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Multiple input algorithm-guided Deep Brain stimulation-
programming for Parkinson’s disease patients
Eileen Gülke 1, León Juárez Paz 2, Heleen Scholtes2, Christian Gerloff1, Andrea A. Kühn 3 and Monika Pötter-Nerger 1✉

Technological advances of Deep Brain Stimulation (DBS) within the subthalamic nucleus (STN) for Parkinson’s disease (PD) provide
increased programming options with higher programming burden. Reducing the effort of DBS optimization requires novel
programming strategies. The objective of this study was to evaluate the feasibility of a semi-automatic algorithm-guided-
programming (AgP) approach to obtain beneficial stimulation settings for PD patients with directional DBS systems. The AgP
evaluates iteratively the weighted combination of sensor and clinician assessed responses of multiple PD symptoms to suggested
DBS settings until it converges to a final solution. Acute clinical effectiveness of AgP DBS settings and DBS settings that were found
following a standard of care (SoC) procedure were compared in a randomized, crossover and double-blind fashion in 10 PD subjects
from a single center. Compared to therapy absence, AgP and SoC DBS settings significantly improved (p= 0.002) total Unified
Parkinson’s Disease Rating Scale III scores (median 69.8 interquartile range (IQR) 64.6|71.9% and 66.2 IQR 58.1|68.2%, respectively).
Despite their similar clinical results, AgP and SoC DBS settings differed substantially. Per subject, AgP tested 37.0 IQR 34.0|
37 settings before convergence, resulting in 1.7 IQR 1.6|2.0 h, which is comparable to previous reports. Although AgP long-term
clinical results still need to be investigated, this approach constitutes an alternative for DBS programming and represents an
important step for future closed-loop DBS optimization systems.
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INTRODUCTION
In advanced Parkinson’s disease (PD), deep brain stimulation (DBS)
of the subthalamic nucleus (STN) effectively improves PD
symptoms and quality of life1,2. Innovative technologies such as
directional DBS leads and “multiple independent current control”
(MICC) enable to shape precisely stimulation fields in a three-
dimensional space by the fine control of current fractionalization
on each of the lead’s electrodes. These innovations can be useful
in patients with suboptimally placed DBS leads, as they allow to
widen therapeutic windows and reduce side effects by redirecting
stimulation fields towards therapeutic targets and away from
structures that provoke side effects3–6. However, the multitude of
possible stimulation settings available with directional DBS leads
and MICC outnumbers the stimulation settings that can be
feasibly explored with the classical monopolar review approach7,8,
where exploration time burden is proportional to the number of
clinically assessed stimulation settings.
To use the full potential of DBS and facilitate the programming

of stimulation settings, techniques supplementary to clinical
testing have been suggested. Besides image based9–16 and
electrophysiological17–20 centered approaches, semi-automatic
algorithms using external sensors as input are alternatives for
the optimization of DBS settings21–23. Recently, an algorithm-
guided-programming (AgP) designed for a MICC DBS system with
ring and directional DBS leads has proven to reduce DBS
optimization burden in PD patients22,23. In two exploratory studies,
the DBS settings suggested by the algorithm achieved acute
improvement of total Unified Parkinson’s Disease Rating Scale part
III (UPDRS III) scores comparable to the improvement achieved by
settings found following a standard of care (SoC) procedure22,23.
However, SoC DBS settings resulted in a better subject´s global
clinical state, which was apparent for the investigators but

remained uncaptured by standardized items in the UPDRS III
survey. The better performance of SoC over algorithm settings
might be attributable to the use of a single bradykinesia feedback
as algorithm’s input, which might be unable to represent the
subject’s global clinical state. In the present study, we investigated
an updated version of the previously reported algorithm that
incorporates the use of multiple symptom scores as feedback
input by introducing the concept of a total weighted score that
aims to: (1) better capture the subject´s global clinical state and (2)
compensate for the differentiated response of PD symptoms
to DBS.

RESULTS
Patient demographics
Between August 2019 and October 2020, 10 subjects (one female,
nine males) were enrolled, comprising the 20 hemispheres
analyzed in this study. The cohort consists of one left and nine
right-handed subjects with an age of 54.5 IQR 54.0|59.0 years at
the date of the study visit. Disease duration was 13.0 IQR 12.0|14.0
years with 11.0 IQR 7.0|11.0 years since the start of medication and
8.0 IQR 7.6|12.1 months since DBS surgery. Further patient
characteristics are described in Supplementary Table 1.

Algorithm inputs and burden
Based on the baseline scores assessed at the preliminary
assessment phase of the study visit, 3.0 IQR 3.0|3.5 symptoms
were selected per hemisphere to generate the total weighted
score. From those symptoms, 2.0 IQR 2.0|2.5 were manually
assessed by the clinician and 1.0 IQR 1.0|1.0 by the sensor. Upper
limb rigidity was always scored, 2.0 IQR 1.0|2.0 symptoms were
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bradykinesia related and 0.0 IQR 0.0|1.0 symptoms were tremor
related.
Clinical responses to the tested DBS settings were variable

among the assessed symptoms (e.g., right body side of subject
0309-010; Fig. 1). For 19 hemispheres, AgP DBS settings leading to
the best scores for the combined, total weighted score differed to
the DBS settings leading to the best scores for the individual,
single symptoms (e.g., Fig. 1 blue star markers and Supplementary
Table 2 Setting Number 7, 9, 12, and 15). These differences
comprised discrepancies in the suggested stimulation amplitude
(1 hemisphere), in the electrode configuration (1 hemisphere) or
in both parameters (17 hemispheres).
Bilateral upper limb rigidity and total weighted scores were

significantly (p ≤ 0.001) and strongly correlated with total UPDRS III
scores (r= 0.782 and r= 0.951, respectively; Fig. 2A, B). Moreover,
the correlations between bilateral total weighted scores and total
scores of the axial and lateral items of the UPDRS III survey were
also significant (p ≤ 0.001) and strong (r= 0.807 and r= 0.947,
respectively; Fig. 2C, D).
In 13 of the 20 hemispheres, the AgP reached the directional

mode exploration stage before it converged. For each subject, the
AgP needed 1.7 IQR 1.6|2.0 h and 37.0 IQR 34.0|37 steps to
converge. However, in 15 hemispheres the best stimulation
settings were found before the algorithm converged (e.g.,
Supplementary Table 2), which led to a potential optimization
burden of 1.4 IQR 1.0|1.7 h and 27.5 IQR 19.0|31.0 steps per subject
(Supplementary Fig. 1).

Therapy effectiveness
Compared to baseline (i.e., MED OFF/SoC DBS OFF), both SoC and
AgP DBS settings improved the clinical condition of the subjects
(Supplementary Fig. 1 and Supplementary Table 3). Total UPDRS III
scores yielded by SoC and AgP DBS settings had a SoC-AgP
difference of 2 IQR 0|5 points (p= 0.172) and their score similarity
was 0.9 IQR 0.9|0.9. Improvement in total UPDRS III scores for SoC
was 66.2 IQR 58.1|68.2% (p= 0.002) and 69.8 IQR 64.6|71.9%
(p= 0.002) for AgP (Supplementary Fig. 1). These stimulation-
induced improvements correspond respectively to 87.0 IQR 80.6|
136.4% and 100.0 IQR 84.2|136.4% of the improvement in the
preoperative Levodopa challenge. Compared to baseline, bilateral
upper limb rigidity scores improved 53.4 IQR 25.0|71.4%
(p= 0.008) for SoC and 69.1 IQR 50.0|100.0% (p= 0.004) for AgP
(Supplementary Fig. 1). Sensor assessed bradykinesia scores
improved 31.1 IQR 8.1|48.1% (p= 0.020) for SoC and 44.0 IQR
0.9|53.1% (p= 0.027) for AgP and sensor assessed rest tremor
scores improved 98.8 IQR 61.9|100.0% (p= 0.078) for SoC and 60.5
IQR 12.1|92.3% for AgP (p= 0.059) (Supplementary Fig. 1).

Stimulation settings
The stimulation amplitude for the 20 analyzed hemispheres was
3.3 IQR 2.2|3.8 mA for SoC and 3.3 IQR 2.8|4.3 mA for AgP, which
led to a SoC-AgP amplitude difference of −0.2 IQR −1.4|0.6 mA;
p= 0.271 (Table 1). The electrode configuration was set to deliver
ring mode stimulation in seven hemispheres for SoC and 11
hemispheres for AgP DBS settings. In four of the 13 hemispheres
in which the AgP reached the directional mode exploration stage,
directional mode DBS settings led to the best total weighted
scores. In 12 hemispheres, the stimulation mode for SoC differed
to that for AgP (e.g., subject 0309-005 left hemisphere; Table 1).
The normalized similarity of stimulation settings between SoC and
AgP was 0.5 IQR 0.4|0.6. The modeled Volume of Tissue Activated
(VTA) generated for each of the DBS settings had a volume of
119.1 IQR 62.8|138.9 mm3 and 113.6 IQR 88.8|156.9 mm3 for SoC
and AgP, respectively. The SoC-AgP VTA difference was −10.8 IQR
−58.4|33.2 mm3; p= 0.296. The Jaccard index used to quantify the
similarity between SoC and AgP VTAs was 0.3 IQR 0.2|0.4,

indicating that for most of the SoC and AgP DBS settings there
is little overlap between their VTAs (e.g., Fig. 3A).
The similarity between SoC and AgP UPDRS III scores was not

significantly correlated with neither their similarity in stimulation
settings (r= 0.235, p= 0.318; Fig. 4A) nor with their VTA Jaccard
index (r= 0.199, p= 0.401; Fig. 4B). This lack of significant
correlation was also observed between the similarity of Kinesia™
One scores and the similarity in stimulation settings (r=−0.198,
p= 0.403; Fig. 4C) and the VTA Jaccard index (r=−0.127,
p= 0.593; Fig. 4D). Further results are presented in Supplementary
Data 1 and Supplementary Figs. 2 and 3.

DISCUSSION
CLOVER-DBS is a novel semi-automatic, closed-loop iterative
computer-algorithm facilitating the initial programming of DBS
settings for PD patients. This version of the algorithm supports the
programming of DBS settings for directional leads and incorpo-
rates the use of multiple symptoms by introducing the concept of
a total weighted score, which is used as the algorithm’s feedback
input and aims to better capture the subject’s global clinical state.
Algorithm-suggested DBS settings result in significant acute
reduction of PD motor symptoms, with slightly better immediate
results compared to SoC DBS settings and with a programming
time comparable to the duration of a typical initial DBS
programming session24. Symptoms selected to calculate the total
weighted score show differentiated DBS responses that lead to
different potential therapeutic DBS settings.
The score maps generated by the algorithm show that there are

defined regions within the stimulation space that had the
potential to lead to therapy effective DBS settings. Although
these regions differ among the assessed symptoms, a certain
overlap is often observed. This observation is aligned with
previous works that have generated probabilistic stimulation
maps (i.e., sweet spots) based on the aggregation of several VTAs
for movement disorders such as Parkinson’s disease and
Dystonia12,25. It has been suggested that the therapeutic response
of multiple symptoms to DBS settings should be assessed to
better characterize the patient’s global clinical state23,26. Rest
tremor of the upper extremities, finger tapping and gait have
been found to have strong correlations with total UPDRS III
scores27. The total weighted score introduced in this work aims to
capture this global clinical state by the weighted combination of
several relevant symptoms that account for a fraction of the total
UPDRS III scores. Importantly, the generation of the total weighted
score is agnostic to the type of assessed responses given that they
have a defined value range. This feature of the total weighted
score allows to combine manually assessed and sensor derived
signals. Compared to bilateral upper limb rigidity scores, total
weighted scores show a stronger correlation with total UPDRS III
scores and a strong correlation with axial symptoms, for which the
optimization of DBS settings might be more challenging.
The algorithm constitutes a naïve new paradigm to optimize

DBS settings and because of this, it often suggests stimulation
amplitudes or electrode configurations that might not be intuitive
for clinicians but that are nevertheless necessary to define the
available stimulation space that could yield therapy effective DBS
settings. The DBS optimization was often attained before the AgP
finally converged. In clinical practice, it would be possible to
prematurely stop the AgP when clinician and patient are satisfied
with the AgP-derived DBS settings. Although previous studies
have contributed with evidence about symptom specific stimula-
tion sweet spots in the STN13,25, the algorithm in this work aims to
find a “one-fits-all” DBS setting that is effective for all symptoms
used to calculate the total weighted score despite the possibility
that this solution might not be the optimal for each of these
symptoms. Based on the metrics proposed in this work, AgP DBS
settings have a low similarity with SoC DBS settings despite their
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Fig. 1 Exemplary score maps showing responses to AgP DBS settings for subject’s 0309-010 right body side symptoms (postural tremor,
upper limb rigidity, finger tapping speed, and total weighted score). Score maps were generated for the A ring and B directional mode
stages. Dashed lines on the ring mode stage score maps indicate the level at which the directional mode stage was performed. Red colored
areas represent high symptom load and less DBS efficacy, whereas dark green colored areas low symptom load and high DBS efficacy. Note
that score maps differed slightly between individual symptoms.
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similar clinical results. This small similarity probably originates
from the differences in the SoC and AgP electrode configurations
rather than from their stimulation amplitudes, as in contrast to
SoC, AgP DBS settings often involve the activation of multiple
electrodes and two electrode levels and neither the stimulation
amplitude nor the volume of the generated VTAs from both DBS
settings had significant differences.
The study has certain limitations as a small sample size of ten

subjects and 20 hemispheres from a single center with one-day
study visit precluding long-term observations. Nonetheless, these
sample sizes are comparable to other DBS exploratory studies and
previous similar works21–23. There is also a selection bias, as only
less severely affected subjects tolerating withdrawal of medication
for several hours participated in the study. The SoC DBS settings of
the subjects yielded high beneficial clinical effects, thus there
might be a ceiling effect masking the superiority of AgP over SoC.
Future studies should consider longer term observation of AgP
clinical effects and subjects with suboptimal clinical results due
to DBS.
The AgP approach investigated here constitutes a feasible

alternative for the semi-automatic optimization of DBS settings
and could be used to guide future closed-loop DBS optimization
systems. Next versions of the algorithm should incorporate
electrophysiological and anatomical information to constrain the
stimulation space to be explored aiming to further reduce the
programming burden.

METHODS
Study design
CLOVER-DBS (Closed Loop Programming Evaluation Using Exter-
nal Responses) is an exploratory, prospective, multicenter study
with a randomized, crossover and double-blind design23

(ClinicalTrials.gov Identifier NCT03037398). Acute therapeutic
effects of SoC DBS settings on motor performance are compared
with the effects of DBS settings obtained following an AgP
approach. Three exploratory endpoints of the study quantify the
difference in therapy effectiveness by comparing (1) total UPDRS
III scores, (2) bilateral upper limb rigidity scores obtained as part of
the UPDRS III and (3) bradykinesia and tremor scores measured by
an external finger mounted sensor (Kinesia™ One, Great Lakes
Neurotech, Cleveland, OH) with a proprietary scoring algorithm
that assigns scores from 0 to 4 to each assessment28,29. The
Kinesia™ One system assesses the speed, amplitude and rhythm of
finger tapping and hand grasping tasks for bradykinesia as well as
rest tremor of the upper limbs during a time period of 15 s.
Additionally, time burden and number of stimulation settings (i.e.,
steps) needed for the AgP to converge were recorded.

Participants
The analyzed cohort originated from a single center (University
Medical Center Hamburg-Eppendorf, Hamburg, Germany, UKE).
The study was approved by the local ethics committee in
Hamburg, Germany (PV MC-089/18) and conducted in agreement
with the Code of Ethics of the World Medical Association
(Declaration of Helsinki, 2018). Written informed consent to
publish was obtained. Inclusion criteria were (1) diagnosis of
bilateral idiopathic PD with the presence of bradykinesia and/or
tremor, (2) on-label implantation of the Vercise DBS directional
system (Boston Scientific, Valencia, California, USA) in the STN, (3)
unchanged SoC DBS settings for at least 4 weeks, (4) total UPDRS
III scores ≥25 points in the preoperative medication off (MED OFF)
state, and (5) improvement of PD symptoms as a result of DBS in
the MED OFF state defined as ≥25% reduction in total UPDRS III
scores. Exclusion criteria were (1) candidates with major psychia-
tric comorbidities including unrelated clinically significant

Fig. 2 Correlation of bilateral upper limb rigidity scores and total weighted scores with UPDRS III scores of all subjects (n= 10). A Bilateral
upper limb rigidity scores and B Bilateral total weighted scores correlation with total UPDRS III scores. C Axial symptoms UPDRS III scores and
D Lateral symptoms UPDRS III scores correlation with bilateral total weighted scores.
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depression and (2) usage of multiple frequencies and/or activation
of non-adjacent electrodes for the SoC DBS settings.

Study workflow
CLOVER-DBS consists of one study visit with three main phases: (1)
preliminary assessments, (2) AgP DBS settings optimization, and
(3) randomized, double-blind assessments (Fig. 5A, B). The study
was executed by two investigators, one clinician assessed the
motor symptoms while the other investigator operated the
algorithm. Subjects arrived at the study visit in the MED OFF
condition after withdrawal of antiparkinsonian medication for at
least 12 h, in which preliminary clinical assessments were
performed. AgP was performed individually and in arbitrary order
for each brain hemisphere, while DBS for the opposite hemisphere
was turned off. Pulse width and frequency were set to 60 µs and
130 Hz. The clinical effect of DBS settings suggested by the
algorithm was assessed on the contralateral bodyside after a
wash-in period of 30 s. Once the algorithm completed the
optimization of DBS settings for both hemispheres, the perfor-
mance of AgP and SoC DBS settings was compared in random
order and in a double-blind fashion based on the assessed severity
of PD symptoms after a DBS wash-in period of 30 min. Random
allocation sequence was implemented by sequentially numbered
containers generated by Boston Scientific in advance.
While the burden associated to finding SoC DBS settings is not

reported because it could not be reliably estimated based on the
patient’s clinical files, the AgP “convergence burden” is defined as
the time and number of evaluation steps of different stimulation
settings suggested by the algorithm during the AgP DBS
optimization phase until AgP converges. Moreover, a potential
“optimization burden” was defined as the time and number of
evaluation steps needed by the algorithm to suggest the clinically
best DBS settings (based on the Total Weighted Score) for both
hemispheres (Supplementary Table 2).

Symptom selection and weighting
Based on the scores obtained in the preliminary assessments
phase, weights between 0 and 1 with a 0.001 resolution were
assigned to lateralized symptoms using a proprietary method that
considers their severity in the absence of therapy and their
potential improvement due to therapy (i.e., MED OFF/SoC DBS OFF
and MED OFF/SoC DBS ON conditions, respectively). For instance,
a symptom improving from a score of 4 to 0 will have a weight of
1.0, whereas a symptom improving from 2 to 0 will have a weight
of 0.50 and a symptom improving from 2 to 1 will have a weight of
0.125. The symptoms were ranked by their weight and a
maximum of four symptoms were selected per hemisphere.
Symptom scores (point resolution of 0.1) and their normalized
weights were used to generate a total weighted symptom score,
which was used as input for the algorithm.

Computer algorithm
The previously described computer algorithm23 is a stand-alone
graphic user interface created in MATLAB R2020a (Mathworks,
Natick, Massachusetts, USA). The algorithm has been developed to
be compatible with the Boston Scientific Cartesia directional lead.
The algorithm consists of two iterative and sequential exploration
stages, in which DBS settings are tested within the corresponding
two-dimensional stimulation space (Fig. 5C). The first exploration
stage of the algorithm is the “Ring mode” stimulation, where
several DBS settings at different vertical positions along the axis of
the DBS lead are tested. If the vertical position (i.e., ring mode DBS
setting) leading to the best clinical effect involve the activation of
directional electrodes, the second exploration stage of the
algorithm involves directional mode stimulation at this vertical
position after algorithm convergence at the first stage. In the
directional mode stage, several DBS settings at different rotation
angles around the DBS lead are tested (Fig. 5C, D). Due to the
naïve nature of the algorithm, at the beginning of each
exploration stage it explores predefined standard points (i.e.,
DBS settings) distributed over the corresponding two-dimensional

Fig. 3 Exemplary VTAs generated from SoC and AgP DBS settings. Front and top view (upper and lower panels, respectively) of the DBS
lead. Grey volume around the lead represents its encapsulation layer. A Subject’s 0309-007 left hemisphere SoC and AgP DBS settings have
low similarity quantified by their low stimulation setting similarity and VTA Jaccard index (0.44 and 0.14, respectively). B Subject’s 0309-010
right hemisphere SoC and AgP DBS settings have high similarity quantified by their high stimulation setting similarity and VTA Jaccard index
(0.85 and 0.74, respectively). SoC and AgP DBS settings for both subjects are included in Table 1.
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stimulation space. These predefined points were the same for all
subjects, comprising three points for the ring mode stage and four
for the directional mode stage. Once the predefined points are
explored, the algorithm suggests new stimulation settings based
on the assessed clinical responses to the previous settings. At each
step (i.e., iteration), the DBS settings corresponding to the
explored point were programmed on the subject’s IPG allowing
a wash-in period of ≥30 s before the selected symptoms’ scores
were recorded and used to generate the total weighted score,
which served as input for the algorithm.
Based on all recorded scores and side effects, two-dimensional

score maps were generated for each of the selected symptoms
and the total weighted score (Figs. 1 and 5C). These score maps
contain the potential clinical effect at each point on the
corresponding stimulation space, as well as stimulation amplitude
boundaries for regions around the vertical position or rotation
angles where side effects were observed, which further con-
strained the two-dimensional stimulation space to be explored.
Based on the potential clinical effects for the total weighted

score and the distance between all previously explored points, the
algorithm determined the next point to explore by means of a
proprietary weighting method. This weighting method allows the
exploration of regions that are far from each other at the
beginning, and then focus on regions with the best potential of
therapeutically effective DBS settings. Once the distance between
the new suggested and the explored points is below a predefined
threshold, the algorithm converges (Fig. 5D).

Similarity of stimulation settings and scores
The similarity of SoC and AgP DBS settings was quantified for each
hemisphere by two methods. For both methods, similarity values
ranged from 0 to 1, with values of 1 indicating identical

stimulation settings and values of 0 completely different stimula-
tion settings. The first method quantified the SoC|AgP settings
similarity based on the ratio of their stimulation amplitudes and
the normalized Euclidean distance of their electrode configura-
tions (Eqs. 1–3). The second method quantified the similarity of
the resulting VTAs from both stimulation settings by calculating
their Jaccard index (Eq. 4). A description of the method used to
generate the VTAs has been reported previously30.

SetSim ¼ AmpRat� 1� NormElcConfDistð Þ (1)

Where:
SetSim: SoC|AgP stimulation settings similarity.
AmpRat: SoC|AgP stimulation amplitude ratio.
NormElcConfDist: normalized SoC|AgP electrode configuration

Euclidean distance.

AmpRat ¼ min StimAmpSoC ; StimAmpAgP
� �

max StimAmpSoC ; StimAmpAgP
� � (2)

Where:
AmpRat: SoC|AgP Stimulation amplitude ratio.
StimAmpSoC: SoC stimulation amplitude.
StimAmpAgP: AgP stimulation amplitude.

NormElcConfDist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 SoC ElecActi � AgP ElecActið Þ22
q

ffiffiffi
8

p (3)

Where:
NormElcConfDist: Normalized SoC|AgP electrode configuration

Euclidean distance.
N: total number of electrodes on the lead, including the

IPG case.
SoC ElecActi: Normalized SoC activation of electrode i.

Fig. 4 Non-significant correlation of similarities between SoC and AgP clinical effects and their DBS settings. Correlation of A settings
similarity and B VTA Jaccard index with hemibody UPDRS III scores similarity (n= 20). Correlation of C settings similarity and D VTA Jaccard
index with hemibody Kinesia™ One scores similarity (n= 20).
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Fig. 5 Overview of main phases and specific task of the study. Block diagrams of A the main phases of the study visit and B the specific
tasks performed at each of them. C Examples of score maps for the predefined exploration points at the two AgP exploration stages. The
algorithm starts with the same standard predefined stimulation settings, which were three and four for the ring and directional mode
exploration stages, respectively (circles on panels). D Block diagram for both AgP exploration stages. Ring mode stimulation constitutes the
first AgP exploration stage. If the ring mode stimulation setting leading to the best clinical effect involves the activation of directional
electrodes, the algorithm continues with the second exploration stage, which involves directional mode stimulation settings. The black
contoured block indicates the start of the corresponding exploration stage.
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AgP ElecActi: Normalized AgP activation of electrode i.

JacIdx ¼ VTASoC \ VTAAgP

VTASoC ∪ VTAAgP
(4)

Where:
JacIdx: SoC|AgP VTAs Jaccard Index.
VTASoC: SoC volume of tissue activated.
VTAAgP: AgP volume of tissue activated.
For each body side, the similarity of scores yielded by SoC and

AgP DBS settings was quantified for UPDRS III as well as Kinesia™
One scores. The quantification was based on the SoC|AgP score
Euclidean distance for each of the assessed items (i.e., symptoms)
of the corresponding test (Eq. 5). This similarity metric had a value
range from 0 to 1, with values of 1 indicating identical scores for
all symptoms and values of 0 the maximum score difference (i.e.,
4) for all symptoms.

ScrSim ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 SoC Scri � AgP Scrið Þ22
q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
16 � Np (5)

Where:
ScrSim: normalized SoC|AgP score similarity.
N: total number of symptoms assessed.
SoC Scri: score for symptom i yielded by SoC DBS settings.
AgP Scri: score for symptom i yielded by AgP DBS settings.

Statistics
CLOVER is an exploratory study and due to the small sample
size, results are reported as median and 25% | 75% interquartile
range (IQR). Wilcoxon signed rank test was used to test for
difference significance when comparing conditions (p < 0.05).
Pearson’s correlation was used to quantify the relationship
between variables and its strength was categorized as strong
1.0 ≥ |r| ≥ 0.7, moderate 0.7 > |r| ≥ 0.5 or weak 0.5 > |r| ≥ 0.3. All
analyses were performed on MATLAB R2020a.
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