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An autonomous quantum machine to measure the
thermodynamic arrow of time
Juliette Monsel 1, Cyril Elouard1,2 and Alexia Auffèves1

According to the second law of thermodynamics, the evolution of physical systems has a preferred direction, that is characterized
by some positive entropy production. Here we propose a direct way to measure the stochastic entropy produced while driving a
quantum open system out of thermal equilibrium. The driving work is provided by a quantum battery, the system and the battery
forming an autonomous machine. We show that the battery’s energy fluctuations equal work fluctuations and check Jarzynski’s
equality. As these energy fluctuations are measurable, the battery behaves as an embedded quantum work meter and the machine
verifies a generalized fluctuation theorem involving the information encoded in the battery. Our proposal can be implemented with
state-of-the-art opto-mechanical systems. It paves the way toward the experimental demonstration of fluctuation theorems in
quantum open systems.
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INTRODUCTION
Irreversibility is a fundamental feature of our physical world. The
degree of irreversibility of thermodynamic transformations is
measured by the entropy production, which is always positive
according to the second law. At the microscopic level, stochastic
thermodynamics1,2 has extended this concept to characterize the
evolution of small systems coupled to reservoirs and driven out of
equilibrium. Such systems follow stochastic trajectories ~Σ and the
stochastic entropy production Δis½~Σ� obeys the integral fluctuation

theorem (IFT) exp �Δis ~Σ
h i� �D E

~Σ
= 1, where �h i~Σ denotes the

average over all trajectories ~Σ. Jarzynski’s equality (JE)3 is a
paradigmatic example of such IFT, that constrains the fluctuations
of the entropy produced, whereas driving some initially therma-
lized system out of equilibrium. Experimental demonstrations of JE

especially require the ability to measure the stochastic work W ~Σ
h i

exchanged with the external entity driving the system. In the

classical regime, W ~Σ
h i

can be completelym’s trajectory, allowing

for successful experimental demonstrations.4–6

Defining and measuring the entropy production in the
quantum regime is of fundamental interest in the perspective of
optimizing the performances of quantum heat engines and the
energetic cost of quantum information technologies.7–10 However,
measuring a quantum fluctuation theorem can be problematic in
the genuinely quantum situation of a coherently driven quantum
system, because of the fundamental and practical issues to define
and measure quantum work.11–14 So far the quantum JE has thus
been extended and experimentally verified in closed quantum
systems, i.e. systems that are driven, but otherwise isolated. In this
case, work corresponds to the change in the system’s internal
energy, accessible by a two-points measurement protocol11 or the
measurement of its characteristic function.15–17 Experimental

demonstrations have been realized, e.g. with trapped ions,18,19

ensemble of cold atoms,20 and spins in nuclear magnetic
resonance (NMR)21 where the thermodynamic arrow of time was
successfully measured.22

On the other hand, realistic strategies must still be developed to
measure the fluctuations of entropy production for quantum open
systems, i.e. that can be simultaneously driven, and coupled to
reservoirs. As work is usually assumed to be provided by a classical
entity, most theoretical proposals so far have relied on the
measurement of heat fluctuations, i.e. small energy changes of the
reservoir. Experimentally, this requires to engineer this reservoir
and to develop high efficiency detection schemes, which is very
challenging.23–25 Experimental demonstrations have remained
elusive.
In this article, we propose a new and experimentally feasible

strategy to measure the thermodynamic arrow of time for a
quantum open system in Jarzynski’s protocol that is based on the
direct measurement of work fluctuations. We investigate a so-
called hybrid opto-mechanical system,26 that consists in a two-
level system (further called a qubit) strongly coupled to a
mechanical oscillator (MO) on the one hand, and to a thermal
bath on the other hand. Studying single quantum trajectories of
the hybrid system, we show that the MO and the qubit remain in a
product state all along their joint evolution, allowing to
unambiguously define their stochastic energies. We evidence that
the mechanical energy fluctuations can be identified with the
stochastic work received by the qubit and satisfy JE. Therefore, the
MO plays the role of a quantum battery, the ensemble of the qubit
and the battery forming an autonomous machine.27–29 Originally,
the battery behaves as an embedded quantum work meter,
encoding information on the stochastic work exchanges. We show
that the evolution of the complete machine is characterized by a
generalized IFT that quantitatively involves the amount of
extracted information. This situation gives rise to so-called
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absolute irreversibility, in agreement with recent theoretical
predictions and experimental results.30–33 Our proposal is robust
against finite measurement precision34,35 and can be probed with
state-of-the-art experimental devices.
The paper is divided as follows. First, we introduce hybrid opto-

mechanical devices as autonomous machines, and build the
framework to model their evolution on average and at the single
trajectory level. Focusing on Jarzynski’s protocol, we define
stochastic heat, work, and entropy production and study the
regime of validity and robustness of JE as a function of the
parameters of the problem and experimental imperfections.
Finally, we derive and simulate an IFT for the complete machine,
evidencing the presence of absolute irreversibility. Our results
demonstrate that work fluctuations can be measured directly, by
monitoring the energetic fluctuations of the quantum battery.
They represent an important step toward the experimental
demonstration of quantum fluctuation theorem in a quantum
open system.

RESULTS
Hybrid opto-mechanical systems as autonomous machines
A hybrid opto-mechanical system consists in a qubit of ground
(resp. excited) state gj i (resp. ej i) and transition frequency ω0,
parametrically coupled to a mechanical oscillator of frequency
Ω≪ω0 (Fig. 1a). Recently, physical implementations of such
hybrid systems have been realized on various platforms, e.g.
superconducting qubits embedded in oscillating membranes,36

nanowires coupled to diamond nitrogen vacancies,37 or to
semiconductor quantum dots.38 The complete Hamiltonian of
the hybrid system reads Hqm= Hq+ Hm+ Vqm,

26 where Hq ¼
�hω0 ej i eh j � 1m and Hm ¼ 1q � �hΩbyb are the qubit and MO free
Hamiltonians, respectively. We have introduced the phonon
annihilation operator b, and 1m (resp. 1q) the identity on the
MO (resp. qubit) Hilbert space. The coupling Hamiltonian is
Vqm ¼ �hgm ej i eh j � bþ by

� �
, where gm is the qubit-mechanical

coupling strength. Of special interest for the present paper, the so-
called ultra-strong coupling regime is defined as gm ≥Ω, with
ω0 ≫ gm. It was recently demonstrated experimentally.38

The Hamiltonian of the hybrid system can be fruitfully rewritten
Hqm ¼ ej i eh j � He

m + gj i gh j � Hg
m with Hg

m ¼ �hΩbyb and
He
m ¼ �hΩByB+ �h ω0 � g2m=Ω

� �
1m, with B= b+ (gm/Ω)1m. It

appears that the qubit bare energy states ϵ ¼ e; g are stable
under the dynamics and perfectly determine the evolution of the
MO ruled by the Hamiltonian Hϵ

m. Interestingly, H
ϵ
m preserves the

statistics of coherent mechanical states, defined as
βj i ¼ eβ

�b�βby 0j i, where 0j i is the zero-phonon state and β the
complex amplitude of the field. Consequently, if the hybrid system
is initially prepared in a product state ϵ; β0j i, it remains in a similar
product state ϵ; βϵt

�� �
at any time, with βϵt

�� � ¼ exp �iHϵ
mt=�h

� �
β0j i.

The two possible mechanical evolutions are pictured in Fig. 1b
between time t0= 0 and t=Ω/2π, in the phase space defined by
the mean quadratures of the MO ~xh i ¼ bþ by

� �
and

~ph i ¼ �i b� by
� �

. If the qubit is initially prepared in the state ej i
(resp. gj i), the mechanical evolution is a rotation around the
displaced origin (−gm/Ω, 0) (resp. the origin (0, 0)). Such
displacement is caused by the force the qubit exerts on the MO,
that is similar to the optical radiation pressure in cavity opto-
mechanics. Defining δβt ¼ βet � βgt , it appears that the distance
between the two final mechanical states δβtj j scales like gm/Ω. In
the ultra-strong coupling regime, this distance is large such that
mechanical states are distinguishable, and can be used as
quantum meters to detect the qubit state.
As the hybrid system remains in a pure product state at all

times, its mean energy defined as Eqm ϵ; βϵt
� �

= ϵ; βϵt
� ��Hqm ϵ; βϵt

�� �

naturally splits into two distinct components, respectively,
quantifying the qubit and the mechanical energies:

Eq ϵ; βϵt
� � ¼ �hω βϵt

� �
δϵ;e (1)

Em βϵt
� � ¼ �hΩ βϵt

�� ��2; (2)

where δϵ;e is the Kronecker delta and ω(β) is the effective
transition frequency of the qubit defined as:

ω βϵt
� � ¼ ω0 þ 2gm Re βϵt

� �
: (3)

The frequency modulation described by Eq. (3) manifests the
back-action of the mechanics on the qubit. Note that the case gm/
Ω≪ |β0| corresponds to δβtj j � βgt

�� ��: Then the frequency modula-
tion is independent of the qubit state and follows
ω βϵt
� � � ω β0e

�iΩt� �
, even in the ultra-strong coupling regime. In

what follows, we will be especially interested in the regime where
1≪ gm/Ω≪ |β0|, where the mechanical evolution depends on the
qubit state; whereas, the qubit transition frequency is indepen-
dent of it.
We now take into account that the coupling of the qubit to a

bath prepared at thermal equilibrium. The bath of temperature T
consists of a spectrally broad collection of electromagnetic modes
of frequencies ω′, each mode containing a mean number of
photons nω0 = (exp(ħω′/kBT)− 1)−1. The bath induces transitions
between the states ej i and gj i, and is characterized by a typical
correlation time τc giving rise to a bare qubit spontaneous
emission rate γ.
The hybrid system is initially prepared in the product state

ρqm(0)= ρqð0Þ � β0j i β0h j. ρq(0) is the qubit state, taken diagonal
in the {e, g} basis. β0j i β0h j is the mechanical state, that is chosen
pure and coherent. In the rest of the paper, we shall study
transformations taking place on typical timescales t ~Ω−1, such
that the mechanical relaxation is neglected. From the properties of
the interaction with the bath and the total hybrid system’s
Hamiltonian Hqm, it clearly appears that the qubit does not
develop any coherence in its bare energy basis. We show in
Supplementary that as long as |β0|≫ gmt, the MO imposes a well-
defined modulation of the qubit frequency ω(β0(t)) with β0(t)=
β0e

−iΩt. This defines the semi-classical regime, where the hybrid
system evolution is ruled by the following master equation:

_ρqmðtÞ ¼ � i
�h Hqm; ρqmðtÞ
	 

þγnωðβ0ðtÞÞD σy � 1m

	 

ρqmðtÞ

þγ nωðβ0ðtÞÞ þ 1
� �

D σ � 1m½ �ρqmðtÞ:
(4)

We have defined the super-operator D½X�ρ ¼ XρXy � 1
2fXyX; ρg

and σ ¼ gj i eh j.
Product states of the form ρqm(t)= ρq(t)⊗ ρm(t) are natural

solutions of Eq. (4), giving rise to two reduced coupled equations,
respectively, governing the dynamics of the qubit and the
mechanics:

_ρqðtÞ ¼ � i
�h HqðtÞ; ρqðtÞ
	 
þ γnωðβ0ðtÞÞD σy

	 

ρqðtÞ

þγ nωðβ0ðtÞÞ þ 1
� �

D½σ�ρqðtÞ;
(5)

_ρmðtÞ ¼ �
i
�h
½HmðtÞ; ρmðtÞ�: (6)

We have introduced the effective time-dependent Hamiltonians:
Hq(t)= Trm[ρm(t)(Hq+ Vqm)]= ħω(β0(t)) ej i eh j and Hm(t)= Trq[ρq(t)
(Hm+ Vqm)]. The physical meaning of these semi-classical
equations is transparent: The force exerted by the qubit results
into the effective Hamiltonian Hm(t) ruling the mechanical
evolution. Reciprocally, the mechanics modulates the frequency
ω(β0(t)) of the qubit (Eq. (3)), which causes the coupling
parameters of the qubit to the bath to be time dependent.
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The semi-classical regime of hybrid opto-mechanical systems is
especially appealing for quantum thermodynamical purposes, as it
allows modeling the time-dependent Hamiltonian ruling the
dynamics of a system (the qubit) by coupling this system to a
quantum entity, i.e. a quantum battery (the MO). The Hamiltonian
of the compound is time-independent, justifying to call it an
“autonomous machine”.27–29 As demonstrated in a previous
work,39 this scenery suggests a new strategy to measure average
work exchanges in quantum open systems. Defining the average
work rate received by the qubit as _W

� �
= Trq ρqðtÞ _HqðtÞ

	 

, we have

shown that this work rate exactly compensates the mechanical
energy variation rate: Emh i= Trm½ _ρmðtÞHm�=� _W

� �
. Remarkably,

this relation demonstrates the possibility of measuring work
“in situ”, directly inside the battery. This strategy offers undeniable
practical advantages, since it solely requires to measure the
mechanical energy at the beginning and at the end of the
transformation. The corresponding mechanical energy change is
potentially measurable in the ultra-strong coupling regime gm/
Ω≫ 1,39 which is fully compatible with the semi-classical regime
gmt≪ |β0|.
Our goal is now to extend this strategy to work fluctuations. A

key point is to demonstrate that the qubit and the mechanical
state remain in a pure product state along single realizations of
the protocol, allowing to unambiguously define stochastic

energies for each entity. This calls for an advanced theoretical
treatment based on the quantum trajectories picture.

Quantum trajectories
We shall now describe the evolution of the machine between the
time t0 and tN by stochastic quantum trajectories of pure states
~Σ :¼ ΨΣ tnð Þj if gNn¼0, where ΨΣ tnð Þj i is a vector in the Hilbert space
of the machine and tn= t0+ nΔt with Δt the time increment. To
introduce our approach, we first consider the semi-classical
regime where the master Eq. (4) is valid: The initial state of the
machine ΨΣ t0ð Þj i is drawn from the product state ρqð0Þ � β0j i β0h j
where ρq(0) is diagonal in the {e, g} basis, and the evolution is
studied over a typical duration tN � t0ð Þ � β0j jg�1m . Equation (4) is
unraveled in the quantum jump picture,40–44 giving rise to the
following set of Kraus operators {J−1(tn); J+1(tn); J0(tn)}:

J�1 tnð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γΔt nωðβ0ðtnÞÞ þ 1
� �q

σ � 1m; (7)

Jþ1 tnð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γΔtnωðβ0ðtnÞÞ

q
σy � 1m; (8)

J0 tnð Þ ¼ 1qm � iΔt
�h

Heff tnð Þ: (9)

We have introduced 1qm= 1m⊗ 1q the identity operator in the

Fig. 1 a Situation under study: a qubit exchanging work W with a mechanical resonator and heat Q with a thermal bath at temperature T. The
ensemble of the qubit and mechanics constitutes an autonomous machine. This figure includes the image “fire” (https://openclipart.org/
detail/23803/fire) by Anonymous/CC0. b Evolution of the complex mechanical amplitude β if the qubit is in the ej i (resp. gj i) and the MO is
initially prepared in the state i β0j jj i. The mechanics can be used as a meter to detect the qubit state if gm/Ω≫ 1 (ultra-strong coupling
regime). The mechanical fluctuations induced by the qubit state are small w.r.t. the free evolution if β0j j 	 gm=Ω (semi-classical regime). These
two regimes are compatible (see text). c Stochastic mechanical trajectories ~β½~ϵ � in the phase space defined by ð~x; ~pÞ (see text). The MO is
initially prepared in the coherent state i β0j jj i, and the qubit state is drawn from thermal equilibrium. Inset: Distribution of final states βΣ tNð Þj i
within an area of typical width gm/Ω. Parameters: T= 80 K, ħω0= 1.2kBT, Ω/2π= 100 kHz, γ/Ω= 5, gm/Ω= 100, |β0|= 1000
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Hilbert space of the machine. J−1 and J+1 are the so-called jump
operators. Experimentally, they are signaled by the emission or
absorption of a photon in the bath, that corresponds to the
transition of the qubit in the ground or excited state, respectively.
The mechanical state remains unchanged. Reciprocally, the
absence of detection event in the bath corresponds the no-
jump operator J0, i.e. a continuous, non-Hermitian evolution
governed by the effective Hamiltonian Heff(tn)= Hqm+ Hnh(tn).

Here Hnh(t)=�ði�h=2Þ Jyþ1ðtÞJþ1ðtÞ þ Jy�1ðtÞJ�1ðtÞ
� �

is the non-

Hermitian part of Heff.
Let us suppose that the machine is initially prepared in a pure

state Ψ t0ð Þj i ¼ ϵ0; β0j i. The quantum trajectory~Σ is then perfectly
defined by the sequence of stochastic jumps/no-jump
KΣ tnð Þf gNn¼1, where K= 0, −1, +1. Namely, ΨΣ tNð Þj i=QN

n¼1 JKΣ tnð Þ Ψ t0ð Þj i
� �

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ~ΣjΨ t0ð Þ
h ir

where we have introduced

P ~ΣjΨ t0ð Þ
h i

=
QN

n¼1 P ΨΣ tnð ÞjΨΣ tn�1ð Þ½ � the probability of the tra-

jectory~Σ conditioned to the initial state Ψ t0ð Þj i. P ΨΣ tnð ÞjΨΣ tn�1ð Þ½ �
= ΨΣ tn�1ð Þh jJyKΣ tnð ÞJKΣ tnð Þ ΨΣ tn�1ð Þj i denotes the probability of the
transition from ΨΣ tn�1ð Þj i to ΨΣ tnð Þj i at time tn. At any time tN, the
density matrix of the machine, i.e. the solution of Eq. (4), can be
recovered by averaging over the trajectories:

ρqm tNð Þ ¼
X
~Σ

P ~Σ
h i

ΨΣ tNð Þj i ΨΣ tNð Þh j: (10)

We have introduced the probability of the trajectory P½~Σ�=
p Ψ t0ð Þ½ �P ~ΣjΨ t0ð Þ

h i
, where p[Ψ(t0)] the probability that the machine

is initially prepared in Ψ t0ð Þj i.
Interestingly from the expression of the Kraus operators, it

appears that starting from the product state ϵ0; β0j i, the machine
remains in a product state ΨΣ tnð Þj i= ϵΣ tnð Þ; βΣ tnð Þj i at any time tn,
which is the first result of this paper. The demonstration is as
follows: At each time step tn, either the machine undergoes a
quantum jump J±1, or it evolves under the no-jump operator J0. In
the former case, the qubit jumps from ϵΣ tnð Þ into ϵΣ tnþ1ð Þ and the
mechanical state remains unchanged, such as βΣ tnþ1ð Þj i=
βΣ tnð Þj i. In the latter case, the evolution of the machine state is
governed by the effective Hamiltonian Heff, whose non-Hermitian
part can be rewritten Hnh= (−iħ/2)1m⊗ Hq

nh with Hq
nh diagonal in

the bare qubit energy eigenbasis. It naturally derives from the
evolution rules that Hnh has no effect on a machine state of the
form ϵΣ tnð Þ; βΣ tnð Þj i, such that the no-jump evolution reduces to
its unitary component defined by Hqm. As studied above, the qubit
energy state is stable under such evolution, such that
ϵΣ tnð Þj i ¼ ϵΣ tnþ1ð Þj i. Reciprocally, the coherent nature of the

mechanical field is preserved by HϵΣ tnð Þ
m . Thus the mechanics

evolves into βΣ tnþ1ð Þj i= exp �iΔtHϵΣ tnð Þ
m

� �
βΣ tnð Þj i, completing the

demonstration.
This result invites to recast the machine trajectory as a set of

two reduced trajectories ~Σ ¼ ~ϵ;~β~ϵ½ �
n o

, where ~ϵ ¼ ϵΣ tnð Þf gNn¼0 is

the stochastic qubit trajectory with ϵΣ tnð Þ ¼ e; g. In the semi-
classical regime considered here, the jump probabilities solely
depend on ω(β0(t)), such that the qubit reduced evolution is
Markovian. Conversely, ~β ¼ βΣ tnð Þf gNn¼0 is the continuous MO

trajectory verifying βΣ tnð Þj i=Qn�1
k¼0 exp �iΔtHϵΣ tkð Þ

m

� �
β0j i. At any

time tN, the mechanical state depends on the complete qubit
trajectory~ϵ.
Examples of numerically generated mechanical trajectories ~β~ϵ½ �

(Methods section) are plotted in Fig. 1c. As it appears in the figure,
at the final time the mechanical states βΣ tNð Þj i are restricted
within an area of typical dimension gm/Ω. Splitting the mechanical

amplitude as βΣ(tN)= β0(tN)+ δβΣ(tN), the semi-classical regime is
characterized by |δβΣ(tn)|≪ |β0(tN)| while in the ultra-strong
coupling regime δβΣ tNð Þ½ Þ 	 1. These two regimes are compa-
tible, which is the key of our proposal as we show in the next
section.
Interestingly, the modeling of the machine stochastic evolution

can be extended over timescales t 
 β0j jg�1m , beyond the semi-
classical regime. The key point is that the trajectory picture allows
keeping track of the mechanical state at each time step βΣ tnð Þj i.
Therefore at each time tn, a master equation of the form of Eq. (4)
can thus be derived and unraveled into a set of trajectory-
dependent Kraus operators similar to Eq. (7), taking now ω(βΣ(tn))
as the qubit effective frequency. In this general situation, the
machine stochastic evolution still consists in trajectories of pure
product states ΨΣ tnð Þj i= ϵΣ tnð Þ; βΣ tnð Þj i, but the mechanical
fluctuations |δβΣ(tn)| cannot be neglected anymore with respect
to the mean amplitude |β0(tn)|. Consequently, Eq. (10) cannot be
written as an average product state of the qubit and the MO,
resulting in the emergence of classical correlations between the
qubit and the MO average states. Moreover, the jump probabilities
at time tn now depend on nω βΣ tnð Þð Þ, such that the reduced qubit
trajectory ~ϵ is not Markovian anymore. As we show below, this
property conditions the validity of our proposal, which is restricted
to the Markovian regime.

Stochastic thermodynamics
From now on, we focus on the following protocol: At the initial
time t0 the machine is prepared in a product state ρqm(t0)=
ρ1q β0ð Þ � β0j i β0h j, where ρ1q β0ð Þ is the qubit thermal distribution
defined by the effective frequency ω(β0). Note that ρqm(t0) is not
an equilibrium state of the whole machine. One performs an
energy measurement of the qubit, preparing the state Ψ t0ð Þj i=
ϵ t0ð Þ; β0j i with probability p1β0 ϵ½ �= exp ��hω β0ð Þδϵ;e=kBT

� �
=Z β0ð Þ. Z

(β0)= 1+ exp(−ħω(β0)/kBT) is the partition function. The machine
is then coupled to the bath and its evolution is studied between
t0= 0 and tN= π/2Ω. Depending on the choice of thermodyna-
mical system, this physical situation can be studied from two
different perspectives, defining two different transformations. If
the considered thermodynamical system is the machine, then the
studied evolution corresponds to a relaxation toward thermal
equilibrium. As the machine Hamiltonian Hqm is time-indepen-
dent, energy exchanges reduce to heat exchanges between the
machine and the bath. On the other hand, if the considered
thermodynamical system is the qubit, then the studied transfor-
mation consists in driving the qubit out of equilibrium through the
time-dependent Hamiltonian Hq(t), the driving work being
provided by the mechanics. In the semi-classical regime, the
qubit evolution is Markovian, such that this last situation simply
corresponds to Jarzynski’s protocol with Hq(t)= ħω(β0(t)) ej i eh j.
We now define and study the stochastic thermodynamical

quantities characterizing the transformation experienced by the
system (qubit or machine) for the protocol introduced above. As
shown previously, starting from a product state Ψ t0ð Þj i ¼ ϵ0; β0j i
the machine remains in a product state at any time
ΨΣ tnð Þj i ¼ ϵΣ tnð Þ; βΣ tnð Þj i. Defining as Eqm ΨΣ tnð Þ

� � ¼
ΨΣ tnð Þ
� ��Hqm ΨΣ tnð Þ

�� �
the machine internal energy, it thus naturally

splits into a sum of the qubit energy Eq ϵΣ tnð Þ; βΣ tnð Þð Þ (Eq. (1)) and
mechanical energy Em βΣ tnð Þð Þ (Eq. (2)). Along the trajectory, the
set of internal energies can change in two distinct ways. A
quantum jump taking place at time tn stochastically changes the
qubit and the machine energies by the same amount
δEq½Σ; tn� ¼ δEqm½Σ; tn�, leaving the MO energy unchanged.
Following standard definitions in stochastic thermody-
namics,24,45,46 the corresponding energy change is identified with
heat q[Σ, tn] provided by the bath. Conversely in the absence of
jump, the qubit remains in the same state between tn and tn+1,
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whereas its energy eigenvalues evolve in time due to the qubit-
mechanical coupling. Such energy change is identified with work
denoted w[Σ, tn] and verifies δEq½Σ; tn� ¼ w½Σ; tn�. During this time
interval, the machine is energetically isolated such that
δEqm½Σ; tn� ¼ 0. Therefore, the work increment exactly compen-
sates the mechanical energy change δEm½Σ; tn� ¼ �w Σ; tn½ �.
Finally, the total work (resp. heat) received by the qubit is defined

as W ~Σ
h i
¼PN�1

n¼0 w Σ; tn½ � (resp. Q ~Σ
h i
¼PN�1

n¼0 q Σ; tn½ �). By con-

struction, their sum equals the qubit total energy change between

t0 and tN, ΔEq ~Σ
h i
¼ W ~Σ

h i
þ Q ~Σ

h i
. From the analysis conducted

above, it appears that the heat exchange corresponds to the

energy change of the machine, ΔEqm ~Σ
h i
¼ Q ~Σ

h i
. Reciprocally, the

work received by the qubit is entirely provided by the mechanics
and verifies:

W ~Σ
h i
¼ �ΔEm ~Σ

h i
; (11)

which is the second result of this article. Equation (11) extends the
results obtained for the average work in a previous work,39 and
explicitly demonstrates the one-by-one correspondence between
the stochastic work received by the qubit and the mechanical
energy change between the start and the end of the trajectory.
The MO thus behaves as an ideal embedded quantum work meter
at the single trajectory level.
We finally derive the expression of the stochastic entropy

production Δis ~Σ
h i

. It is defined by comparing the probability of

the forward trajectory in the direct protocol P ~Σ
h i

to the

probability of the backward trajectory in the time-reversed

protocol ~P Σ
 h i
:47

Δis ~Σ
h i
¼ log

P ~Σ
h i

~P Σ
 h i

0
B@

1
CA: (12)

The probability of the direct trajectory reads:

P ~Σ
h i
¼ p1β0 ϵΣ t0ð Þ½ �

YN
n¼1

P ΨΣ tnð ÞjΨΣ tn�1ð Þ½ �; (13)

The state of the hybrid system averaged over the forward
trajectories at time tN is described by Eq. (10). At the end of the
protocol, the reduced mechanical average state defined as ρm(tN)
= Trq[ρqm(tN)] thus consists in a discrete distribution of the final
mechanical states βΣ tNð Þj if g. Introducing the probability pm[βf] for
the mechanical amplitude to end up in a state of amplitude βf, we
shall denote it in the following ρm(tN)= Σβfpm βf½ � βfj i βfh j, where
Σβfpm βf½ � ¼ 1.
Reciprocally, the time-reversed protocol is defined between tN

and t0. It consists in time-reversing the unitary evolution
governing the dynamics of the machine, keeping the same
stochastic map at each time tn. This leads to the expression of the
time-dependent reversed Kraus operators:46,48–50

~J0 tnð Þ ¼ 1qm þ iΔt
�h

Hyeff tnð Þ; (14)

~J�1 tnð Þ ¼ Jþ1 tnð Þ; (15)

~Jþ1 tnð Þ ¼ J�1 tnð Þ; (16)

The initial state of the backward trajectory is defined as follows:
The mechanical state βΣ tNð Þj i is drawn from the final distribution
of states βfj if g generated by the direct protocol with probability
pm[βf], whereas the qubit state is drawn from the thermal
equilibrium defined by βΣ(tN) with probability p1βΣ tNð Þ. The
probability of the backward trajectory reads

~P Σ
 h i¼ pm βΣ tNð Þ½ �p1βΣ tNð Þ ϵΣ tNð Þ½ �

´
Q1
n¼N

~P ΨΣ tn�1ð ÞjΨΣ tnð Þ½ �:
(17)

We have introduced the reversed jump probability at time tn
~P ΨΣ tn�1ð ÞjΨΣ tnð Þ½ �= ΨΣ tnð Þh j~JyKΣ tnð Þ

~JKΣ tnð Þ ΨΣ tnð Þj i. Based on Eqs.
(11), (12), (13), and (17), we derive in Supplementary the following
expression for the stochastic entropy produced along ~Σ:

Δis ~Σ
h i
¼ σ ~Σ

h i
þ ISh ~Σ

h i
; (18)

where σ[~Σ] and ISh[~Σ] are defined as

σ ~Σ
h i
¼ �

ΔEm ~Σ
h i
þ ΔF ~Σ

h i
kBT

; (19)

ISh ~Σ
h i
¼ �log pm βΣ tNð Þ½ �ð Þ: (20)

We have introduced the quantity ΔF[~Σ]= kBT log(Z(β0)/Z(βΣ(tN)))
that extends the notion of the qubit free energy change to cases
where the reduced qubit trajectory ε is non-Markovian. In the
Markovian regime, we simply recover Z(tN)= 1+ exp(−ħω(β0(tN))/

kBT) and ΔF ~Σ
h i
¼ ΔF. As we show below, in this case σ[~Σ] can be

interpreted as the entropy produced along the reduced trajectory
of the qubit, that gives rise to a reduced JE. Conversely, ISh[~Σ]
measures the stochastic entropy increase of the MO and is
involved in a generalized IFT characterizing the evolution of the

Fig. 2 Jarzynski’s equality for the qubit. Parameters: T= 80 K, ħω0=
1.2kBT, Ω/2π= 100 kHz, γ/Ω= 5. a Deviation from JE as a function of
gm
Ω

� �
= β0j j (|β0|= 5000). The points were computed by increasing the

opto-mechanical coupling strength gm/2π from 1 to 20MHz,
keeping the other parameters constant. b Deviation from JE as a
function of |β0| with gm/Ω= 10. Red squares: Case of a classical
external drive imposing the qubit frequency modulation ω(β0(t))

(see text). Blue dots: Eq. (21). Green diamonds: exp � σ ~Σ
h iD E

~Σ

� �
� 1.

These green points demonstrate that JE is not trivially reached
because the considered transformations are reversible. The error
bars represent the standard error of the mean
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whole machine. We now study in detail these two fluctuation
theorems.

Reduced Jarzynski’s equality
We first focus on the transformation experienced by the qubit. As
mentioned above, in the Markovian regime the applied protocol
corresponds to Jarzynski’s protocol: The qubit is driven out of
thermal equilibrium, whereas it experiences the frequency
modulation ω(β0(t)). As the stochastic work W ~Σ

h i
is provided by

the mechanics, one expects the mechanical energy fluctuations to
obey a reduced Jarzynski’s equality. We derive in Supplementary
the following IFT:

exp
ΔEm ~Σ

h i
kBT

0
@

1
A* +

~Σ

¼ exp � ΔF
kBT

� 

: (21)

Equation (21) corresponds to the usual Jarzynski’s equality, with
the remarkable difference that the stochastic work involved in σ[~Σ]

is now replaced by the mechanical energy change ΔEm ~Σ
h i

. This is

the third and most important result of this paper, which now
suggests a new strategy to measure work fluctuations. Instead of
reconstructing the stochastic work by monitoring the complete
qubit trajectory, one can simply measure the mechanical
stochastic energy at the beginning and at the end of the protocol.
This can be done, e.g. in time-resolved measurements of the
mechanical complex amplitude through to optical deflection
techniques.51,52 To do so, the final mechanical states βΣ tNð Þj i
should be distinguishable, which requires to reach the ultra-strong
coupling regime. As mentioned above, this regime has been
experimentally evidenced38 with typical values Ω ~ gm ~ 400 kHz.
The strategy we suggest here is drastically different from former
proposals aiming at measuring JE in a quantum open system, that
involved challenging reservoir engineering techniques24,25 or fine
thermometry23 in order to measure heat exchanges.
We have simulated the reduced JE (Fig. 2a). As expected, JE is

verified in the Markovian limit where we have checked that the
action of the MO is similar to a classical external operator
imposing the qubit frequency modulation ω(β0(t)) (Fig. 2b). On the
contrary, the Markovian approximation and JE break down in the

regime (gm/Ω)/|β0| ≥ 10−2. In what follows, we restrict the study to
the range of parameters (gm/Ω)/|β0| < 10−2.
The results presented in Fig. 2 presuppose the experimental

ability to measure the mechanical states with an infinite precision.
To take into account both quantum uncertainty and experimental
limitations, we now assume that the measured complex amplitude
βM corresponds to the mechanical amplitude βf in the end of the
protocol with a finite precision δβ. For our simulations we have
chosen δβ= 2, which corresponds to achievable experimental
value.51,52 To quantify this finite precision, we introduce the
mutual information between the final distribution of mechanical
states pm[βf] introduced above, and the measured distribution
pm[β

M], defined as:

I βf; β
M	 
 ¼X

βf ;β
M

p βf ; β
M� �

log
p βf ; β

M� �
pm βf½ �pm βM

	 

 !

: (22)

p(βf, β
M) denotes the joint probability of measuring βM, whereas

the mechanical amplitude equals βf. If the measurement precision
is infinite, the mutual information I[βf, β

M] exactly matches the
Shannon entropy characterizing the final distribution of mechan-
ical states SSh[βf]=�

P
βf
pm½βf �log pm½βf�ð Þ. On the opposite, it

vanishes in the absence of correlations between the two
distributions.
The simulation of the measured JE and the mutual information I

[βf, β
M] are plotted in Fig. 3 for the measurement precision δβ= 2,

as a function of the parameter gm/Ω (Methods section). We have
introduced the measured reduced entropy production

σM ~Σ
h i
¼ WM ~Σ

h i
� ΔF

� �
=kBT , where WM ~Σ

h i
is the measured

work distribution WM ~Σ
h i

=�ΔEMm ~Σ
h i

= �hΩ βM0
�� ��2� βMΣ tNð Þ

�� ��2� �
. As

expected, small values of gm/Ω correspond to a poor ability to
distinguish between the different final mechanical states, hence to
measure work, which is characterized by a non-optimal mutual
information. In this limit, the measured work fluctuations WM[~Σ] do
not verify JE. Increasing the ratio gm/Ω allows to increase the
information extracted on the work distribution during the readout.
Thus the mutual information converges toward SSh[βf] despite the
finite precision readout. JE is recovered for gm=Ω � 50. Such high
rates are within experimental reach, by engineering modes of
lower mechanical frequency.53

Generalized integral fluctuation theorem
We finally consider the complete machine as the thermodynami-
cal system under study. Based on Eqs. (12) and (18), we show in
Supplementary that the entropy produced along the stochastic
evolution of the hybrid system obeys a modified IFT of the form:

exp �Δis ~Σ
h i� �

~Σ
¼ 1� λ: (23)

Following,30–33 we have defined the parameter λ asP
Σ
~P Σ
 h i ¼ 1� λ. The case λ ≠ 0 signals the existence of backward

trajectories Σ
 
without any forward counterpart, i.e. P ~Σ

h i
¼ 0, a

phenomenon that has been dubbed absolute irreversibility (see
Supplementary). From Eq. (23) and the convexity of the
exponential, it is clear that absolute irreversibility characterizes
transformations associated to a strictly positive entropy produc-
tion. This is the case in the present situation, which describes the
relaxation of the machine towards a thermal equilibrium state:
Such transformation is never reversible, unless for T= 0.
The IFT (Eq. (23)) and the mean entropy production Δis ~Σ

h iD E
~Σare plotted in Fig. 4a, b respectively, as a function of the bath

temperature T (Methods section). The limit ħω0≫ kBT corresponds
to the trivial case of a single reversible trajectory characterized by
a null entropy production and λ→ 0. In the opposite regime

Fig. 3 Impact of finite precision readout of the mechanical
amplitude. Parameters: δβ= 2, T= 80 K, ħω0= 1.2kBT, Ω/2π= 1 kHz,
γ/Ω= 5. 2gm|β0| was kept constant (2gm|β0|/2π= 600 GHz) whereas
increasing gm, such that each point corresponds to the same mean

reduced entropy production σ ~Σ
h iD E

~Σ
. Left axis, blue dots: Deviation

from measured JE. Right axis, orange squares: Mutual information I
[βf, βM]. Orange dashed line: Shannon’s entropy of the final
distribution of mechanical states SSh[βf] (see text). The error bars
represent the standard error of the mean
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defined by kBT≫ ħω0, a mean entropy is produced, whereas λ→ 1:
In this situation, most backward trajectories have no forward
counterpart. As we show in Supplementary, such effect arises as a
given βf of the final distribution of mechanical states can only be
reached by a single-forward trajectory, while it provides a starting
point for a large number of backward trajectories.
As noticed in,30,33,50 absolute irreversibility can also appear in

IFTs characterizing the entropy produced by a measurement
process. In particular, λ ≠ 0 can signal a perfect information
extraction: This typically corresponds to the present situation,
which describes the creation of classical correlations between the
qubit reduced trajectory ~ϵ and the distributions of final mechan-
ical states ~β½~ϵ�. Interestingly, the two FTs (21) and (23) are thus
deeply related. To be experimentally checked, Eq. (21) requires the
MO to behave as a perfect quantum work meter, which is signaled
by absolute irreversibility Eq. (23). Therefore absolute irreversibility
is constitutive of the protocol, and a witness of its success.

DISCUSSION
We have evidenced a new protocol to measure stochastic entropy
production and thermodynamic time arrow in a quantum open
system. Based on the direct readout of stochastic work exchanges
within an autonomous machine, this protocol is experimentally
feasible in state-of-the-art opto-mechanical devices and robust
against finite precision measurements. It offers a promising
alternative to former proposals relying on the readout of
stochastic heat exchanges within engineered reservoirs, which
require high efficiency measurements. Originally, our proposal
sheds new light on absolute irreversibility, which quantifies
information extraction within the quantum work meter and
therefore signals the success of the protocol.
In the near future, direct work measurement may become

extremely useful to investigate genuinely quantum situations
where a battery coherently drives a quantum open system into
coherent superpositions. Such situations are especially appealing

for quantum thermodynamics as they lead to entropy production
and energetic fluctuations of quantum nature,46,54 related to the
erasure of quantum coherences.9,10 Recently, small amounts of
average work have been directly measured, by monitoring the
resonant field coherently driving a superconducting qubit.55

Generalizing our formalism to this experimental situation would
relate measurable work fluctuations to quantum entropy produc-
tion, opening a new chapter in the study of quantum fluctuation
theorems.

METHODS
The numerical results presented in this article were obtained using the
jump and no-jump probabilities to sample the ensemble of possible direct
trajectories.44 The average value of a quantity A ~Σ

h i
is then approximated

by A ~Σ
h iD E

~Σ½ �’
1

Ntraj

PNtraj

i¼1 A ~Σi
h i

, where Ntraj= 5 × 106 is the number of
numerically generated trajectories and ~Σi , denotes the i-th trajectory.
The reduced entropy production σ ~Σ

h i
used in Figs. 2 and 4 was

calculated with the expression (19), using the numerically generated values
of β0 and βΣ(tN) in the trajectory~Σ. One value of βΣ(tN) can be generated by
a single direct trajectory Σ: Below we use the equality pm βΣ tNð Þ½ � ¼ P ~Σ

h i
.

Using the expression (17) of the probability of the reversed trajectory, the
average entropy production becomes:

Δis ~Σ
h iD E

~Σ
¼ log

P ~Σ½ �
~P Σ
 	 


 !
~Σ

¼ �log p1βΣ tNð Þ ϵΣ tNð Þ½ �
�D

´
QN
n¼1

~P ΨΣ tn�1ð ÞjΨΣ tnð Þ½ �

�

~Σ

’ �1
Ntraj

PNtraj

i¼1
log p1

βiΣ tNð Þ ϵ
i tNð Þ½ �

�

´
QN
n¼1

~P Ψi
Σ tn�1ð ÞjΨi

Σ tnð Þ
h i


;

and,P
~Σ

~P Σ
 h i¼ P

~Σ

p1βΣ tNð Þ ϵΣ tNð Þ½ �pm βΣ tNð Þ½ �

´
QN
n¼1

~P ΨΣ tn�1ð ÞjΨΣ tnð Þ½ �

¼ p1βΣ tNð Þ ϵΣ tNð Þ½ � QN
n¼1

~P ΨΣ tn�1ð ÞjΨΣ tnð Þ½ �~Σ

’ 1
Ntraj

PNtraj

i¼1
p1
βiΣ tNð Þ ϵ

i tNð Þ½ �

´
QN
n¼1

~P Ψi
Σ tn�1ð ÞjΨi

Σ tnð Þ
h i

:

To obtain Fig. 3, we considered that the preparation of the initial MO
state was not perfect. So instead of starting from exactly β0j i, the MO
trajectories start from βΣ t0ð Þj i with the βΣ(t0) uniformly distributed in a
square of width 2δβ, centered on β0. Similarly, the measuring apparatus
has a finite precision, modeled by a grid of cell width 2δβ in the phase
plane (Re βf, Im βf). Instead of obtaining the exact value of βΣ(tN), we get
βMΣ tNð Þ, the center of the grid cell in which βΣ(tN) is. The value used to
compute the thermodynamical quantities are not the exact βΣ(t0) and
βΣ(tN) but β

M
0 ¼ β0 and βMΣ tNð Þ.
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