x χx and / ψ

ðjÞ
x ψ

ðjÞ
y χy and find

χx
Ωj

þ Kxyχy � 2½ðψðjÞ;2ÞK�xyχy ¼
2ðε� ω0Þ

Ωj
Kxyχy : (14)

Taking Eq. (6) into account, we recover Eq. (3) from the main text.

Fourier analysis of the eigenstates
The calculation of the energy spectrum of the Hamiltonian Eq. (1),
shown in Fig. 2, is relatively straightforward. The spectrum is found by
standard linear algebra techniques, and is described in more detail in
the Supplementary Information. However, it is more challenging to
extract the butterfly spectrum in Fig. 3b from the spectrum in Fig. 2e.
This task requires careful separation of the groups of two-polariton
states. We start by performing the Schmidt decomposition of the two-
polariton state

ψxy ¼
XN
ν¼1

ffiffiffiffi
λν

p
ψν
xψ

ν
y (15)

for all the states that have Re ε<ω0 with unconjugated orthogonality
condition

P
xψ

ν
xψ

μ
x ¼ δμν . The form of decomposition Eq. (15) where left

and right singular vectors are the same enforces the symmetricity
condition ψxy= ψyx. Our analysis of the Schmidt decomposition
confirms that most states are well approximated using the two largest
singular values λ1 and λ2, that have close absolute values. Keeping only
these two terms, we obtain linear combinations of the wavefunctions ψ1

x
and ψ2

y as u
±
n ¼ λ

�1=4
1 ψ1

n ± iλ�1=4
2 ψ2

n . After that, the two-polariton state can
be approximately presented as ψxy / uþx u

�
y þ u�x u

þ
y : Next, we select one

of the two states uþx , u
�
y that has lower inverse participation ratio,

P jux j4=½
P jux j2�2, which means it is less localized in space. We

designate this state as u(free) and the more localized one as u(loc),
perform the discrete Fourier transform

uðfreeÞðkÞ ¼
XN
x¼1

e�ikxuðfreeÞx (16)

and calculate the wave vector kmax, corresponding to the maximum of
the Fourier decomposition. The number of the group can be then
determined from the quantization rule

j � kmaxN
π

� �
; (17)

where square brackets indicate the rounding to the nearest integer. In
order to improve the precision in Eq. (17) for large j, we also characterize
the vectors χ by their mirror symmetry. Then we apply Eq. (17)
separately for odd and even states with odd and even j, respectively.
The results of Fourier transform for N= 200 atoms are shown in
Supplementary Figs 3 and 4. Except for very large j close to N, the
spectrum is clearly separated into well-defined steps of alternating
parity. There is an exception of several outlier states with 26 �
kmaxN=πt 41 and smaller values of jRe ε� ω0 < 10�1j that can be seen
in lower left corner of Fig. S3. We exclude these states from our analysis
and do not put them on the butterfly spectrum Fig. 3b. Another type of
outlier states have kmaxN=π � 50 and different distinct values of
energies in the range 100Γ0 � �Re εþ ω0 � 101Γ0 (lower right quarter
of Fig. S3). They are out of the scope of the current manuscript but do
not require any special exclusion procedure. Next, we assign each step
to a different group of eigenvalues and align the groups with respect to
each other. This is done by subtracting the energy with the largest
(smallest negative) real part from the energies of the states of each
group, εj,max. In order to keep the points with the highest energy on the
semilogarithmic plot after this subtraction, we also add a small value of
1.1 × 10−4Γ0 to all the energies. The result is the butterfly spectrum,
shown in Fig. 3b.

DATA AVAILABILITY
The data files used to prepare the figures shown in the manuscript are available from
the last corresponding author upon request.
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