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Quantum sampling problems, BosonSampling and quantum
supremacy
A. P. Lund1, Michael J. Bremner2 and T. C. Ralph1

There is a large body of evidence for the potential of greater computational power using information carriers that are quantum
mechanical over those governed by the laws of classical mechanics. But the question of the exact nature of the power contributed
by quantum mechanics remains only partially answered. Furthermore, there exists doubt over the practicality of achieving a large
enough quantum computation that definitively demonstrates quantum supremacy. Recently the study of computational problems
that produce samples from probability distributions has added to both our understanding of the power of quantum algorithms and
lowered the requirements for demonstration of fast quantum algorithms. The proposed quantum sampling problems do not
require a quantum computer capable of universal operations and also permit physically realistic errors in their operation. This is an
encouraging step towards an experimental demonstration of quantum algorithmic supremacy. In this paper, we will review
sampling problems and the arguments that have been used to deduce when sampling problems are hard for classical computers to
simulate. Two classes of quantum sampling problems that demonstrate the supremacy of quantum algorithms are BosonSampling
and Instantaneous Quantum Polynomial-time Sampling. We will present the details of these classes and recent experimental
progress towards demonstrating quantum supremacy in BosonSampling.
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INTRODUCTION
There is a growing sense of excitement that in the near future
prototype quantum computers might be able to outperform any
classical computer. That is, they might demonstrate supremacy
over classical devices.1 This excitement has in part been driven by
theoretical research into the complexity of intermediate quantum
computing models, which over the last 15 years has seen the
physical requirements for a quantum speedup lowered while
increasing the level of rigour in the argument for the difficulty of
classically simulating such systems.
These advances are rooted in the discovery by Terhal and

DiVincenzo2 that sufficiently accurate classical simulations of even
quite simple quantum computations could have significant
implications for the interrelationships between computational
complexity classes.3 Since then the theoretical challenge has been
to demonstrate such a result holds for levels of precision
commensurate with what is expected from realisable quantum
computers. A first step in this direction established that classical
computers cannot efficiently mimic the output of ideal quantum
circuits to within a reasonable multiplicative (or relative) error in
the frequency with which output events occur without similarly
disrupting the expected relationships between classical complex-
ity classes.4, 5 In a major breakthrough Aaronson and Arkhipov laid
out an argument for establishing that efficient classical simulation
of linear optical systems was not possible, even if that simulation
was only required to be accurate to within a reasonable total
variation distance. Their argument revealed a deep connection
between the complexity of sampling from quantum computers
and conjectures regarding the average-case complexity of a range

of combinatorial problems. The linear optical system they
proposed was the class of problems called BosonSampling which
is the production of samples from Fock basis measurements of
linearly scattering individual Bosons. Using the current state of the
art of classical computation an implementation of BosonSampling
using 50 photons would be sufficient to demonstrate quantum
supremacy.
Since then many experimental teams have attempted to

implement Aaronson and Arkhipov’s BosonSampling problem6–11

while theorists have extended their arguments to apply to a range
of other quantum circuits, most notably commuting quantum gates
on qubits, a class known as Instantaneous Quantum Polynomial-
time (IQP).12 These generalizations give hope for an experimental
demonstration of quantum supremacy on sufficiently high fidelity
systems of just 50 qubits.13

In this review we will present the theoretical background
behind BosonSampling and its generalizations, while also review-
ing recent experimental demonstrations of BosonSampling. From
a theoretical perspective we focus on the connections between
the complexity of counting problems and the complexity of
sampling from quantum circuits. This is of course not the only
route to determining the complexity of quantum circuit sampling,
and recent work by Aaronson and Chen explores several
interesting alternative pathways.14

COMPUTATIONAL COMPLEXITY AND QUANTUM SUPREMACY
The challenge in rigorously arguing for quantum supremacy is
compounded by the difficulty of bounding the ultimate power of
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classical computers. Many examples of significant quantum
speedups over the best-known classical algorithms have been
discovered, see ref. 15 for a useful review. The most celebrated of
these results is Shor’s polynomial time quantum algorithm for
factorisation.16 This was a critically important discovery for the
utility of quantum computing, but was not as satisfying in
addressing the issue of quantum supremacy due to the unknown
nature of the complexity of factoring. The best known classical
factoring algorithm, the general number field sieve, is exponential

time (growing as ecn
1=3 ln2=3n where n is the number of bits of the

input number). However, in order to prove quantum supremacy,
or really any separation between classical and quantum computa-
tional models, it must be proven for all possible algorithms and
not just those that are known.
The challenge of bounding the power of classical computation

is starkly illustrated by the persistent difficulty of resolving the P
vs. NP question, where the extremely powerful non-deterministic
Turing machine model cannot be definitively proven to be more
powerful than standard computing devices. The study of this
question has led to an abundance of nested relationships
between classes of computational models, or complexity classes.
Some commonly studied classes are shown in Table 1. Many
relationships between the classes can be proven, such as P⊆NP,
PP⊆PSPACE and NP⊆PP, however, strict containments are rare.
Questions about the nature of quantum supremacy are then
about what relationships one can draw between the complexity
classes when introducing quantum mechanical resources.
A commonly used technique in complexity theory is to prove

statements relative to an “oracle”. This is basically an assumption
of access to a machine that solves a particular problem instantly.
Using this concept one can define a nested structure of oracles
called the “polynomial hierarchy”17 of complexity classes. At the
bottom of the hierarchy are the classes P and NP which are inside
levels zero and one, respectively. Then there is the second level
which contains the class NPNP which means problems solvable in
NP with access to an oracle for problems in NP. If P ≠ NP then this
second level is at least as powerful as the first level and possibly
more powerful due to the ability to access the oracle. Then the
third level contains NPNP

NP
, and so on. Higher levels are defined by

continuing this nesting. Each level of the hierarchy contains the
levels below it. Though not proven, it is widely believed that every
level is strictly larger than the next. This belief is primarily due to
the relationships of this construction to similar hierarchies such as
the arithmetic hierarchy for which higher levels are always strictly
larger. If it turns out that two levels are equal, then one can show
that higher levels do not increase and this situation is called a
polynomial hierarchy collapse. A polynomial hierarchy collapse to

the first level would mean that P = NP. A collapse at a higher level
is a similar statement but relative to an oracle. It is the belief that
there is no collapse of the polynomial hierarchy at any level that is
used in demonstrating the supremacy of quantum sampling
algorithms. Effectively one is forced into a choice between
believing that the polynomial hierarchy of classical complexity
classes collapses or that quantum algorithms are more powerful
than classical ones.

SAMPLING PROBLEMS
Sampling problems are those problems which output random
numbers according to a particular probability distribution (see
Fig. 1). In the case of a classical algorithm, one can think of

Table 1. Definitions of complexity classes used in this review

Class Type Definition

P D Deterministic with polynomial runtime on a classical computer

EQP D Deterministic with polynomial runtime on a quantum computer

BPP D Random with classical statistics and an error probability less than 1/3

BQP D Random with quantum statistics and an error probability less than 1/3

NP D Outputs can be verified using an algorithm from P

PP D Random with classical statistics and an error probability less than 1/2

#P C Counts the number of ‘accept’ outputs for circuits from P

GapP Z Difference between the number of ‘accept’ and ‘reject’ outputs for circuits from P

PSPACE D Polynomial memory requirements on a classical computer

Note: The “Type” column describes the outputs generated by algorithms within the class. “D” denotes decision problems which output a single bit, whose
values are often interpreted as ‘accept’ and ‘reject’. “C” denotes counting problems which output a non-negative integer. “Z” denotes problems that generalise
counting problems and allow negative integer outputs. The definitions give the properties algorithms are required to have within each class.
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Fig. 1 a An example probability distribution over 8 symbols. b 100
random samples from this probability distribution. The objective of
a sampling problem is to compute samples like the sequences
shown in b whose complexity may be different to the complexity of
computing the underlying probability distribution (a)
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this class as being a machine which transforms uniform random
bits into non-uniform random bits according to the required
distribution. When describing classes of sampling problems the
current convention is to prefix “Samp-” to the class in which
computation takes place. So SampP is the class described above
using an efficient classical algorithm and SampBQP would be
those sampling problems which are efficiently computable using a
quantum mechanical algorithm with bounded error.
All quantum computations on n qubits can be expressed as the

preparation of an n-qubit initial state 0j i�n, a unitary evolution
corresponding to a uniformly generated quantum circuit C
followed by a measurement in the computational basis on this
system. In this picture the computation outputs a length n
bitstring x∈{0, 1}n with probability

px ¼ xh jC 0j i�n�� ��2: ð1Þ
In this way quantum computers produce probabilistic samples

from a distribution determined by the circuit C. Within this model
BQP is those decision problems solved with a bounded error rate
by measuring a single output qubit. SampBQP is the class of
problems that can be solved when we are allowed to measure all
of the output qubits.
It is known that quantum mechanics produces statistics which

cannot be recreated classically as in the case of quantum
entanglement and Bell inequalities. However, these scenarios
need other physical criterion to be imposed, such as sub-luminal
signaling, to rule out classical statistics. Is there an equivalent
“improvement” in sampling quantum probability distributions
when using complexity classes as the deciding criterion? That is,
does SampBQP strictly contain SampP? The answer appears to be
yes and there is a (almost) provable separation between the
classical and quantum complexity.
Key to these arguments is understanding the complexity of

computing the output probability of a quantum circuit from Eq. 1.
In the 1990s it was shown that there are families of quantum
circuits for which computing px is #P-hard in the worst-case.18, 19

The suffix “-hard” is used to indicate that the problem can, with a
polynomial time overhead, be transformed into any problem
within that class. #P-hard includes all problems in NP. Also, every
problem inside the Polynomial Hierarchy can be solved inside the
class of decision problems within #P-hard, which is written P#P.20

Importantly this #P-hardness does not necessarily emerge only
from the most complicated quantum circuits, but rather can be
established even for non-universal, or intermediate, families of
quantum circuits such as IQP4 and those used in BosonSampling.5

This is commonly established by demonstrating that any quantum
circuit can be simulated using the (non-physical) resource of
postselection alongside the intermediate quantum computing
model.2, 4

In fact it is possible to show that computing px for many,
possibly intermediate, quantum circuit families is actually GapP-
complete, a property that helps to establish their complexity
under approximations. GapP is a slight generalization of #P that
contains all of the problems inside #P (see Table 1). Note that the
suffix “-complete” indicates that the problem is both -hard
and a member of the class itself. An estimate ~Q of a quantity Q
is accurate to within a multiplicative error ϵ′ when Qe�ϵ′ � ~Q �
Qeϵ

′
or alternatively, as ε′ small is the usual case of interest,

Qð1� ϵ′Þ � ~Q � Qð1þ ϵ′Þ. When a problem is GapP-complete it
can be shown that multiplicative approximations of the outputs
from these problems are still GapP-complete.
It is important to recognize that quantum computers are not

expected to be able to calculate multiplicative approximations to
GapP-hard problems, such as computing px, in polynomial time.
This would imply that quantum computers could solve any
problem in NP in polynomial time, which is firmly believed to not
be possible. However, an important algorithm from Stockmeyer21

gives us the ability to compute good multiplicative approxima-
tions to #P-complete problems by utilizing an NP oracle and by
sampling from polynomial-sized classical circuits. The stark
difference in complexity under approximations between #P
and GapP can be used to establish a separation between the
difficulty of sampling from classical and quantum circuits. If there
were an efficient classical algorithm for sampling from families of
quantum circuits with GapP-hard output probabilities, then we
could use Stockmeyer’s algorithm to find a multiplicative
approximation to these probabilities with complexity that is
inside the third level of the Polynomial Hierarchy, however this
causes a contradiction because PGapP contains the entire
Polynomial Hierarchy (and it is assumed to not collapse). With
such arguments it can be shown that it is not possible to even
sample from the outputs to within a constant multiplicative error
of many intermediate quantum computing models without a
collapse in the Polynomial Hierarchy.4, 5, 22–24

Such results suggest quantum supremacy can be established
easily, however, quantum computers can only achieve
additive approximations to their own ideally defined circuits. An
estimate ~Q of a quantity Q is accurate within an additive error ϵ if
Q� ϵ � ~Q � Qþ ϵ. Implementations of quantum circuits are
approximate in an additive sense because of the form of naturally
occurring errors, our limited ability to learn the dynamics of
quantum systems, and finally because quantum circuits use only
finite gate sets. In order to demonstrate quantum supremacy we
need a fair comparison between what a quantum computer can
achieve and what can be achieved with classical algorithms.
Following the above line of reasoning, we would need to
demonstrate that if a classical computer could efficiently produce
samples from a distribution which is close in an additive measure,
like the total variation distance, from the target distribution then
we would also see a collapse in the Polynomial Hierarchy. Being
close in total variation distance means, with error budget β,
samples from a probability distribution qx satisfying

P
x px � qxj j �

β are permitted. An error of this kind will tend to generate additive
errors in the outputs. The key insight of Aaronson and Arkhipov
was that for some special families of randomly chosen quantum
circuits an overall additive error budget causes Stockmeyer’s
algorithm to give an additive estimate ~Q that might also be a good
multiplicative approximation.

BOSONSAMPLING PROBLEMS
Aaronson and Arkipov5 describe a simple model for producing
output probabilities that are #P-hard. Their model uses bosons
that interact only by linear scattering. The bosons must be
prepared in a Fock state and measured in the Fock basis.
Linear bosonic interactions, or linear scattering networks, are

defined by dynamics in the Heisenberg picture that generate a
linear relationship between the annihilation operators of each
mode. That is, only those unitary operators U which act on the
Fock basis such that

UyaiU ¼
X
j

uijaj ð2Þ

where ai is the i-th mode’s annihilation operator and the uij form a
unitary matrix which for mmodes is a m ×mmatrix. It is important
to make a distinction from the unitary operator U which acts upon
the Fock basis and the unitary matrix defined by uij which
describes the linear mixing of modes. For optical systems the
matrix uij is determined by how linear optical elements, such as
beam-splitters and phase shifters, are laid out. In fact all unitary
networks can be constructed using just beam-splitter and phase
shifters.25
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The class BosonSampling is defined as quantum sampling
problems where a fiducial m-mode n-boson Fock state

j1; 1; 1; ¼ ; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n

; 0; 0; ¼ ; 0i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
m�n

ð3Þ

is evolved through a linear network with the output being
samples from the distribution that results after a Fock basis
measurement of all modes. The linear interaction is then the input
to the algorithm and the output is the sample from the probability
distribution. Figure 2 shows a schematic representation of this
configuration. The set of events which are then output by the
algorithm is a tuple of m non-negative integers whose sum is n.
This set is denoted Φm,n.
The probability distribution of output events is related to the

matrix permanent of sub-matrices of uij. The matrix permanent is
defined in a recursive way like the common matrix determinant,
but without the alternation of addition and subtraction. For
example

Per
a b

c d

� �
¼ ad þ cb: ð4Þ

Per

a b c

d e f

g h i

0
B@

1
CA ¼ aei þ ahf þ bdi þ bgf þ cdhþ cge: ð5Þ

Or in a more general form

PerðAÞ ¼
X
σ2Sn

Yn
i¼1

ai;σðiÞ ð6Þ

where Sn represents the elements of the symmetric group of
permutations of n elements. With this, we can now define the
output distribution of the linear network with the input state from
Eq. 3. For an output event S = (s1,s2,…,sn)∈Φm,n, the probability of S

is then

pS ¼
PerðASÞj j2

s1!s2!¼ sn!
ð7Þ

where the matrix AS is a n × n sub-matrix of uij where row i is
repeated si times and only the first n columns are used. One
critical observation of this distribution is that all events are
proportional to the square of a matrix permanent derived from
the original network matrix uij. Also, the fact that each probability
is derived from a permanent of a sub-matrix of the same unitary
matrix ensures all probabilities are less than 1 and the distribution
is normalised.
The complexity of computing the matrix permanent is known

to be #P-complete for the case of matrices with entries that are 0
or 1.26 It is also possible to show that for a matrix with real number
entries is #P-hard to multiplicatively estimate.5 Therefore, using
the argument presented above, the case of sampling from this
exact probability distribution implies a polynomial hierarchy
collapse.
The question is then if sampling from approximations of

BosonSampling distributions also implies the same polynomial
hierarchy collapse. The answer that Aarsonson and Arkipov found5

is that the argument does hold because of a feature that is
particular to the linear optical scattering probabilities. When
performing the estimation of the matrix permanent for exact
sampling, the matrix is scaled and embedded in uij. The
probability of one particular output event, with n ones in the
locations of where the matrix was embedded, is then proportional
to the matrix permanent squared. The matrix permanent can then
be estimated multiplicatively in the third level of the polynomial
hierarchy. But any event containing n ones in Φm,n could have
been used to determine the location of the embedding. This
means that, if the estimation is made on a randomly chosen
output event, and that event is hidden from the algorithm
implementing approximate BosonSampling, then the expected

Fig. 2 Schematic representation of a 5 photon, 32 mode instance of the BosonSampling problem. The photons are injected individually into
the input modes (left), interacted linearly through a linear network that has scattering matrix u which is classically controlled (bottom) and all
outputs are detected in the Fock basis (right)
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average error in the estimation will be the overall permitted error
divided by the total number of events which could have been
used to perform the estimation.
An important consideration of the approximate sampling

argument is that the input matrix appears to be drawn from
Gaussianly distributed random matrices. This ensures that there is
a way of randomly embedding the matrix into uij so that there is
no information accessible to the algorithm about where that
embedding has occurred. This is possible when the unitary
network matrix is sufficiently large (strictly m = O(n51n2n) but m =
O(n2) is likely to be OK). Also, under this condition, the probability
of events detected with two or more bosons in a single detector
tends to zero for large n (the so-called “Bosonic Birthday
Paradox”). There are m

n

� �
events in Φm,n with only n ones and so

the error budget can be evenly distributed over just these events.
There are exponentially many of these events and so the error in
the probability of an individual event does not dominate but is as
small as the average expected probability itself.
With this assumption about the distribution of input matrices,

the proof for hardness of approximate sampling relies on the
problem of estimating the permanents of Gaussian random
matrices still being in #P-hard. Furthermore, as the error allowed
to the sampling probabilities is defined in terms of total variation
distance, the error in estimation becomes additive rather than
multiplicative.
This changes the situation from the hardness proof for exact

sampling enough to be concerned that the proof may not apply.
Aaronson and Arkipov therefore isolated the requirements for the
hardness proof to still apply down to two conjectures that must
hold for additive estimation of permanents for Gaussian random
matrices to be #P-hard. They are the Permanents of Gaussian
Conjecture (PGC) and the Permanent Anti-Concentration Con-
jecture (PACC). The PACC conjecture requires that the matrix
permanents of Gaussian random matrices are not too concen-
trated around zero. If this holds then additive estimation of
permanents for Gaussian random matrices is polynomial-time
equivalent to multiplicative estimation. The PGC is that multi-
plicative estimation of permanents from Gaussian random
matrices is #P-hard. In both of these conjectures there are related
proofs that seem close, but do not exactly match the conditions
required. Nevertheless, both of these conjectures are highly
plausible.

EXPERIMENTAL IMPLEMENTATIONS OF BOSONSAMPLING
Several small scale implementations of BosonSampling have been
performed with quantum optics. Implementing BosonSampling
using optics is an ideal choice as the linear network consists of a
large multi-path interferometer. Then the inputs are single photon
states which are injected into the interferometer and single
photon counters are placed at all m output modes and the
arrangement of photons at the output, shot-by-shot, is recorded.
Due to the suppression of multiple photon counts under the
conditions for approximate BosonSampling, single photon coun-
ters can be replaced by detectors that detect the presence or
absence of photons (e.g., avalanche photo diodes).
Within these optical implementations, the issues of major

concern are photon loss, mode-mismatch, network errors and
single photon state preparation and detection imperfections.
Some of these issues can be dealt with by adjusting the theory
and checking that the hardness proof still holds. In the presence of
loss one can post-select on events where all n photons make it to
the outputs. This provides a mechanism to construct proof of
principle devices but does incur an exponential overhead which
prevents scaling to large devices. Rohde and Ralph studied
bounds on loss in BosonSampling by finding when efficient
classical simulation of lossy BosonSampling is possible in two
simulation strategies: Gaussian states and distinguishable input

photons.27 Aaronson and Brod28 have shown that in the case
where the number of photons lost is constant, then hardness can
still be shown. However, this is not a realistic model of loss as the
number of photons lost will be proportional to the number of
photons input. Leverrier and Garcia-Patron have shown that a
necessary condition for errors in the network to be tolerable is
that the error in the individual elements scales as O(n−2).29 Later
Arkipov showed the sufficient condition is element errors scaling
as o(n−2log−1m).30 Rahimi-Keshari et al. showed a necessary
condition for hardness based on the presence of negativity of
phase-space quasiprobability distributions.31 This give inequalities
constraining the overall loss and noise of a device implementing
BosonSampling.
The majority of the initial experiments were carried out with

fixed, on-chip interferometers,6–9 though one employed a partially
tunable arrangement using fibre optics.10 The largest network so
far was demonstrated by N. Spagnolo et al., where 3 photons were
injected into 5, 7, 9, and 13 mode optical networks.11 In this
experiment the optical networks were multi-mode integrated
interferometers fabricated in glass chips by femtosecond laser
writing. The photon source was parametric down-conversion with
four photon events identified via post-selection, where 3 of the
photons were directed through the on-chip network and the 4th
acted as a trigger. Single photon detectors were placed at all
outputs, enabling the probability distribution to be sampled.
For the 13 mode experiment there are 286 possible output

events from Φ13,3 consisting of just zeros and ones. To obtain the
expected probability distributions the permanents for the sub-
matrices corresponding to all configurations were calculated.
Comparing the experimentally obtained probabilities with the
predictions showed excellent agreement for all the chips. Such a
direct comparison would become intractable for larger systems—
both because of the exponentially rising complexity of calculating
the probabilities, and because of the exponentially rising amount
of data needed to experimentally characterise the distribution. N.
Spagnolo et al. demonstrated an alternative approach whereby
partial validation of the device can be obtained efficiently by
ruling out the possibility that the distribution was simply a
uniform one,32 or that the distribution was generated by sending
distinguishable particles through the device.33, 34 In both cases,
only small sub-sets of the data were needed and the tests could
be calculated efficiently.
The BosonSampling problem is interesting because, as we have

seen, there are very strong arguments to suggest that medium
scale systems, such as 50 bosons in 2500 paths, are intractable for
classical computers. Indeed, even for smaller systems, say 20
bosons in 400 paths, no feasible classical algorithms are currently
known which can perform this simulation. This suggests that
quantum computations can be carried out in this space without
fault tolerant error correction that may rival the best current
performance on classical computers. In addition, there is a
variation of the problem referred to as scatter-shot, or Gaussian
BosonSampling which can be solved efficiently by directly using
the squeezed states deterministically produced by down con-
verters as the input (rather than single photon states)35 which has
been experimentally demonstrated on a small scale using up to six
independent sources for the Gaussian states.36 Thus the major
challenge to realising an intermediate optical quantum computer
of this kind is the ability to efficiently (i.e., with very low loss and
noise) implement a reconfigurable, universal linear optical net-
work over hundreds to thousands of modes.37 On-chip designs
such as the 6 mode reconfigurable, universal circuit demonstrated
by J. Carolan et al.38 are one of several promising ways forward.
Another interesting approach is the reconfigurable time-
multiplexed interferometer proposed by Motes et al. 39 and
recently implemented in free-space by Y. He et al.40 This latter
experiment is also distinguished by the use of a quantum dot as
the single photon source which have also been utilised in spatial
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multiplexed interferometers.41 In other proposals, a theory for
realistic interferometers including polarisation and temporal
degrees of freedom can be considered that also gives rise to
probabilities proportional to matrix permanents.42, 43 A driven
version of the scatter-shot problem has also been suggested.44

SAMPLING WITH THE CIRCUIT MODEL AND IQP
Last year Bremner, Montanaro, and Shepherd extended the
BosonSampling argument to IQP circuits, arguing that if such
circuits could be classically simulated to within a reasonable
additive error, then the Polynomial Hierarchy would collapse to
the third level.12 Crucially, these hardness results rely only on the
conjecture that the average-case and worst-case complexities of
quantum amplitudes of IQP circuits coincide. Only the one
conjecture is needed as the IQP analogue of the PACC was
proven to be true. As this argument is native to the quantum
computing circuit model, any architecture for quantum computa-
tion can implement IQP Sampling. It also means that error
correction techniques can be used to correct noise in such
implementations. Furthermore, the IQP Sampling and the related
results on Fourier Sampling by Fefferman and Umans45 demon-
strate that generalizations of the Aaronson and Arkhipov
argument5 could potentially be applied to a much wider variety
of quantum circuit families, allowing the possibility of sampling
arguments that are both better tailored to a particular experi-
mental setup and for their complexity to be dependent on new
theoretical conjectures. For example, this was done in13 to
propose a quantum supremacy experiment especially tailored
for superconducting qubit systems with nearest-neighbour gates
on a two-dimensional lattice.
IQP circuits4, 46 are an intermediate model of quantum

computation where every circuit has the form C = H⊗nDH⊗n,
where H is a hadamard gate and D is an efficiently generated
quantum circuit that is diagonal in the computational basis.
sampling then simply corresponds to performing measurements in
the computational basis on the state H⊗nDH⊗n|0〉⊗n. In12 it was
argued that classical computers could not efficiently sample from
IQP circuits where D is chosen uniformly at random from circuits

composed of: (1)
ffiffiffiffiffiffi
CZ

p
(square-root of controlled-Z), and T ¼

1 0
0 eiπ=4

� �
gates; or (2) Z, CZ, and CCZ (doubly controlled-Z)

gates. This argument was made assuming that it is #P-hard to
multiplicatively approximate a constant fraction of instances of
(the modulus-squared of): (C1) the complex-temperature partition
function of a random 2-local Ising model; or (C2) the (normalized)
gap of a degree-3 polynomial (over F2). These conjectures can be
seen as IQP analogues of Boson Sampling’s PGC. In the case of (1)
these circuits correspond to random instances of the Ising model
drawn from the complete graph, as depicted in Fig. 3.
The worst-case complexity of the problems in both (C1) and

(C2) can be seen to be #P-hard as these problems are directly
proportional to the output probabilities of the IQP circuit families
(1) and (2). These families are examples of sets that become
universal under postselection and as a result their output
probabilities are #P-hard (as mentioned in Section 3). This is
shown by noting that for either of the gate sets (1) or (2), the only
missing ingredient for universality is the ability to perform
hadamard gates at any point within the circuit. In ref. 4 it was
shown that such gates can be replaced with a “hadamard gadget”,
which requires one postselected qubit and controlled-phase gate
per hadamard gate. It can be shown that the complexity of
computing the output probabilities of IQP circuits, px = |〈x|
H⊗nDH⊗n|0〉⊗n|2, is #P-hard in the worst case and this also holds
under multiplicative approximation.12, 47, 48

The hardness of IQP-sampling to within additive errors follows
from the observation that Stockmeyer’s algorithm combined with
sufficiently accurate classical additive simulation returns a very
precise estimate to the probability p0 = |〈0|⊗nCy|0〉

⊗n|2 for a wide
range of randomly chosen circuits Cy. A multiplicative approxima-
tion to p0 can be delivered on a large fraction of choices of y when
both: (a) for a random bitstring x, the circuit �n

i¼1X
xi is a hidden

subset of the randomly chosen circuits Cy; and (b) p0 anti-
concentrates on the random choices of circuits Cy. Both of these
properties hold for the randomly chosen IQP circuit families (1)
and (2) above, and more generally hold for any random family of
circuits that satisfies the Porter–Thomas distribution.13 Classical
simulations of samples from Cy implies a Polynomial Hierarchy
collapse if a large enough fraction of p0 are also #P-hard under
multiplicative approximations—and definitively proving such a
statement remains a significant mathematical challenge. As
mentioned above in ref. 12 the authors could only demonstrate
sufficient worst-case complexity for evaluating p0 for the circuit
families (1) and (2), connecting the complexity of these problems
to key problems in complexity theory.
The IQP circuit families discussed above allow for gates to be

applied between any qubits in a system. This means that there
could be O(n2) gates in a random circuit for (1) and O(n3) gates for
(2), with many of them long-range. From an experimental
perspective this is challenging to implement as most architectures
have nearest-neighbour interactions. Clearly these circuits can be
implemented with nearest-neighbour gates from a universal gate
set, however many SWAP gates would need to be applied. Given
that many families of quantum circuits can have #P-hard output
probabilities this suggests it is worthwhile understanding if more
efficient schemes can be found. It is also important to identify new
average-case complexity conjectures that might lead to a proof
that quantum computers cannot be classically simulated.
The challenge in reducing the resource requirements for

sampling arguments is to both maintain the anti-concentration
property and the conjectured #P-hardness of the average-case
complexity of the output probabilities. Recently it was shown that
sparse IQP-sampling, where IQP circuits are associated with
random sparse graphs, has both of these features.49 It was proved
that anticoncentration can be achieved with only O(n log n) long-

Fig. 3 Five qubit random Ising model with commuting X⊗X
interactions with random strengths is an example of a problem
within the class IQP. Qubits are prepared and measured in the
computational basis
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range gates or rather in depth Oð ffiffiffi
n

p
log nÞ with high probability in

a universal 2d lattice architecture.
If we take as a guiding principle that in the worst-case output

probabilities should not have a straightforward sub-exponential
algorithm, then the 2d architecture depth cannot be less than
Oð ffiffiffi

n
p Þ as there exist classical algorithms for computing any

quantum circuit amplitude for a depth t circuit on a 2d-lattice that
scale as Oð2t

ffiffi
n

p
Þ. This suggests that there might be some room still

to optimize the results of,49 and is further evidenced by a recent
numerical study suggesting that anti-concentration, and subse-
quently quantum supremacy, could be achieved in systems where
gates are chosen at random from a universal gate set on a square
lattice with depth scaling like Oð ffiffiffi

n
p Þ.13 Such arguments give hope

that a quantum supremacy experiment on approximately
50 superconducting qubits could be performed, assuming that
the rate of error can be kept low enough.
The circuit depth of sampling can be further reduced to sub

Oð ffiffiffi
n

p Þ depth if we are prepared to increase the number of
qubits in a given experiment. For example, it has recently been
proposed that sampling from 2d “brickwork” states cannot be
classically simulated.50 This argument emerges by considering a
measurement-based implementation of the random circuit
scheme of,13 trading off the Oð ffiffiffi

n
p Þ circuit depth for a polynomial

increase in the number of qubits. Interestingly, brickwork states
have depth O(1) and as such their output probabilities are thought
not to anticoncentrate and can be classically computed in sub-
exponential 2Oð

ffiffi
n

p Þ time. However, the authors argue that there are
some output probabilities that are GapP-complete, yet might be
reliably approximated via Stockmeyer’s algorithm without antic-
oncentration on the overall system output probabilities. This is
possible under a modification to the average-case complexity
conjectures than those appearing in Refs 12 and 49.
The proposals of ref. 13 and ref. 50 were aimed at

implementations via superconductors and optical lattices respec-
tively. Recently it was also proposed that IQP Sampling could be
performed via continuous variable optical systems.51 However,
for all such proposals it should be remarked that the level of
experimental precision required to definitively demonstrate
quantum supremacy, even given generous constant total variation
distance bound (such as required in),12 is very high. Asymptotically
this typically requires the precision of each circuit component
must improve by an inverse polynomial in the number of qubits.
This is likely hard to achieve with growing system size without the
use of fault tolerance constructions. More physically reasonable is
to assume that each qubit will at least have a constant error rate,
which corresponds to a total variation distance scaling like O(n).
Recently it was shown that if an IQP circuit has the anti-
concentration property, and it suffers from a constant amount of
depolarizing noise on each qubit then there is an classical
algorithm that can classically simulated it to within a reasonable
total variation distance.49 However, it should be remarked for a
constant number of qubits this algorithm will likely still have a
very large run-time. By contrast, IQP remains classically hard under
the error model for multiplicative classical approximations.52

Intriguingly, this class of errors can be corrected without the full
arsenal of fault tolerance, retrieving supremacy for additive error
approximations requiring only operations from IQP albeit
with a cost in terms of gates and qubits.49 This suggests that
unambiguous quantum supremacy may yet require error correc-
tion, though the level of error correction required remains a very
open question.

CONCLUSION
Quantum sampling problems have provided a path towards
experimental demonstration of the supremacy of quantum
algorithms with significantly lower barriers than previously
thought necessary for such a demonstration. The two main

classes of sampling problems demonstrating quantum supremacy
are BosonSampling and IQP which are intermediate models of
optical and qubit based quantum information processing
architectures. Even reasonable approximations to the outputs
from these problems, given some highly plausible conjectures, are
hard for classical computers to compute.
Some future directions for research in this area involve a deeper

understanding of these classes as well as experimentally addres-
sing the technological challenges towards implementations
that outperform the current best known classical algorithms.
Theoretical work on addressing what is possible within these
classes, such as detecting and correcting with errors within the
intermediate models will both aid understanding and benefit
experimental implementations. There has been some study of the
verification of limited aspects of these devices53–56 but more work
is required. As BosonSampling and IQP are likely outside the
Polynomial Hierarchy, an efficient reconstruction of the entire
probability distribution which is output from these devices will
likely be impossible. However, one can build the components,
characterise them and their interactions, build and run such a
device to within a known error rate. Beyond this multiplayer
games based on sampling problems in IQP have been proposed
to test whether a player is actually running an IQP computation.46

Recently the complexity of IQP sampling has been connected to
the complexity of quantum algorithms for approximate optimiza-
tion problems,57 suggesting further applications of IQP and closely
related classes. Applications of BosonSampling to molecular
simulations,58 metrology59 and decision problems60 have been
suggested, though more work is needed in this space. Never-
theless, the results from quantum sampling problems have
undoubtedly brought us closer to the construction of a quantum
device which definitively displays the computational power of
quantum mechanics.
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