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Connecting nth order generalised quantum Rabi models:
Emergence of nonlinear spin-boson coupling via spin rotations
Jorge Casanova1, Ricardo Puebla1,2, Hector Moya-Cessa 3,4 and Martin B. Plenio1

We establish an approximate equivalence between a generalised quantum Rabi model and its nth order counterparts, where spin-
boson interactions are nonlinear as they comprise a simultaneous exchange of n bosonic excitations. Although there exists no
unitary transformation between these models, we demonstrate their equivalence to a good approximation in a wide range of
parameters. This shows that nonlinear spin-boson couplings, i.e., nth order quantum Rabi models, are accessible to quantum
systems with only linear coupling between boson and spin modes by simply adding spin rotations and after an appropriate
transformation. Furthermore, our result prompts novel approximate analytical solutions to the dynamics of the quantum Rabi
model in the ultrastrong coupling regime improving previous approaches.
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INTRODUCTION
The quantum Rabi model (QRM) lies not only at the heart of our
understanding of light-matter interaction,1 but is also of
importance in diverse fields of research.2 The Rabi model was
primarily proposed to describe a nuclear spin interacting with
classical radiation,3,4 whose quantised version only appeared two
decades later.5 This contemplates a scenario which is of great
generality as it encompasses two of the most basic, yet essential,
ingredients in quantum physics, namely, a two-level system and a
bosonic mode. Indeed, this model emerges in disparate settings,
ranging from ion traps6,7 to circuit or cavity QED,8,9 quantum
optomechanical systems,10 colour-centres in membranes,11 and
cold atoms.12

Even though the QRM has been exhaustively investigated in the
last decades, a number of recent findings has brought it again into
the research spotlight. Among them we can mention its
integrability,13 the existence of a distinctive behaviour in the
deep strong coupling regime,14 or the emergence of a quantum
phase transition.15–18 Closely related to the QRM, we find the nth
order QRM (nQRM) which differs from the QRM in that the nQRM
comprises n-boson exchange interaction terms because of the
presence of a nonlinear spin-boson coupling. This generalisation
of the QRM has recently attracted attention, mainly in its second-
order form (2QRM) as it shows striking phenomena such as
spectral collapse,19–21 due to its relevance in preparing non-
classical states of light in quantum optics22,23 and regarding its
solvability.24–26 These studies have also been extended to a mixed
QRM comprising both one-boson and two-boson interaction
terms, which appears in the context of circuit QED.27–29

Furthermore, solutions to this mixed QRM have recently been
found,30 and it has also been reported that this model displays
quantum phase transitions.31 Due to these compelling physical
properties, the coherent control of nth order quantum Rabi
models could open new avenues to develop different fields as

quantum computing or quantum simulations. In addition, because
of their different spectra, it is worth noting that there is no unitary
map between the QRM and the nQRM with n > 1.
In this article, we demonstrate the existence of a connection,

i.e., an approximate equivalence, among a family of Hamiltonians
comprising nth order boson interaction terms, where the standard
QRM or the 2QRM appear as special cases. As a proof of concept,
we show how the dynamics of a 2QRM and a 3QRM can be
captured without having access to the required nonlinear two-
photon and three-photon interactions, and after an appropriate
transformation of a linear QRM that includes spin driving terms,
i.e., spin rotations. The latter is dubbed here as generalised QRM
(gQRM). In this manner we can argue that, a quantum system that
contains a linear spin-boson coupling but lacks of nonlinear
interactions suffices for the simulation of models where nonlinear
terms are crucial. Our method works as follows: The dynamics of a
state |ψ〉 evolving under a nQRM (the targeted dynamics) can be
successfully retrieved from a gQRM (the starting point of our
method) by (i) evolving a transformed initial state T|ψ〉 under
gQRM during a time t and (ii) measuring customary spin and
boson observables of the gQRM. We will demonstrate that the
latter corresponds to expectation values of observables of the
state ψðtÞj i evolved under the nonlinear nQRM (see Fig. 1 for a
scheme of the method). Indeed, as creating n-boson interactions is
considered challenging in many quantum platforms, our method
opens new avenues for their inspection. It is worth stressing that
this reported method fundamentally differs from previous works
where resonant multi-boson effective Hamiltonians were
obtained, either via amplitude modulation as used in circuit
QED,32–34 or via adiabatic passage.35,36 In these works, effective
multi-boson exchange terms do not comprise nonlinear spin-
boson couplings and hold only in a very limited parameter regime
and/or for particular states. Certainly, in this article we report an
approximate equivalence among nQRMs which holds in a large
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range of parameters and grants a large tunability to explore their
physics, as well as it unveils a fundamental relation between these
models. Moreover, we present a potentially scalable platform,37 a
microwave-driven trapped ion setting,38–41 in which nQRMs are
unattainable without resorting to our approximate equivalence,
which highlights the applicability of our method. Finally, we use
our theory to analyse the standard QRM and find that our method
provides, in addition, approximate analytical solutions that surpass
in accuracy previous approaches in the ultrastrong coupling
regime.42–47

RESULTS
Description of the approximate equivalence
We begin with the following general Hamiltonian (later we will
demonstrate its connection with the gQRM that only contains
linear spin-boson interactions and represents the starting point of
our approximate equivalence)

Hs ¼ νayaþ ω

2
σz þ Ω

2

X
j

σþeiη aþayð Þe�iαj þ H:c
h i

; (1)

whose first two terms correspond to a bosonic mode of frequency
ν and a two-level system with a frequency splitting ω, described
by the usual annihilation (creation) operator a (a†) and spin-12 Pauli
matrices ~σ ¼ σx ; σy; σz

� �
. Both subsystems interact through a set

of coupling terms with amplitude Ω/2 and parameter η,
considered here equal ∀j, and αj being a time dependent phase.
The Hamiltonian Hs is central for our theory, as sketched in Fig. 1,
and establishes an approximate map between gQRM dynamics
with those of the nQRM. We perform a unitary transformation on
Hs to find HT ¼ Tðiη=2ÞHsT yðiη=2Þ, where TðβÞ ¼
1=

ffiffiffi
2

p DðβÞ ej i gh j þ gj i gh jð Þ þ DyðβÞ ej i eh j � gj i eh jð Þ� �
with σz ¼

ej i eh j � gj i gh j and DðβÞ ¼ eβa
y�β�a is the displacement operator.

Note that this transformation has been used in the context of
trapped ions to derive the eigenstates of a system that comprises
a laser interacting with a trapped ion, and for fast implementa-
tions of the QRM.48,49 Now, choosing time dependent phases, αj=
(ω+ δj)t, and moving to a rotating frame with respect to HT,0=
−(ω+ δ1)σx/2, the resulting Hamiltonian, HgQRM, reads (for more
details see Methods section)

HgQRM � Uy
T ;0ðtÞðHT � HT ;0ÞUT ;0ðtÞ

¼ νayaþ δ1
2 σx � ην

2 pσx
þ Ω

2

P
j
fcos½ðδj � δ1Þt�σz þ sin½ðδj � δ1Þt�σyg

(2)

with p ¼ iðay � aÞ and UT ;0 ¼ e�itHT ;0 . The previous Hamiltonian is
the one of the gQRM, where its last term can be viewed as a
classical driving acting on the system, i.e. this is the term leading
to spin rotations. In particular, we note that HgQRM adopts the form
of a standard QRM in the case of having δj= 0 ∀j.
On the other hand, the Hamiltonian Hs in Eq. (1) can be brought

into the form of a HnQRM by properly choosing αj and in a suitable
interaction picture. More specifically, by defining Hs= Hs,0+ Hs,1

with Hs;0 ¼ ðν � ~νÞayaþ ðω� ~ωÞσz=2 and considering two inter-
action terms (i.e., j= 1,2) such that δ1;2 ¼ ∓ nν � ~ω± n~ν (recall
that αj= (ω+ δj)t and thus αj and δj are related) with ~ω>0 and ~ν>0,
we find that HI

s;1 ¼ eitHs;0Hs;1e�itHs;0 approximately leads to

HnQRM ¼ ~νayaþ ~ω

2
σz þ gn eiϕnσþðan þ ðayÞnÞ þ H:c

� �
(3)

with ϕn= nπ/2 and gn= ηnΩ/(2 n!). The validity of Eq. (3) is
ensured when Ω � ν, j ~ωþ n~νj � nν together with

jηj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ ayÞ2

D Er
� 1 to safely perform a rotating wave approx-

imation (RWA) in the joint Hilbert space involving spin and
bosonic degrees of freedom. In this respect, an expression of the
leading order error committed by our scheme can be found in
section I of Supplementary Information for further explanation
and details of the calculation. The simulated nQRM can be
brought into strong or ultrastrong coupling regimes as the
parameters ~ω and ~ν can be tuned to frequencies comparable
to gn.
In this manner, having access to HgQRM that includes only a

linear spin-boson interaction, enables the exploration of a nQRM
with nonlinear spin-boson coupling (n > 1), whose physics is
fundamentally different. For example, the most exotic hallmarks of
the two-photon QRM (2QRM), are that the spectrum becomes a
continuum for g2 ¼ ~ν=2 regardless of ~ω, and for g2>~ν=2 the
Hamiltonian is not longer lower bounded.19,20,25,50 The gQRM
lacks these features, and it is therefore not obvious that the
physics of H2QRM can be accessed from HgQRM. Moreover, the
HgQRM allows to simulate more exotic scenarios like combined
nQRM and mQRM (see section II in Supplementary Information for
further explanation and details of the calculation).
Based on the previous transformations one can find the

following expression among operators that establishes a relation
between the gQRM and nQRM dynamics, which is the central
result of this article (see Methods for a more detailed derivation):

UgQRM � ΓyðtÞUnQRMT
yðiη=2Þ: (4)

Here, UgQRM and UnQRM are the propagators of the gQRM and
nQRM respectively, ΓðtÞ ¼ Uy

s;0T
yðiη=2ÞUT ;0 with Us;0 ¼ e�itHs;0 , and

the approximate character of Eq. (4) is only a consequence of the
RWA performed to achieve HnQRM from Hs. Hence, an initial state |
ψnQRM(0)〉 after an evolution time t under HnQRM can be
approximated as |ψnQRM(t)〉 ≈ Γ(t)|ψgQRM(t)〉 with the initial state |
ψgQRM(0)〉= T(iη/2)|ψnQRM(0)〉.
Remarkably, while the dynamics under the gQRM occurs in a

typical time 1/(ην), see Eq. (2), the simulated nQRM (Eq. (3))
involves parameters that are much smaller than ν since they
satisfy the previously commented conditions Ω � ν,
j~ωþ n~νj � nν, and gn= ηnΩ/(2 n!). As a consequence, a long
evolution time of gQRM is required to effectively reconstruct the
dynamics of nQRM.
Finally, our theory is completed with a mapping for the

observables. As it can be derived from Eq. (4) (see Methods), the
expectation value of an observable OnQRM, i.e., an observable of
the nQRM, corresponds to evaluate OgQRM ¼ ΓyðtÞOnQRMΓðtÞ in the
gQRM. Because Γ(t) involves bosonic displacement and spin
rotations, OgQRM may be in general intricate. Yet, for two relevant
observables in nQRM, σz and a†a, the mapping leads to simple
operators, namely, σz transforms into −σx and a†a into

Fig. 1 Scheme of the approximate equivalence. a Diagram of the
approximate equivalence among Hs, HnQRM and HgQRM. The
transformation between Hs and HgQRM is exact (solid arrow), while
between Hs and HnQRM is approximated (dashed arrow). Hence, we
establish an approximate map between nQRM and gQRM (blurred
arrow). b The latter is accomplished by the transformations between
initial states (|ψnQRM(0)〉, |ψgQRM(0)〉), evolved states (|ψnQRM(t)〉, |
ψgQRM(t)〉), and observables (OnQRM, OgQRM)
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aya� η=2pσx þ η2=4 (see Methods). Interestingly, it still possible
to obtain good approximations for other observables by truncat-
ing bosonic operators. Indeed, e�η2=2 σz;ycosðð~ωþ δ1ÞtÞ ∓

�
σy;zsinðð~ωþ δ1ÞtÞ� turns to be a good approximation of σx,y in
the gQRM frame (see Sec. III in Supplementary Information for
further explanation and details of the calculation) which allows to
recover the full qubit dynamics of nQRM.

Approximate equivalence among gQRM and 2 and 3QRM
To numerically confirm our approximate equivalence, in Fig. 2 we
show the results of the simulated dynamics of a 2QRM and a 3QRM
using a gQRM for a certain set of parameters and initial states |ψ
(0)2QRM〉= |2〉|↑〉x and ψð0Þ3QRM

�� � ¼ 0j i þ 1j ið Þ= ffiffiffi
2

p "j ix , with
" ð#Þj ix¼ ej i± gj ið Þ= ffiffiffi

2
p

. In addition, in Fig. 2c we show that the
targeted σx of a nQRM is retrieved by means of the previously
mentioned bosonic truncation of σx in the gQRM frame, i.e.,
e�η2=2 σz cosðð~ωþ δ1ÞtÞ � σy sinðð~ωþ δ1ÞtÞ

� �
. Furthermore, in order

to quantify the agreement among these models and the validity of
the previous theory, we compute the fidelity between the ideal
quantum state of the nQRM and the approximated state evolved in
the gQRM and properly transformed with Γ(t), that is,
Fg;nðtÞ ¼ ψgQRMðtÞ

	 ��ΓyðtÞ ψnQRMðtÞ
�� �

. The computed fidelities of
the considered cases are well above 0.99, showing the good
agreement among these two models. Note that although H3QRM

could present truncation problems for g3 ≠ 0 (see ref. 51), these do
not affect the dynamics for the particular case plotted in Fig. 2.
Indeed, for the chosen parameters and initial state, the dynamics
during the considered evolution takes place in a constrained

region of the Hilbert space and thus it does not show Fock space
truncation problems (see section IV in Supplementary Information
for further explanation and details of the calculation] for further
details). It is however worth stressing that this is not the general
case, because the 3QRM is not bounded from below. Therefore, the
number of excitations can grow very fast and, as a consequence,
the simulation of the 3QRM relying on the approximate

equivalence will break down since jηj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ ayð Þ2

D Er
� 1 is not

longer satisfied. It is important to mention that our approximate
equivalence is, in addition, not restricted to small times. The latter
assertion is corroborated in Fig. 2 where the propagators for the
2QRM and 3QRM for the final time tf ¼ 2π 4

~ν (values of ~ν in the

caption) are exp �iπ ~ν
g2
ayaþ ~ω

2g2
σz � σx a2 þ ðayÞ2


 �h in o
and

exp �i2π=5 ~ν
g3
ayaþ ~ω

2g3
σz þ σy a3 þ ðayÞ3


 �h in o
respectively. Note

that in both previous cases the coupling terms are multiplied by a
phase π and 2π/5 respectively. We furthermore stress that these
phases (π and 2π/5) can be increased without deteriorating the
achieved fidelities by simply choosing a larger value for ν. As
previously commented, this is indeed possible since the approx-
imate character of our method appears when we equal Hs to
HnQRM, whose performance is enhanced for large values of ν (see
Methods).

Application for microwave driven ions
The proof-of-concept of our method can be illustrated in a
microwave driven ions platform. Note that the developed theory

Fig. 2 Simulated nQRM dynamics using gQRM. Comparison between the dynamics of HnQRM and the simulated one using HgQRM, for n= 2 (a)
and n= 3 (b). a, b Show 〈σz〉 and aya

	 �
of the nQRM (solid green lines) and their counterpart in the gQRM frame, that is, −〈σx〉 and

aya
	 �� η=2 pσxh i þ η2=4, respectively, depicted with dashed dark blue (2QRM) and dotted-dashed red lines (3QRM). With the same style, in (c)
we show the ideal 〈σx〉 for 2QRM (top) and 3QRM (bottom) and its approximated counterpart using gQRM, obtained through bosonic
truncation (see main text). We take as initial state |ψ2QRM(0)〉= |2〉|↑〉x and the parameters g2=~ν ¼ 0:125 and ~ω ¼ 2~ν. For the 3QRM,
ψ3QRMð0Þ
�� � ¼ 0j i þ 1j ið Þ= ffiffiffi

2
p "j ix , g3=~ν ¼ 0:05 and ~ω ¼ 3~ν. For HgQRM, ω/ν= 108, Ω/ν= 0.1 and ~ν=ν ¼ 5 ´ 10�4 . In d we show the infidelity

between the states for the two considered models, 1− Fg,2(t) (dashed dark blue line) and 1− Fg,3(t) (dotted-dashed red line)
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may be relevant in other systems as circuit QED.9 A microwave-
driven trapped ion in a magnetic field gradient is described by (for
more details see ref. 38–41)

HMW ¼ ω

2
σz þ νayaþ Δ aþ ay

� �
σz þ

X
j

Ωjσxcos ωj t þ φj

� �
; (5)

where ω is the qubit energy splitting with a value that depends on
the ion species. For example, for 171Yb+, we have ω ≈ 12.4 GHz52

plus a factor γBz with γ ≈ 1.4 MHz/G that depends on the applied
static magnetic field Bz. The coupling parameter Δ determines the
rate of the spin-boson coupling, while the last term corresponds to
the action of microwave radiation on the system.53 In this setup
the spin-boson coupling is restricted to be linear, and therefore our
theory appears as an alternative to introduce higher-order boson
couplings in the dynamics. In order to take Eq. (5) into the form of
Eq. (2), and subsequently (via the mapping T) into the general
expression in Eq. (1), we define ω ¼ δ1 þ ~ω and move to a rotating
frame with respect to the term ~ω

2 σz . Considering two drivings such
that φ1,2= π, ω1 ¼ ~ω and ω2 ¼ ~ω� ðδ2 � δ1Þ and after eliminating
terms that rotate at frequencies on the order of GHz, we find

HI
MW ¼ νayaþ Δ aþ ay

� �
σz þ δ1

2
σz � Ω

2
σx � Ω

2
σþeiðδ2�δ1Þt þ H:c:


 �
;

(6)

which equals HgQRM after a basis change, that is,
e�iπ4σy e�iπ2a

yaHI
MWe

iπ2a
yaei

π
4σy ¼ HgQRM; where HgQRM is given in Eq.

(2) with η= 2Δ/ν. Hence, it is possible to use a microwave-driven
ion to simulate models with nonlinear spin-boson couplings (see
section V in Supplementary Information for further explanation
and details of the calculation] for more details concerning the
implementation in this setup).

Approximate analytical solution for the QRM
Finding a solution to the QRM has been subject of a long-standing
debate, which still attracts considerable attention.13,25,54,55 Based
on our theory, we obtain a simple expression for the time-
evolution propagator and expectation values of the QRM. The
general expression given in Eq. (2) adopts the form of a standard
QRM with a unique driving and δ1= 0,

HQRM ¼ HgQRMðδ1 ¼ 0Þ ¼ νaya� ην

2
pσx þ Ω

2
σz; (7)

which, applying our method, approximately corresponds to
Haux ¼ Ω=2σx½1� η2ðayaþ 1=2Þ�. Indeed, from Hs= Hs,0+ Hs,1

with Hs;0 ¼ νayaþ ωσz=2 (setting ~ω ¼ ~ν ¼ 0), we obtain now
Uy
s;0Hs;1Us;0 � Haux instead of HnQRM, and where fast oscillating

terms have been neglected performing a RWA, requiring again

jηj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ ayÞ2

D Er
� 1, and only considering resonant terms up to

η2 (see Sec. IV in Supplementary Information for further
explanation and details of the calculation). As a consequence,
the following analysis does not apply to the deep-strong coupling
regime,14 found here when η ≥ 2. Hence, the propagator for the
QRM is approximated as

UQRM � Uy
T ;0Tðiη=2ÞUs;0UauxT

yðiη=2Þ; (8)

which is expected to hold even in the ultrastrong coupling regime of
the QRM, although restricted to the condition Ω � ν. Because Haux

has a simple form, the time evolution can be analytically
solved, with an initial state ψauxð0Þj i ¼ T yðiη=2Þ ψQRMð0Þ

�� �
. Indeed,

Haux ¼
P

n;± E ±
n φ±

n

�� �
φ±
n

	 �� with φ±
n

�� � ¼ nj i " ð#Þj ix and
E ±
n ¼ ±Ω=2ð1� η2ðnþ 1=2ÞÞ. Now, employing the map between
the two models, Eq. (8), we obtain the relation between observables.
For example, a†a in the QRM translates to ayaþ η2=4þ
η=2ðxσzsinνt � pσzcosνtÞ in Haux (see section VII in Supplementary
Information for further explanation and details of the calculation).
In addition, we show that our method improves the typical
Bloch-Siegert (BS) approximation43,44 and the generalised RWA
(GRWA) of the QRM45–47 in a particular parameter regime. The
former, i.e., the BS, is found as e−SHQRMe

S ≈ HBS, with
HBS ¼ ðν þ ~gΛσzÞayaþ ðΩþ ~gΛÞ=2σz � ~gðiayσ� � iaσþÞ, where
the anti-Hermitian operator is given by
S ¼ iΛðayσþ þ aσ�Þ � ξσzða2 � ðayÞ2Þ, with parameters
Λ ¼ ~g=ðν þ ΩÞ, ξ ¼ ~gΛ=ð2νÞ and ~g ¼ ην=2 (see ref. 43,44). The
GRWA of the QRM is attained in a similar manner, but with S ¼
~g=νχσzðay � aÞ such that e−SHQRMe

S ≈ HGRWA, where HGRWA has a
Jaynes-Cummings form with modified parameters, see ref. 45–47 and
section VIII in the Supplementary Information for further explanation
and details of the calculation] for furtherdetails. In Fig. 3 we compute
the overlap between time-evolved states for these three approaches
(our approximate solution, the BS approximation, and the GRWA)
and the QRM. The approximate solution reproduces correctly the
time evolution of the QRM as the coupling enters in the non-
perturbative ultrastrong regime, ~g=ν ¼ 0:2 (see ref. 44) with a fidelity
FQRM,aux > 0.99, while approximations HBS and HGRWA fail as their
fidelities drop significantly. For smaller couplings these approaches
lead to similar high fidelities (see Fig. 3a).

DISCUSSION
We have presented a connection, i.e., an approximate equivalence,
among a family of Hamiltonians, including the QRM and its higher
order counterparts (nQRM) comprising a nonlinear interaction
term that involves the simultaneous exchange of n bosonic

Fig. 3 Approximate solutions to the QRM. Infidelity between the time-evolved state of QRM and its approximate solution evolved from Haux,
the BS Hamiltonian HBS and the GRWA approach HGRWA. These are denoted by 1− FQRM,aux (solid red), 1− FQRM,BS (dashed green) and 1− FQRM,

GRWA (dashed-dotted blue), respectively. For a Ω/ν= 0.1, ~g=ν ¼ η=2 ¼ 0:15 and ψð0Þj i ¼ 0j i "j ix , and in b Ω/ν= 0.04, η/2= 0.2 and |ψ(0)〉= |2〉|
g〉
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excitations with the spin–qubit, such as the two-photon QRM. In
particular, the standard QRM including spin driving terms, i.e., the
gQRM, allows us to retrieve the nQRM dynamics with very high
fidelities. This theoretical framework shows that nQRMs can be
accessed even in the absence of the required nonlinear spin-
boson exchange terms, as illustrated with a microwave-driven
trapped ion. Therefore, we find that this fundamental model, the
gQRM, approximately contains the dynamics of all other nth order
models. Moreover, we have derived an approximate solution to
the dynamics of the QRM even in the ultrastrong coupling regime
which surpasses in accuracy previous approximate solutions. In
this manner, we have defined a general theoretical frame for the
study and understanding of this family of fundamental Hamilto-
nians and their associated dynamics, which may open new
avenues in quantum computing and simulation.

METHODS
Transformation between Hs, HgQRM, and HnQRM

The Hamiltonian Hs, given in Eq. (1), after the unitary transformation
HT ¼ Tðiη=2ÞHsTyðiη=2Þ, adopts the following form

HT ¼ νaya� ω

2
σx þ iην

2
a� ay
� �

σx þ νη2

4
þ Ω

2

X
j

cosαj σz þ sinαj σy
� �

;

(9)

which becomes HgQRM in the rotating frame with respect to HT,0=−(ω+
δ1)σx/2, namely, HgQRM � Uy

T ;0ðtÞðHT � HT ;0ÞUT ;0ðtÞ as given in Eq. (2). For
simplicity, we constrain ourselves to the case in which Ωj ≡ Ω ∀j, although
the procedure can be easily extended to a more general scenario. On the
other hand, Hs leads to the desired nQRM when moving to an interaction
picture with respect to Hs;0 ¼ ðν � ~νÞayaþ ðω� ~ωÞ=2σz with Hs= Hs,0+
Hs,1 Then, the interacting part of Hs can be written as

HI
s;1 � Uy

s;0ðt; t0ÞðHs � Hs;0ÞUy
s;0ðt; t0Þ

¼ ~νayaþ ~ω
2 σz þ

P
j

Ω
2 σþeiðω�~ωÞt0eiηðaðt0Þþayðt0ÞÞe�iαj þ H:c:
n o

;
(10)

with aðtÞ ¼ ae�iðν�~νÞt , ayðtÞ ¼ ayeiðν�~νÞt , and Us;0ðt; t0Þ the time-evolution
operator associated to Hs,0 such that t′= t− t0. Then, expanding the

exponential, considering that Ω � ν and jηj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ ayÞ2

D Er
� 1, and that

δ1;2 ¼ ∓ nν � ~ω± n~ν with j~ωþ n~νj � nν, one can perform a rotating wave
approximation just keeping those terms resonant with σ+an and σ−an. In
general,

HI
s;1 � HnQRM ¼ ~νayaþ ~ω

2
σz þ gn eiϕnσþ þ e�iϕnσ�

� �
´ an þ ðayÞn� �

; (11)

with gn= ηnΩ/(2 n!) and ϕn= nπ/2. Hence, it is possible to achieve a HnQRM

from Hs. Note however that the corresponding attained coupling gn
becomes smaller for increasing n, as it is proportional to ηn/n!. In particular,
for n= 2, HI

s;1 can be approximated as

HI
s;1 � H2QRM ¼ ~νayaþ ~ω

2
σz � η2Ω

4
σx a2 þ ðayÞ2

 �

: (12)

Note that, while the Hamiltonians Hs and HgQRM are related through a
unitary transformation, the achievement of a n-photon QRM, HnQRM, from
Hs requires of certain relations between parameters, such as Ω � ν, j~ωþ
n~νj � nν and jηj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ ayÞ2

D Er
� 1 to safely perform the rotating wave

approximation. In addition, it is worth stressing that the equivalence to a
good approximation is not restricted to HnQRM and HgQRM. For example, a
HgQRM can lead into a more complex Hamiltonian, such as one comprising
both nQRM and mQRM interaction terms (see Supplementary Information
for further explanation and details of the calculation).

Transformations of observables and states
Here we show the derivation of the Eq. (4) which is a central result of this
article. Having established the transformations that connect HgQRM with Hs,
and HnQRM with Hs we can relate them in terms of the time-evolution

operators,

UT ¼ Tðiη=2ÞUsT
yðiη=2Þ; (13)

UT ¼ UT ;0U I
T ;1 ¼ UT ;0UgQRM; (14)

Us ¼ Us;0U I
s;1 � Us;0UnQRM; (15)

where U I
x;1 denotes the time-evolution propagator of Hx,1 in an interaction

picture with respect to Hx,0 such that Hx= Hs,0+ Hs,1. Note that we have
dropped the explicit time dependence for the sake of readability (see
previous Eqs. (9–11) for the specific transformations). Then, combining the
Eqs. (13–15), we arrive to

UgQRM � Uy
T ;0Tðiη=2ÞUs;0UnQRMT

yðiη=2Þ; (16)

which is the Eq. (4), UgQRM ¼ ΓyðtÞUnQRMT yðiη=2Þ with
ΓðtÞ ¼ Uy

s;0T
yðiη=2ÞUT ;0. Then,

ψnQRMðtÞ
�� � ¼ UnQRM ψnQRMð0Þ

�� �
� ΓðtÞUgQRMTðiη=2Þ ψnQRMð0Þ

�� �
¼ ΓðtÞ ψgQRMðtÞ

�� � (17)

with the relation between initial states |ψgQRM(0)〉= T(iη/2)|ψnQRM(0)〉.
Finally, from Eq. (17) it is straightforward to obtain the observable that
must be measured in the gQRM frame in order to retrieve OnQRM of the
nQRM, i.e., OgQRM ¼ ΓyðtÞOnQRMΓðtÞ. Explicitly, Γ(t) reads
ΓðtÞ ¼ e�itð~ω�ωÞ=2σz e�itð~ν�νÞayaT yðiη=2Þe�itð�ðωþδ1Þ=2σxÞ

and thus, for OnQRM= σz and a†a the transformation leads to

ðσzÞgQRM ¼ �σx (18)

ðayaÞgQRM ¼ aya� η

2
pσx þ η2

4
; (19)

while for other observables, like σx and σy, a more intricate expression is
attained,

ðσxÞgQRM ¼ cosððωþ δ1ÞtÞσz � sinððωþ δ1ÞtÞσy
� 


Re DðiηÞeiðω�~ωÞt� �
þ sinððωþ δ1ÞtÞσz þ cosððωþ δ1ÞtÞσy
� 


Im DðiηÞeiðω�~ωÞt� �
(20)

ðσyÞgQRM ¼ sinððωþ δ1ÞtÞσz þ cosððωþ δ1ÞtÞσy
� 


Re DðiηÞeiðω�~ωÞt� �
� cosððωþ δ1ÞtÞσz � sinððωþ δ1ÞtÞσy
� 


Im DðiηÞeiðω�~ωÞt� �
(21)

as it involves qubit and bosonic operators due to the presence of the
displacement operator DðβÞ. However, because the condition

jηj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ ayÞ2

D Er
� 1 is required to guarantee a good realisation of HnQRM

and so that of Eq. (4), the previous expression can be well approximated by
truncating DðβÞ. Indeed, in our case DðiηÞ can be approximated up to third
order as

DðiηÞ ¼ e�η2=2 I þ iηðaþ ayÞ � η2

2
2ayaþ ðayÞ2 þ a2


 �
þO η3a3

� �� �

(22)

In general, we can approximate the observable (σj)gQRM by truncating at
order M, that is,

ðσjÞgQRM � ðσjÞMgQRM ¼
XM
n¼0

ðσjÞðnÞgQRM; (23)

where the terms ðσjÞðnÞgQRM for j= x,y and can be calculated from Eqs. (20–
22). In particular, for σx,y and for n= 0,

ðσxÞð0ÞgQRM ¼ e�η2=2 σzcosðð~ωþ δ1ÞtÞ � σysinðð~ωþ δ1ÞtÞ
� �

(24)

ðσyÞð0ÞgQRM ¼ e�η2=2 σzsinðð~ωþ δ1ÞtÞ þ σycosðð~ωþ δ1ÞtÞ
� �

(25)

Note that measuring ðσx;yÞðMÞ
gQRM would require measurements of

observables in the gQRM of the form σy;zðaM þ ðayÞMÞ as well as
σy;zðayÞnam with n+m=M and n ≥m (see Supplementary Information
for further explanation and details of the calculation). Remarkably, for the
considered cases here, the zeroth order approximation already reproduces
reasonably well the expectation value of σx,y of a nQRM. Therefore, having
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access to qubit observables in gQRM, σx,y,z, allows to reconstruct the full
qubit dynamics of a nQRM. Note that Eqs. (24) and (25) correspond to the
expressions given in Results, which for σx is plotted in Fig. 2c for the
simulation of a 2QRM and 3QRM.
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