
ARTICLE OPEN

Accurate long-read sequencing identified GBA1 as major risk
factor in the Luxembourgish Parkinson’s study
Sinthuja Pachchek 1✉, Zied Landoulsi 1, Lukas Pavelka2,3, Claudia Schulte4, Elena Buena-Atienza5,6, Caspar Gross 5,6,
Ann-Kathrin Hauser4, Dheeraj Reddy Bobbili1, Nicolas Casadei 5,6, Patrick May 1✉, Rejko Krüger 1,2,3✉ and on behalf of the NCER-
PD Consortium*

Heterozygous variants in the glucocerebrosidase GBA1 gene are an increasingly recognized risk factor for Parkinson’s disease (PD).
Due to the GBAP1 pseudogene, which shares 96% sequence homology with the GBA1 coding region, accurate variant calling by
array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA1-
associated PD. We analyzed 660 patients with PD, 100 patients with Parkinsonism and 808 healthy controls from the Luxembourg
Parkinson’s study, sequenced using amplicon-based long-read DNA sequencing technology. We found that 12.1% (77/637) of PD
patients carried GBA1 variants, with 10.5% (67/637) of them carrying known pathogenic variants (including severe, mild, risk
variants). In comparison, 5% (34/675) of the healthy controls carried GBA1 variants, and among them, 4.3% (29/675) were identified
as pathogenic variant carriers. We found four GBA1 variants in patients with atypical parkinsonism. Pathogenic GBA1 variants were
2.6-fold more frequently observed in PD patients compared to controls (OR= 2.6; CI= [1.6,4.1]). Three novel variants of unknown
significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This
study describes the full landscape of GBA1-related parkinsonism in Luxembourg, showing a high prevalence of GBA1 variants as the
major genetic risk for PD. Although the long-read DNA sequencing technique used in our study may be limited in its effectiveness
to detect potential structural variants, our approach provides an important advancement for highly accurate GBA1 variant calling,
which is essential for providing access to emerging causative therapies for GBA1 carriers.
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INTRODUCTION
Heterozygous variants in the glucocerebrosidase (GBA1) gene,
which encodes the enzyme β-glucocerebrosidase (GCase), are
increasingly recognized as the most common genetic risk factor
for the development of Parkinson’s disease (PD). Homozygous
variants in GBA1 are causative for the most frequent autosomal-
recessive lysosomal storage disorder, Gaucher disease (GD)1. GD is
characterized by a deficiency of the enzyme GCase which is
required to hydrolyze the β-glucosyl linkage of glucosylceramide
lipide in lysosomes to form glucose and ceramide2.
Accurate variant calling in the GBA1 gene is challenging due to

the presence of the highly homogeneous untranslated pseudo-
gene called GBAP1, which is located 16 kilobases downstream3,
and shares 96% sequence homology within the coding region4. In
addition, recombination and structural chromosomal variation
within and around the GBA1 locus further complicate the analysis5.
Complex alleles, which include several single nucleotide variants,
are derived from recombination between the functional GBA1
gene and the GBAP1 pseudogene6. RecNciI is the most common
recombinant allele, including the amino acid changes p.L483P and
p.A495P, and the synonymous variant p.V499V6.
Our study aimed to accurately assess all rare coding variants in

the GBA1 gene in all participants of the Luxembourg Parkinson’s
study7, a case and control cohort including patients with PD and
atypical parkinsonism. To assess the accuracy of the targeted GBA1
DNA sequencing method using the Pacific Biosciences (PacBio)8

technology, which targets only the GBA1 gene without sequen-
cing the GBAP1 pseudogene, we compared this method with
genotyping using the NeuroChip array9 and short-read whole
genome sequencing (WGS) data using Sanger sequencing as the
gold standard for validation. We identified several types of
pathogenic GBA1 variants (severe, mild, and risk) and further
characterized genotype–phenotype associations to better under-
stand the influence of each variant type and their effect on disease
severity.

RESULTS
Demographic and clinical characteristics
A total of 760 patients (660 PD patients (nPD) and 100 patients
with other forms of parkinsonism (npark)) and 808 healthy controls
(nHC) from the Luxembourg Parkinson’s study (Fig. 1) were
genotyped using NeuroChip and screened for GBA1 variants using
targeted PacBio DNA sequencing method, while a subset of 72
patients was screened with WGS. Among the patients, 66.4%
(n= 499) were male with a mean age at disease onset (AAO) of
63 ± 11.5 years (Supplementary Table 1). The control group
consisted of 52.7% (n= 426) males with a mean age at assessment
(AAA) of 59.3 ± 12.2 years. Due to their above 30-fold coverage
provided by the long-read DNA sequencing, all samples were
selected after successfully passing the MultiQC step (Supplemen-
tary Table 9). To ensure ethnic homogeneity and exclude other
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genetic factors that may bias the assessment of the genetic
contribution of GBA1 to PD in the Luxembourgish population, we
excluded carriers of mutations in other PD-causing genes (point
mutations: n= 10, nPD= 8,nHC= 2; CNV: nPD= 4) in PD-associated
genes (no CNVs in GBA1 were detected), first-degree family
members (n= 64, nPD= 8, npark= 2, nHC= 54), younger HC (<60
AAA) with first-degree relatives having PD (nHC= 74), and
individuals of non-European descent (n= 6) from the cohort.
The final cohort consisted of 735 patients (nPD=637, npark= 98)
and 675 HC with a mean AAO among the patients of 63.2 ± 11.3
years, whereas the mean AAA for HC was 61 ± 11.5 years. Based on
Neurochip and WGS data, none of the GBA1 carriers carried
pathogenic variants in other PD-associated genes as defined by
MDSGene10.

Targeted PacBio DNA sequencing showed the highest
specificity for detecting rare coding variants in GBA1
To measure the reliability of calling rare GBA1 coding variants, we
performed two types of comparison. Rare variants were here
defined as variants with minor allele frequency (MAF) < 1% in the
European population. We compared the results from the PacBio,
WGS, and NeuroChip data for a subset of samples (n= 72). We
then compared the PacBio and NeuroChip data as they both
covered the majority of samples (n= 1568). We considered true
positives to be the GBA1 variants validated by Sanger sequencing.
False-positive variants were those identified by the analysis
method but not confirmed by Sanger sequencing. False-
negative variants were not called by the analysis method but
were later validated with Sanger sequencing (Supplementary

Table 2). First, we evaluated 72 samples screened by all three
methods (Fig. 2). Using the GBA1-targeted PacBio DNA sequencing
method and WGS in combination with the Gauchian11 tool
implemented in Dragen v4 (GBA caller option), we detected six
individuals carrying GBA1 variants (p.E365K (n= 3), p.T408M
(n= 1), p.N409S (n= 1), RecNciI (n= 1)). The RecNil combines
the three variants p.L483P, p.A495P, and p.V499V in one haplotype
allele. All variants detected were confirmed by Sanger sequencing
(true positive rate (TPR) of 100%). We did not identify any false
positive variant calls. However, using the Dragen v.4 pipeline
without the GBA1 caller, relying only on the GATK best practices
pipeline, the WGS method failed to detect the RecNciI recombi-
nant allele in one individual (TPR of 83.3% (5/6)). Using Neurochip,
we detected three potential GBA1 variant carriers (p.T408M (n= 1),
p.N431S (n= 1), p.A215D (n= 1), but only one variant (p.T408M)
was subsequently confirmed by Sanger sequencing (TPR of 16.6%
(1/6), resulting in a false discovery rate (FDR) of 66.6% (2/3).
Next, we compared the results from 1568 samples screened

with both, the GBA1-targeted PacBio DNA sequencing method and
the NeuroChip array (Fig. 3). Using the GBA1-targeted PacBio DNA
method, we detected 135 GBA1 variants carriers, of which 100%
were validated by Sanger sequencing. Using the NeuroChip array,
we detected 47 potential GBA1 variant carriers, among which only
36 were validated by Sanger sequencing (TPR of 26.7% (36/133),
resulting in an FDR of 23.4% (11/47).

Classification of GBA1 variants
Of the 1568 individuals sequenced using the GBA1-targeted
PacBio DNA sequencing method, we identified 135 carriers of at

Fig. 1 Description of the study dataset and methodology. HC Healthy controls, PD Parkinson’s Disease and Parkinson’s Disease with
Dementia, PSP Progressive Supranuclear Palsy, DLB Dementia with Lewy Body, MSA Multiple System Atrophy, FTDP Fronto-temporal dementia
with parkinsonism, GBA1 glucocerebrosidase gene, VUS Variants of unknown significance, PD+GBA1 PD patients with GBA1 pathogenic variant,
PD-GBA1 PD patients without GBA1 pathogenic variant, CNV copy number variants, AAA age at assessment.

S. Pachchek et al.

2

npj Parkinson’s Disease (2023) 156 Published in partnership with the Parkinson’s Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;



least one GBA1 variant (Supplementary Tables 3, 4). Based on the
classification of Höglinger et al.12, 25 were carriers of severe
variants, 10 of mild variants, 72 of risk variants and 22 of VUS. The
most common GBA1 variants in PD patients were the risk variants
p.E365K (n= 23; 3.5%) and p.T408M (n= 17; 2.6%).
GBA1 variants were mostly heterozygous missenses, one patient

carried a heterozygous stop-gain variant p.R398*(rs121908309),
two PD patients carried a homozygous missense variant p.E365K/

p.E365K(rs2230288). We identified two HC carrying a pathogenic
LRRK2 variant and being positive for GBA1 variant (p.E365KGBA-
p.R1441CLRRK2; p.K13RGBA-p.G2019SLRRK2). We also detected nine
different synonymous variants in exonic regions (Supplementary
Table 4). The variant p.T408T(rs138498426) is a splice site variant
(located within 2 bp of the exon boundary) and is classified as
VUS12. The remaining synonymous variants were not further
analyzed. Additionally, we identified 69 variants in intronic and

Fig. 2 Comparison of variant calls from PacBio, WGS and NeuroChip genotyping data using 72 matched samples for the GBA1 gene and
validated by Sanger sequencing. a *RecNcil (p.L483P; p.A495P; p.V499V); Sanger sequencing results: TP, true positive; FP, false positive.
Sample count gives the total number of samples carrying the variant found by each method. b Comparative study of GBA1 variants detection
by the GBA1-targeted PacBio DNA sequencing method and NeuroChip array methods in the Luxembourg Parkinson’s study. Due to
overrepresented variants with the NeuroChip array, we applied for the detected variants a study-wide threshold of 1% in our cohort.

Fig. 3 Comparative study of GBA1 variants detection by the GBA1-targeted PacBio DNA sequencing and NeuroChip array methods in the
Luxembourg Parkinson’s study. Due to overrepresented variants with the NeuroChip array, we applied for the detected variants a study-wide
threshold of 1% in our cohort.
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UTRs regions of GBA1 (Supplementary Table 5) with unclear
pathogenic relevance, 35 of which were rare with MAF < 1% in
gnomAD for the Non-Finnish European population10.
We classified the following combinations of multiple variants

per individual as severe based on the classification of the
respective associated pathogenic variants (Table 1): p.N409S-
p.L483P, p.K13R-p.L483P, p.F252I-p.T408M, p.Y61H-p.T408M.

GBA1 variant frequency
To calculate the GBA1 frequency in our study, we considered the
individuals remaining after the exclusion step (735 patients and
675 HC). We detected 12.1% (n= 77) GBA1 variant carriers among
637 PD patients and 5% (34/675) in HC individuals. We found a
frequency of 10.5% (67/637) of pathogenic variants in PD patients
(severe, mild, risk) and 4.3% (29/675) in controls (Table 2). Four
patients with parkinsonism had GBA1 variants. Carriers of severe
GBA1 variants (n= 21; 3.2%; OR= 11.4; 95% CI= [2.6, 49];
p= 0.0010) have a high risk of developing PD as defined by the
indicated OR.

Genotype–phenotype associations in GBA1-PD patients
We characterized the clinical phenotype of severe (n= 21), mild
(n= 7) and risk (n= 39) GBA1 carriers and non-carriers (n= 554)
only in unrelated PD patients excluding carriers with only one
synonymous or VUS variant in individuals remaining after the
filtering step. The AAO was similar between GBA1 carriers
(61.6 ± 11.5) and non-carriers (62.6 ± 11.6). Severe PDGBA1 variant
carriers showed a trend towards younger AAO compared to mild
and risk (severe: 58.6 ± 13.1 vs mild: 65.4 ± 17 vs risk: 62.5 ± 9.3
years; p= 0.29) (Table 3), with a significant risk to develop early
onset PD (OR= 4.02; p= 0.0098). In contrast to non-carriers, we
also observed that carriers of pathogenic variants have a strong
family history of PD (OR= 0.74; p= 0.0401).
We compared clinical features between PD patients carrying

pathogenic GBA1 variants and PD patients without GBA1 variants
(Supplementary Table 6). We found that in carriers the sense of
smell was strongly impaired (uncorrected p= 0.0210) and a higher
rate of hallucinations (uncorrected p= 0.0415). Next, we com-
pared patients carrying variants from each category (severe, mild

Table 1. Distribution of GBA1 variants in the Luxembourg Parkinson’s study.

Subclassification nucleotide - protein changes Subjects PD n= 660 Parkinsonism Patients n= 100 Healthy controls n= 808

Severe c.115+1G>A 2 1 1

p.P161S 2 2

p.G234W 1 1

p.G241R 2 2

p.H294Q 1 1

p.R398X 1 1

p.G416S 1 1

p.L483P 6 5 1

p.R502H 1 1

p.N409S; p.L483P 1 1

RecNciI* 5 4 1

p.K13R; p.L483P 1 1

p.F252I; p.T408M 1 1

Mild p.N409S 10 7 3

Risk p.E365K 42 21+ 2a 1 DLB+ 2 PSP 16

p.E365K (LRRK2: p.R1441C)* 1 1

p.T408M 28 15 1 DLB 12

p.Y61H; p.T408M 1 1

VUS p.K13R 4 2 2

p.K13R (LRRK2: p.G2019S)* 1 1

p.Y61H 1 1

p.R78C 2 2

p.A97G (new VUS) 1 1

p.L213P 1 1

p.A215D (new VUS) 1 1

p.E427K 2 1 1

p.R434C (new VUS) 1 1

p.H529R 1 1

p.R534C 1 1

p.A495P; p.V499V 3 1 2

p.T408T 3 2 1

All variants were identified in the heterozygous state except in two individuals for p.E365K *RecNcil (p.L483P; p.A495P; p.V499V); *LRRK2 mutation in brackets.
GBA1 glucocerebrosidase gene, PD Parkinson’s Disease and Parkinson’s Disease with Dementia, PSP Progressive Supranuclear Palsy, DLB Dementia with Lewy
Body, VUS Variants of unknown significance.
aHomozygous state.
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or risk) separately with PD patients without GBA1 variants (Table 4).
Carriers of severe GBA1 variants showed more severe non-motor
symptoms when compared to non-GBA1 carriers, such as MDS-
UPDRS Part I (uncorrected p= 0.0074) and hallucinations (uncor-
rected p= 0.0099), and also an impaired sense of smell as
assessed by Sniffin’ Stick test (uncorrected p= 0.0405). To show
the deleterious impact of the severe variants, we compared
carriers of severe variants with patients carrying either mild or risk
GBA1 variants (Table 5). We observed that severe variants carriers
have more severe gait disorder (uncorrected p= 0.0188) and
depression (uncorrected p= 0.0074) and worse MDS-UPDRS Part I
(uncorrected p= 0.0019) and PDQ-39 (uncorrected p= 0.0422).
For all clinical features, there were no significant associations after
the correction for multiple comparisons using FDR adjustment.

VUS and the glucosylceramidase structure
We detected nine already reported VUS (p.K13R, p.Y61H, p.R78C,
p.L213P, p.E427K, p.A495P, p.H529R, p.R534C, p.T408T) and three
new VUS (p.A97G, p.A215 and p.R434C).
According to our strategy developed for the VUS classification

of GBA1 variants, where we assign the pathogenicity based on the
REVEL, the CADD and the dbscSNV scores, as well as the presence
or absence of the variants in the patients. We propose to
subclassify the VUS p.Y61H, p.L213P, p.A215D, and p.R434C as
probably pathogenic severe variants (Supplementary Table 7). The
variant p.L213P changes the leucine into proline, which is known
to be the “helix breaker” amino acid that induces a bend into the
protein structure13 (Supplementary Fig. 1). The p.L213P and
p.A215D variants are in the catalytic site of the enzyme in the
triose-phosphate isomerase (TIM) barrel structure. The p.Y61H
variant (Fig. 4a) is located next to the residue position of the
known severe variant p.C62W, and the patient carrying this variant
had an AAO of 38 years, indicating an early-onset, probably severe
form of PD. This patient has a family history of PD and reported
that the paternal uncle and aunt were diagnosed with PD at the
ages of 60 and 70, respectively. The p.R434C variant is close to a
known severe (p.V433L) and mild (p.W432R, p.N435T) PD variants
in the 3D structure. We compared the clinical scores obtained
from carriers of known severe variants with the four carriers of
probable severe VUS (p.Y61H, p.L213P, p.A215D, and p.R434C)
(Supplementary Table 7). The z-score was used to determine the
number of SD deviations from the mean for each clinical score. We
observed that the PD patient carrying the p.L213P variant had a
z-score that was significantly different for MDS-UPDRS II (z-

score= 3.05) and MDS-UPDRS III (z-score= 2.94) confirming its
classification as a severe variant.
We propose to subclassify the variants p.H529R and p.R534C as

probably mild variants, as they are both found only in PD patients.
The variants p.K13R, p.R78C, p.E427K, and p.A495P are subclassi-
fied as probable risk variants. The variant p.K13R is located in the
signal peptide region. The variant p.R78C was annotated as “PD
susceptibility” in HGMD with deleterious impact in CADD. The
variant p.E427K was annotated as associated to “parkinsonism” in
ClinVar and “reduced activity” in HGMD. We propose to classify the
variant p.A97G as probably benign because it is localized in a coil-
bend structure and is not close to any known pathogenic variants.
The synonymous variant p.T408T was found in two cases and

one healthy control individual. Two established splice-site
prediction scores (dbscSNV: ada_score 0.9797 and rf_score 0.85)
agreed in their prediction that the variant is likely to affect
splicing. HGMD classified the variant as disease mutation (DM)
(Supplementary Table 4). Therefore, we propose to classify the
variant as a risk variant.
Overall, we propose to classify four VUS variants as probably

severe pathogenic variants (p.Y61H, p.L213P, p.A215D, and
p.R434C), two as probably mild pathogenic variants (p.H529R
and p.R534C), five as probably pathogenic risk variants (p.K13R,
p.R78C, p.E427K, p.A495P, and p.T408T) and one as probably
benign variants (p.A97G) (Fig. 4b).

DISCUSSION
Our study demonstrated in a large cohort the utility of targeted
PacBio DNA sequencing for GBA1 as a highly sensitive and specific
method to identify known and novel GBA1 variants and to
overcome the problems posed by the presence of the GBAP1
pseudogene by avoiding its amplification. The effectiveness of the
targeted PacBio DNA sequencing method in investigating relevant
genes with homologous pseudogenes has also been demon-
strated in several other studies13–16. The PacBio method together
with the WGS method combined with the new Gauchian tool
showed a very high accuracy of 100% true positive validated
variants. The comparative study that we performed with the
different screening technologies to detect GBA1 variants will help
researchers to get a more accurate and comprehensive overview
of GBA1 variants. This implies a more critical evaluation of the
results obtained by NeuroChip, which revealed a high proportion
of false positive and negative results and those obtained by WGS,

Table 2. Frequency of GBA1 variants in the Luxembourg Parkinson’s study.

Diagnosis Sub-classification of GBA1 variants Subjects All GBA1-Carrier n (%) Pathogenic GBA1-Carrier n (%) OR (95%CI) p values

PD 637 77 (12.1%) 67 (10.5%) 2.6 (1.6–4.1) 0.0001*

severe 21 (3.2%) 11.4 (2.6–49) 0.0010*

mild 7 (1.1%) 3.7 (0.7 to 18) 0.1008

risk 39 (6%) 1.6 (1 to 2.8) 0.0537*

PSP risk 59 2 (3.4%) 0.9 (0.2–3.9) 0.8941

DLB risk 24 2 (8.3%) 2.2 (0.5–10) 0.2908

Healthy controls 675 34 (5%) 29 (4.3%) - -

severe 2 - -

mild 2 - -

risk 25 - -

Subject numbers result from excluding the first-degree family members interrelated in the cohort, the healthy controls of young age of assessment (<60 AAA)
with first-degree PD relatives, the CNV carriers, carrier of PD-causing variants (except GBA1) and the ethnic outliers.
GBA1 glucocerebrosidase gene, PD Parkinson’s Disease and Parkinson’s Disease with Dementia, PSP progressive supranuclear palsy, DLB Dementia with Lewy
Body.
ORs are given with the 95% CI; Statistically significant results are highlighted in bold with a * sign (p value < 0.05).
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which will depend on the detection tool used for the complex
GBA1 region. Our study still has the limitation that we cannot fully
exclude missing variants (false negatives) that could not be
detected by all three methods used in our study. Long-read DNA
sequencing excels in the detection of structural variants. However,
the method employed in this study relies on a single amplicon,
limiting its efficiency in detecting structural variants due to the
generation and purification of amplicons of specific sizes only.
However, we would like to highlight the fact that the PacBio-
based method can be a cost-effective (≃30€/sample for PacBio)
alternative for the high-fidelity calling of GBA1 variants. GBA1
variants have been identified as the most common genetic risk
factor for the development of PD. GBA1 variants have typically
been observed in 4%–12% of PD patients in different populations
worldwide, with the highest prevalence of 20% described in
Ashkenazi Jewish PD patients17,18. Large differences of prevalence
were observed depending on the ethnicity of the cohort, the
variants studied, and the sequencing method used. Previous
studies looking only at coding regions reported frequencies of
14.3% in Italians19 (n= 874), 11.7% in southern Spanish20

(n= 532), 9.2% in New Zealanders of European descent5

(n= 229) and 8.3% in Irish21 (n= 314) (Supplementary Table 8).
Our study describes the landscape of GBA1 carriers in the
Luxembourgish population showing a high prevalence (12.1%)
of GBA1 variants that could be the major genetic risk factor of PD
in Luxembourg. Moreover, we observed a significantly higher
proportion of pathogenic (severe, mild and risk) GBA1 variants in
PD patients compared to HC (10.4% vs 4.3%; OR= 2.6; CI=
[1.6,4.1], p= 0.0001). Compared to previous studies, our study
highlights that using the new PacBio sequencing method, the
Luxembourg Parkinson’s study showed a comparable frequency of
PDGBA1 carriers reported so far in similarly sized Italian19 and
Spanish20 cohorts (Supplementary Table 8). When comparing
previous reports of GBA1 variants in different populations, we
want to highlight the fact that only cohorts that used full Sanger
sequencing were able to detect the RecNciI recombinant allele so
far. This once more emphasizes the accuracy of the PacBio
sequencing methods for detecting rare and complex GBA1
variants. Additionally, we confirmed that severe variants showed
a higher OR than risk variants, which supports the concept of
graded risk for different GBA1 variants in PDGBA1 carriers20.
The most prevalent GBA1 variant in the Luxembourg Parkinson’s

study was p.E365K, and the frequency of this variant was similar to
what was described in the Irish21, Spanish20, and New Zealand5

populations. It is interesting to note that homozygous carriers of
the p.E365K variant do not develop GD22. This variant is associated

with PD, and multiple studies have found enrichments varying
from 1.60 to 3.3423–25. Furthermore, carriers of the risk variants
p.E365K and p.T408M could be associated with atypical parkin-
sonism, as these variants were the only ones also present in
patients with DLB and PSP in our cohort. Whether this is simply
related to the higher frequency of these risk variants in the
general population or does have a specific impact on the
phenotype needs to be determined in larger studies focusing on
GBA1 variants in atypical parkinsonism26.
We present a concept for classifying VUS in the GBA1 gene

according to the localization in relation to known variants in
sequence and 3D structure, which may help to provide access to
future targeted therapies for these patients. Here additional in
vitro and ex vivo studies are needed to functionally validate the
impact of these VUS on GCase function in neurons derived from
stem cells or in enzyme-activity assays in cerebrospinal fluid of
affected carriers of these VUS.
Additionally, we observed that the average AAO in PD was

about four years younger in severe GBA1 carriers compared to
non-GBA1 carriers. This was also observed in previous studies,
which showed that PDGBA1 patients generally have an earlier AAO
compared to non-carriers with a median onset in the early
fifties27,28.
Recent studies have shown that PDGBA1 carriers have a higher

prevalence of cognitive impairment19,29,30 and non-motor symp-
toms including neuropsychiatric disturbances19,20, autonomic
dysfunction29, and sleep disturbances such as RBD31. Although
not significant after p value adjustment, we found a similar trend
and noticed that motor symptoms such as gait disorder, non-
motor symptoms such as depression and hallucinations, were
associated with a more aggressive clinical phenotype in severe
GBA1 carriers, supporting the effect of differential GBA1 variant
severity20,32.
In conclusion, this study showed the utility of targeted PacBio

DNA sequencing to identify known and novel GBA1 variants with
high accuracy. These findings offer important access to variant-
specific counseling. Furthermore, our study describes the full
landscape of GBA1-related PD in the current Luxembourgish
population showing the high prevalence of GBA1 variants as the
major genetic risk in PD.

METHODS
Clinical cohort
At the time of analysis, the Luxembourg Parkinson’s study
comprised 1568 participants (760 patients of parkinsonism and

Table 3. Demographic data for the PD patients in the Luxembourg Parkinson’s study separated by GBA1 variant status.

Features All pathogenic variants (n = 67) Severe (n = 21) Mild (n = 7) Risk (n = 39) Non carriers (n = 554)

AAA, mean (SD) 66.5 (±10.2)
[OR= 0.31; p= 0.3977]

65.1 (±10.2)
[OR= 0.08; p= 0.292]

67.1 (±15.6)
[OR= 0.59; p= 0.8959]

67.1 (±9.2)
[OR= 0.57; p= 0.7512]

67.6 (±10.7)

Sex, Male n (%) 40 (59.7%)
[OR= 0.71; p= 0.1912]

13 (61.9%)
[OR= 0.78; p= 0.5795]

5 (71.4%)
[OR= 1.19; p= 0.8336]

22 (56.4%)
[OR= 0.62; p= 0.151]

375 (67.7%)

AAO, mean (SD) 61.6 (±11.5)
[OR= 0.35; p= 0.484]

58.6 (±13.1)
[OR= 0.02; p= 0.1158]

65.4 (±17.0)
[OR= 16.16; p= 0.5308]

62.5 (±9.3)
[OR= 0.9; p= 0.9548]

62.6 (±11.6)

AAO < 45, N (%) 8 (11.9%)
[OR= 1.74; p= 0.1767]

5 (23.8%)
[OR= 4.02; p= 0.0098*]

2 (28.6%)
[OR= 5.14; p= 0.0549]

1 (2.6%)
[OR= 0.34; p= 0.2907]

40 (7.2%)

Disease Duration, mean (SD) 4.7 (±4.8)
[OR= 0.79; p= 0.7303]

6.4 (±4.7)
[OR= 4.07; p= 0.2238]

1.7 (±1.4)
[OR= 0.04; p= 0.0981]

4.4 (±4.9)
[OR= 0.57; p= 0.5103]

5.0 (±5.2)

Family History, N (%) 25 (37.3%)
[OR= 1.74; p= 0.0401*]

8 (38.1%)
[OR= 1.8; p= 0.2001]

2 (28.6%
[OR= 1.17; p= 0.8508]

15 (38.5%)
[OR= 1.83; p= 0.0782]

141 (25.5%)

Subject numbers result from excluding the first-degree family members interrelated in the cohort, the healthy controls with the young age of assessment (<60
AAA) or with first-degree PD relatives, the CNVs carriers, carrier of PD-causing variants (except GBA1), the ethnic outliers, synonymous and VUS variants carriers.
Data are given as mean (SD) or N (%). Statistically significant results are highlighted in bold with a * sign (p value < 0.05).
AAA age at assessment in years, AAO Age at onset in years.
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808 healthy controls (HC) in the frame of the National Centre for
Excellence in Research on Parkinson’s disease program (NCER-PD).
All patients complied with the diagnostic criteria of typical PD or

atypical parkinsonism as assessed by neurological examination
following the United Kingdom Parkinson’s Disease Society Brain
Bank (UKPDSBB) diagnostic criteria33: 660 fulfilled the criteria for
PD, 60 for progressive supranuclear palsy (PSP) including
corticobasal syndrome as a subtype of PSP (PSP-CBS), 25 for
Dementia with Lewy Body (DLB), 14 for Multiple System Atrophy,
and one for Fronto-temporal dementia with parkinsonism. All
patients and HC underwent a comprehensive clinical assessment
of motor and non-motor symptoms, neuropsychological profile
and medical history along with comorbidities. The clinical
symptoms assessed, and scales applied are defined in the
Supplemental Information34. All individuals provided written
informed consent. The patients were reassessed at regular
follow-up visits every year and the HC every 4 years. We
considered early-onset PD patients those with AAO equal to or
younger than 45 years35. The genotype-phenotype analysis was
based on the assessment of the first visit. The final diagnosis was
taken according to the last visit. The study has been approved by
the National Research Ethics Committee (CNER Ref: 201407/13 and
202304/03).

NeuroChip array
Genotyping was carried out on the InfiniumR NeuroChip
Consortium Array9 (v.1.0 and v1.1; Illumina, San Diego, CA USA).
For rare variants analysis, standard quality control (QC) procedures
were conducted, using PLINK v1.936, to remove variants if they
had a low genotyping rate (<95%) and Hardy-Weinberg equili-
brium p value < 1 × 10−6. As an additional quality filter, we applied
a study-wide allele frequency threshold of <1% in our cohort for
rare variants. For further statistical analysis, we excluded
individuals of non-European ancestry using PLINK 1.9 multi-
dimensional scaling and merged our data with the 1000 genomes
dataset37. We selected only samples of European ancestry
excluding those with > ±3 SD based on the first and the second
principal components.

GBA1-targeted PacBio DNA long-read amplicon sequencing
The targeted GBA1 gene screening was performed by single-
molecule real-time (SMRT) long read sequencing8 using Sequel II
instrument (PacBio). The targeted GBA1 gene coordinates were
chr1:155,232,501-155,241,415 (USCS GRCh38/hg38). Long-
distance PCR was performed using GBA1-specific primer
sequences (Forward: 5′-GCTCCTAAAGTTGTCACCCATACATG-3′
and Reverse: 5′-CCAACCTTTCTTCCTTCTTCTCAA-3′)38 and the 2x
KAPA HiFi Hot Start ReadyMix (Roche), which avoid GBAP1
pseudogene amplification. For sample multiplexing, dual asym-
metric barcoding was used based on a different 16-bp long index
sequence upstream of each of the reverse and forward primers
to allow the generation of uniquely barcoded amplicons in one-
step PCR amplification. QC was performed prior to pooling. Pools
of amplicons were purified with AMPure PacBio beads. A total of
1700 ng of purified amplicon pool was used as input for the
SMRTbell library using the SMRTbell Express Template Prep Kit
2.0 (PacBio). Binding of the polymerase and diffusion loading on
SMRTCell 8 M was prepared according to SMRTLink instructions
with CCS reads as sequencing mode (version SMRT Link:
9.0.0.92188). We generated high-quality consensus reads using
the PacBio Sequel II sequencer on Circular Consensus Sequen-
cing mode using the pbccs (v6.0.0) tool. The method replicates
both strands of the target DNA39. We demultiplexed and
mapped reads from each sample to the human reference
genome GRCh38 using minimap240 from the pbmm2 package
(v1.4.0) (https://github.com/PacificBiosciences/pbmm2). We used
the MultiQC41 tool and selected samples with more than 30-foldTa
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coverage. For variant calling, we used the DeepVariant42 (1.0)
with models optimized for CCS reads. Finally, we selected
variants with quality above 30 (QUAL > 30).

Whole genome sequencing
The TruSeq Nano DNA Library Prep Kit (Illumina, San Diego, CA,
USA) and MGIEasy FS DNA Prep kit (BGI, China) were used
according to the manufacturer’s instructions to construct the WGS
library. Paired-end sequencing was performed with the Illumina
NovaSeq 600043 and on the MGI G400 sequencers. A QC of the
raw data was performed using FastQC (version 0.11.9: http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). To call the
variants, we used the Bio-IT Illumina Dynamic Read Analysis for
GENomics (DRAGEN) DNA pipeline44 v445 with standard para-
meters and with or without the ‘GBA caller’ option, which uses the

Gauchian tool. To select the high-quality variants, we annotated
and selected variants using VariantAnnotator and SelectVariants
modules of the Genome Analysis Toolkit (GATK 4)46 pipeline and
applied the following additional filtering steps: VariantFiltration
module for SNVs (QD < 2, FS > 60, MQ < 40, MQRankSum <−12,
ReadPosRankSum <−8, DP < 10.0, QUAL < 30, VQSLOD < 0,
ABHet > 0.75 or <0.25, SOR > 3 and LOD < 0), and insertions-
deletions (QD < 2, FS > 200, QUAL < 30, ReadPosRankSum <−20,
DP < 10 and GQ_MEAN < 20).

Variant annotation and validation
Variant annotation was done with ANNOVAR47, using the Genome
Aggregation Database (gnomAD r2.1)48, the Human Gene Muta-
tion Database (HGMD)49 and ClinVar50, and the Combined
Annotation Dependent Depletion (CADD)51 and Rare Exome

Fig. 4 Sub-classification of VUS found in the Luxembourg Parkinson’s study. a GBA1 missense and stop gain variants mapped onto the
three-dimensional structure of GCase. Domain I is shown in dark yellow, domain II in blue, and domain III in pink. Domain I begins at residue
40 after the signal peptide sequence. Variants classified as severe are colored red, mild are colored orange, risk in yellow and VUS are colored
purple. The 3D structure of GCase (PDB code 1ogs) was generated using PYMOL (http://www.pymol.org). b Proposed sub-classification of
identified VUSs with their score in a known database. GBA1 glucocerebrosidase gene, GD Gaucher’s disease, PD Parkinson’s disease, AAO age
at onset, AAA age at assessment in visit1. HGMD The Human Gene Mutation Database, REVEL Rare Exome Variant Ensemble Learner, CADD
Combined Annotation Dependent Depletion, gnomAD The Genome Aggregation Database. DM Disease causing mutation, D Deleterious, T
Tolerate. Variants classified as severe are colored red, mild are colored orange, risk in yellow and VUS are colored purple.
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Variant Ensemble Learner (REVEL)52 to score the pathogenicity of
missense variants53. For variants in splice sites, we used the
ada_score and rf_score from dbscSNV (version 1.1)54. Ada_score ≥
0.6 or rf_score ≥ 0.6 indicate that the variant is likely to affect
splicing.
Rare variants were selected according to MAF < 1% in gnomAD

for the Non-Finnish European (NFE) population in the ‘non-neuro’
gnomAD subset. Then, exonic and splicing variants (±2 bp from
the exon boundary) were selected for autosomal dominant (LRRK2,
SNCA, VPS35, GBA1) and autosomal recessive (PRKN, PINK1, PARK7,
ATP13A2) PD genes. Rare variants within these genes were then
confirmed by Sanger sequencing55.

CNVs in PD genes
To detect the presence of copy number variants (CNVs) in selected
six PD genes (PARK7, ATP13A2, PINK1, SNCA, GBA1, and PRKN), we
used the PennCNV tool (v1.0.5)56 using the Neurochip array data
applying the same filtering steps as previously described for CNV
calls in PD11. The multiplex-ligation dependent probe amplifica-
tion method, which exclusively targets the selected genes, was
used to validate the CNVs. Six patients with each one CNVs in one
of the six PD genes were found and no CNV in GBA1 was found. To
detect CNVs within the GBA1 gene through the analysis of PacBio
data, we employed the pbsv tool (version 2.9.0) (https://
github.com/PacificBiosciences/pbbioconda), which is specifically
designed for long-read data analysis from PacBio. This tool
successfully identifies 59.46% of structural variants with
precision57,58.

GBA1 variant nomenclature
All variants in GBA1 were annotated based on GRCh37 and were
numbered according to the current variant nomenclature guide-
lines (http://varnomen.hgvs.org), based on the primary translation
product (NM_001005742), which includes the 39-residue signal
peptide.

GBA1 variant classification
GBA1 variants classification was done according to the PD
literature based on the work of Höglinger and colleagues in
202212. Exonic or splice-site variants that are not mentioned in the
paper were subclassified as “severe” GBA1 variants if they were
annotated as pathogenic in ClinVar, otherwise they were
subclassified as variants with unknown significance (VUS)51.

Statistical analysis
To assess the frequency of different GBA1 variant types and to
analyze the genotype–phenotype associations in the Luxembourg
Parkinson’s Study, we considered only unrelated individuals and
kept only one proband per family. For cases, we kept the patient
with the earliest AAO. To account for age-dependent penetrance,
we excluded HC with first-degree relatives (parents, sibs, and
offspring) with PD and an AAA of less than 60 years. This reduced
the age difference between cases and HC. We also excluded
carriers of rare variants or CNVs in PD-associated genes (except
GBA1) and individuals of non-European ancestry. Thus, 1410
unrelated individuals (735 patients and 675 HC) were selected for
the statistical analysis.
We used regression models to assess the effect of PDGBA1 carrier

status on the clinical variables. In these models, the dependent
variable was the clinical outcome, while the predictor was GBA1
carrier status. We excluded individuals carrying only VUS or
synonymous variants. To this aim, we performed three types of
association tests: (1) all PDGBA1 pathogenic variant carriers (severe,
mild and risk) vs. PDGBA1-non-carriers, (2) for each sub-group of
PDGBA1 pathogenic variant carriers vs. PDGBA1-non-carriers, (3) severe
PDGBA1 pathogenic variant carriers vs combined mild and risk

PDGBA1 pathogenic variant carriers. The effect of each factor was
expressed as the Beta (β) regression coefficient. The odds ratio
(OR) along with a 95% confidence interval (CI) was used to assess
whether a given exposure was a risk factor for a given outcome.
Regression models were adjusted for AAA, sex, and disease
duration. FDR-adjusted p value < 0.05 was considered as statisti-
cally significant.

Structure-based evaluation of VUS
To evaluate VUS variants, we implemented a method to assign the
pathogenicity based on the REVEL53 and CADD51 scores for
missense variants and the dbscSNV scores (ada_score and
rf_score) for splice variants according to the dbNFSP54 definition,
as well as whether the patients carried the variants. We reclassified
a VUS (1) as “severe” if the variant was present only in patients and
with deleterious effect in all scores or present only in patients with
early-onset PD, (2) as “mild” if the variant was present only in
patients and with tolerated effect in all scores, (3) as “risk” if
present in patients and HCs or with tolerated and deleterious
effect in either score or annotated as “PD susceptibility” in HGMD,
and (4) as “benign” if present only in HC.
We mapped the known pathogenic missense variants and

newly identified VUS in our cohort together with all reported
population variants from gnomAD onto the GBA1 protein
sequence and the 3D structure. We used the X-ray structure of
GCase at 2.0 Å resolution (PDB structure accession code 1ogs;
https://www.rcsb.org/) (Supplementary Fig. 2). Analysis of the 3D
structure was carried out using PyMOL (http://www.pymol.org).
VUS were evaluated as a risk variant if they were 2 bp positions
away in sequence or had a C-alpha distance of less than 5 Å in 3D
from another known pathogenic variant similar to the approach
used by Johannesen et al.59.
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