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StressNet - Deep learning to predict stress with fracture
propagation in brittle materials
Yinan Wang 1, Diane Oyen2, Weihong (Grace) Guo 3, Anishi Mehta4, Cory Braker Scott 5, Nishant Panda2,
M. Giselle Fernández-Godino6, Gowri Srinivasan2 and Xiaowei Yue 1✉

Catastrophic failure in brittle materials is often due to the rapid growth and coalescence of cracks aided by high internal stresses.
Hence, accurate prediction of maximum internal stress is critical to predicting time to failure and improving the fracture resistance
and reliability of materials. Existing high-fidelity methods, such as the Finite-Discrete Element Model (FDEM), are limited by their
high computational cost. Therefore, to reduce computational cost while preserving accuracy, a deep learning model, StressNet, is
proposed to predict the entire sequence of maximum internal stress based on fracture propagation and the initial stress data. More
specifically, the Temporal Independent Convolutional Neural Network (TI-CNN) is designed to capture the spatial features of
fractures like fracture path and spall regions, and the Bidirectional Long Short-term Memory (Bi-LSTM) Network is adapted to
capture the temporal features. By fusing these features, the evolution in time of the maximum internal stress can be accurately
predicted. Moreover, an adaptive loss function is designed by dynamically integrating the Mean Squared Error (MSE) and the Mean
Absolute Percentage Error (MAPE), to reflect the fluctuations in maximum internal stress. After training, the proposed model is able
to compute accurate multi-step predictions of maximum internal stress in approximately 20 seconds, as compared to the FDEM run
time of 4 h, with an average MAPE of 2% relative to test data.
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INTRODUCTION
Brittle materials, such as glass, ceramics, concrete, some metals,
and composite materials, are widely used in many applications
that involve complex dynamics, impulse, or shock loadings. In
structural materials, high-stress concentration around micro-scale
defects precipitates cracks, eventually leading to fracture initia-
tion, propagation, and coalescence. In brittle materials, fractures
propagate fast with almost no elastic deformation leading to
catastrophic failure with little warning. The dynamics of fracture
evolution are governed strongly by maximum internal stresses in
the material. However, accurate prediction of maximum internal
stress of brittle material under dynamic loading conditions
remains a challenge in the field of materials science1–3. Therefore,
ensuring the durability and reliability of brittle materials under
various dynamic loading conditions is imperative, especially in
cases where accidents can jeopardize safety and security.
A material fails when the maximum internal stress in any

direction equals either the tensile or compressive strength4. Under
idealized conditions, the internal stress field should be distributed
homogeneously through the sample. However, real-world materi-
als inevitably contain microfractures, defects, or impurities, which
result in high values of stresses being concentrated internally5,6.
Hence, the real fracture strength of a brittle material is usually
lower than the theoretical value. The presence of cracks increases
stress values locally, and in turn, the stress concentration around
fractures results in the fractures propagation. Predicting the
maximum internal stress of a material is extremely difficult
because the stress and damage are highly coupled.
A common approach to simulate the stress and strain of a given

material is the finite element method (FEM)7–9. The main idea of
FEM lies in simplifying the problem by breaking the material down

into a large number of finite elements and then building up an
algebraic equation to compute the coupled mechanical deforma-
tions and stresses based on the boundary and load conditions.
The Hybrid Optimization Software Suite (HOSS), developed at Los
Alamos National Laboratory, is a hybrid finite-discrete element
method (FDEM) that can simulate the fracture growth of both 2D
and 3D physical systems10,11. Within HOSS simulations, the
material is modeled as finite elements and the fractures are
represented by discrete elements which can only form along the
boundaries of the finite elements. Although this method gives
accurate predictions of the fracture growth and the dynamics of
stress distribution, it is computationally intensive, especially when
multiple runs are needed to obtain the statistical variability
naturally existent in real-world materials. Machine learning (ML)
techniques are becoming popular12 in modeling complex systems
because they can serve as lower-order surrogates to approximate
higher-fidelity models, which significantly reduces the model
complexity and computation time, as shown in Fig. 1.
Despite recent advances, applying ML models for predicting the

maximum internal stress with fracture propagation of materials is
still limited. Nash et al.13 reviewed the most recent deep learning
methods for detection, modeling, and planning for material
deterioration. Nie et al.14 used Encoder-Decoder Structure based
on Convolutional Neural Network (CNN) to generate the stress
field in cantilevered structures. However, these methods do not
consider temporal dynamics of the stress field or fracture within
the material. On the other hand, most recent papers focus on
predicting the fracture propagation instead of internal stresses.
Rovinelli et al.15 built a Bayesian Network (BN) to identify an
analytical relationship between crack propagation and its driving
force, which focuses on predicting the direction of crack
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propagation instead of the detailed crack path. Hunter et al.16

applied an Artificial Neural Network (ANN) to approximately learn
the dominant trends and effects that can determine the overall
material response. Moore et al.17 implemented a Random Forest
(RF) and a Decision Tree (DT) to predict the dominant fracture
path within the material. Shi18 compared the performance of
Support Vector Machine (SVM) and ANN in fracture prediction.
Schwarzer et al.10 employed a Graph Convolutional Network to
recognize features of the fractured material and a recurrent neural
network (RNN) to model the evolution of these features.
Fernández-Godino et al.19 used an RNN to bridge meso and
continuum scales for accelerating predictions in a high strain rate
application problem. One common issue with previous works10,16–19

is that the models are built on manually selected features such as
fracture length, orientation, distance between fractures, etc.,
instead of features learned from the raw data. Manually selected
features could reduce the computation requirement, but it might
cause information loss and degrade model performance.
The proposed work seeks to go beyond existing methods by

considering a dynamically evolving stress tensor. Simulation
results from HOSS, which provide the data for building and
validating ML surrogates, have two major properties. First, at each
time step, a 3-way tensor representing the spatial properties of
fractures and the stress field. In addition, the entire simulation is a
time-series representing the temporal dependencies among
different time-steps. The relevant literature about extracting
spatial features of the tensor data and temporal dependencies
of time series data is further reviewed.
For the tensor data, Yue et al.20 proposed a tensor mixed-effects

model to analyze massive high-dimensional Raman mapping data
with a complex correlation structure. Gao et al.21 integrated
supervised tensor decomposition with ensemble learning for
quality monitoring in friction stir blind riveting. Yan et al.22 and Si
et al.23 applied Graph Convolutional Neural Networks to capture
the spatial structure information of a body skeleton to recognize
different actions in the video. Shou et al.24 implemented a 3D
Convolutional-De-Convolutional structure to detect and localize
actions in the video. Wang et al.25 proposed to compress deep
learning models using tensor decomposition. All of the afore-
mentioned work proposed methods to extract features from
tensor data for different tasks. However, these methods do not
consider temporal evolution. Therefore, they cannot be used
directly to predict maximum internal stresses with fracture
propagation.
For the analysis of time series data, in the context of statistical

learning, Auto-Regressive Integrated Moving Average is a class of
models that captures a suite of different standard temporal
structures in time series data26. In the context of deep learning,

RNN and Long Short-term Memory (LSTM) Network were
proposed to solve the time-series prediction problem27. Their
variants, such as Gated RNN28, were proposed in machine
translation, which results in similar performance compared with
LSTM. Bidirectional LSTM (Bi-LSTM) was proposed to capture both
the forward and backward temporal properties of the sequence29.
The attention mechanism was further incorporated into the Bi-
LSTM30 to enable the model to assign different weights to the
historical data when predicting or translating. Temporal depen-
dency plays a significant role in predicting maximum internal
stress. Both maximum internal stress and fracture propagation
have temporal features, which need to be fused and incorporated
into designing the deep learning surrogates for prediction of
maximum internal stress.
Apart from extracting features from historical data, the

challenge of predicting maximum internal stress also lies in fusing
spatial and temporal features. There are recent advances in
feature fusion in other fields. Wang et al.31,32 proposed to combine
CNN and LSTM networks to predict the entire video based on the
initial few frames. Yao et al.33, Wei et al.34, and Zhang et al.35

proposed to use CNN to represent the spatial view of the city
topology and to use LSTM to represent the temporal view of traffic
flow for predicting traffic condition. In predicting maximum
internal stress, historical stress data does not have sufficient
information for future prediction, especially for multi-step predic-
tion. Spatial and temporal properties of fracture propagation serve
as necessary and important supplementary information to reduce
error accumulation in the multi-step prediction. Incorporating the
dynamic changes of fracture into the prediction of maximum
internal stress is a key challenge.
This work proposes a deep learning model, StressNet, to predict

the maximum internal stress in the fracture propagation process.
Instead of deterministically calculating the entire stress field at
each time step as HOSS does, StressNet focuses on predicting only
the maximum internal stress, which is the key factor influencing
material failure. Spatial features of fractures, which are extracted
by a Temporal Independent Convolutional Neural Network (TI-
CNN), are incorporated to help with the multi-step prediction of
the maximum internal stress. StressNet also uses the Bi-directional
LSTM (Bi-LSTM)29 to capture the temporal features of fracture
propagation and historical maximum internal stress. Finally,
StressNet predicts the future maximum internal stress by fusing
the aforementioned spatial and temporal features. During the
training process, the Mean Squared Error (MSE) and Mean
Absolute Percentage Error (MAPE) are integrated as an adaptive
objective function, with a dynamically tuned weight coefficient, to
predict both the peak and bottom values better. Inspired by
physic knowledge and existing works in other domains, the
StressNet is designed to incorporate features from fracture
propagation into prediction and fuse spatial and temporal
features from multiple data formats.

RESULTS
Hybrid optimization software suite (HOSS) simulations
The data used for building and validating the ML model are from
two-dimensional HOSS simulations. Each simulation is conducted
on a rectangular sample material of 2 m width and 3m length,
loaded with uniaxial tension. At the beginning of each simulation,
the material sample is seeded with 20 cracks that mimic initial
defects in the material. Each of the initial cracks shares the same
length of 20 cm, and the orientation is chosen uniformly randomly
to be 0, 60°, or 120° from horizontal. To keep the initial cracks from
overlapping, the material sample is divided uniformly into 24
grids, and 20 of them are randomly picked to place initial cracks.
As the simulation progresses, some initial cracks propagate and
coalesce due to the external tensile loading. The material sample

Fig. 1 Proposed workflow. The machine learning model informs
the continuum model with crack statistics and stresses. The machine
learning model replaces the expensive mesoscale simulation model
(high-fidelity) to speed up predictions while maintaining its
accuracy.
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completely fails when there is a single crack spanning the sample
horizontally. At this point, the material cannot carry any load.
At each time step, the HOSS simulation outputs a 2-way tensor

(matrix) representing the position of current cracks and a 3-way
tensor representing the entire stress field. The sample data
provided by the simulation is shown in Fig. 2. Figure 2 (a) is the
distribution of cracks at each time step, and it is denoted as the
damage channel. (b) and (c) are the stress field, decomposed into
two directions, Channel xx (σxx) and Channel yy (σyy). To help with
easier visualization, the stress field has been normalized into the
range [0, 1] in both directions independently. Also, the yellow
dashed boxes in Fig. 2 show that stress tends to concentrate on
the tips of cracks. Moreover, those cracks propagate when the
maximum local stress exceeds a threshold. For more details about
HOSS, the reader can refer to10,11,36.

Problem formulation
Since the high-fidelity HOSS model is computationally intensive
(each simulation takes about 4 h on 400 processors), a deep
learning model, StressNet, is proposed as a surrogate to predict
the maximum internal stress until material failure. Instead of the
entire stress field, StressNet focuses on the maximum internal
stress, which is highly correlated with fracture propagation. This is
analogous to the relationship between the spring deformation
and the external force. Consequently, in StressNet, the cracks’
information is incorporated to improve the accuracy in multi-step
predictions. So that the input of the model consists of two parts,
x1, . . . , xΔt denotes the Δt consecutive time-steps of maximum
internal stress, and I1, . . . , IΔt denotes the fractures’ information in
the same period. The criterion for determining the value of Δt is to
find the minimum input length containing sufficient temporal
features to make predictions. The cracks’ information is in matrix
format at each time step, and it is named as the damage channel
in the rest of this paper. The output of the model is the predicted
internal stress at the next time step, which is denoted as x̂Δtþ1. To
get the multi-step predictions towards the end of one simulation
(when the material fails), the result from the former step x̂Δtþ1 is
fed into the model to make further predictions.

Data properties

● Significant Fluctuation: The maximum internal stress changes
severely after the initial increase, as shown in red lines in Figs.
3 and 4. There is no obvious trend of the changes in the
forward direction. So the model needs to incorporate
reference information, forward and backward temporal
information to enrich features for the prediction of maximum
internal stress.

● Spatial and Temporal Features: The motivation for incorporat-
ing the damage channel into the maximum internal stress
prediction is introduced in the section of Problem Formula-
tion. The damage channels within a certain time interval,
I1, . . . , IΔt, contain both spatial and temporal features, and the
historical stress data contains temporal features. Our model is
designed to capture and fuse these features.

● Large Range: The range of maximum stress data is from zero
to a scale of 107. Even after normalization, some of the data
will be close to 0, while some of the data will be close to 1.
Thus, our model needs to perform well on both peak and
bottom values to accurately predict the stress change during
the fracture propagation process.

Data description and preprocessing
The dataset is composed of 61 high-fidelity HOSS simulations, and
each of them contains 228 time-steps to simulate the detailed
fracture propagation process. Each simulation contains the binary
image data (damage channel) denoting the position of cracks at
each time step, in which 0 represents undamaged material and 1
represents damaged material. Each simulation also contains the
time-series maximum internal stress.
The original damage channel has a shape of 192 × 128, which

makes the TI-CNN model large and challenging to train. During
the data preprocessing, the damage channel is downsampled into
the shape 24 × 16 using the max-pooling method with filter size
8 × 8. The downsampled data can preserve the properties of
cracks such as orientation, position, and dynamic changes of the
crack length.

Fig. 2 Visualization of the fracture growth and the dynamic changes of the stress field in two directions. a is the propagation of cracks and
the simulation ends when a single crack spans the width of the material, which is shown in the yellow-highlighted region. The white lines
represent cracks and the black background represents the normal material. b represents the stress field of σxx and (c) represents the stress field
of σyy. According to the yellow dashed boxes highlighted in this figure, the stress tends to concentrate on the tips of existing cracks, and
moreover, the cracks will grow because of the stress concentration.
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The time-series maximum internal stress data set has a wide
range, and the difference between the peak and bottom value
could be up to 107. To tackle this problem, the original data is
normalized into the range [0, 1] by using the min-max normal-
ization method, which is given below equation.

x norm
t ¼ xt � xmin

xmax � xmin
; (1)

where xmax and xmin are the maximum and minimum stress data
among all the simulations. The model is trained and tested by
using the normalized data, and then the predicted results are
reversed back into the original value.
Furthermore, in HOSS simulations, the stress data at each time

step is decomposed into three components, which are denoted as
Channel xx, Channel xy, and Channel yy. Among all of them,
Channel xx and Channel yy represent two stress components with
orthogonal directions and determine the fracture propagation. In
the experiment, the same model structure is applied to predict
Channel xx and Channel yy separately.

Training settings
The code is implemented using the Python libraries Keras37 and
Tensorflow38. During the training phase, the adaptive moment
estimator known as the Adam optimizer39 is used, and the
learning rate is set at 10−3. Note that Adam is an optimizer based
on gradient and momentum, which is used to minimize the loss
function and update the weight matrices in StressNet. The dataset
contains 61 groups of high-fidelity HOSS simulations, and 55 of
them are selected as the training data to build the model. The
remaining simulations are used to test model performance after
training. In the training process, one epoch represents that the
model was trained once throughout the entire training dataset.

During each epoch, the dataset is ordered randomly and split into
batches. Generally, the training process contains multiple epochs.
At each epoch, six simulations are randomly selected and set aside
for model validation. Note that validation is conducted at the end
of each epoch to assess the model’s performance. The goal of
validation is to indicate the model performance in data unseen
during the epoch to avoid overfitting. This is different from testing
—which is conducted just once after all training—on data never
fed to the network during the training process.
In summary, at each epoch, StressNet is trained on 49 simula-

tions, and validated on six simulations. After training, the model is
tested on the remaining six simulations. To prevent overfitting, the
order of feeding simulations is shuffled every 30 epochs, and
the shuffling process is repeated 60 times, which means there are
1,800 epochs total. When the dynamic loss function is applied, the
value of λ is set to 0.9 for the first 600 epochs, and then, it is
changed to 0.1 for the remaining simulations. The training process
takes between 8 to 20 h on a single NVIDIA GeForce GTX 1080Ti
GPU, depending on the number of epochs.
The training phase is conducted on one-step prediction, which

means that StressNet only predicts one step, and then it compares
the result with the ground truth. The input and output of the
model at the training phase are shown in Table 1, in which It is the
damage channel at time t, x norm

t is the ground truth at time t, and
x̂ norm
t denotes the prediction at time t. In the simulations, the
number of time-steps is T= 228, and Δt= 10. The validation phase
has the same setting as the training phase.

Testing settings
The training phase can be conducted on the one-step prediction
because the entire time-series stress data are provided to train the
model. However, in the testing phase, only the initial Δt steps of

Fig. 3 Comparison of test results on channel xx (σxx) from different models. We use the same training and testing data to train and test
each model. From the result, StressNet combined with Dynamic Fusion Loss Function receives the best performance (solid blue line).
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stress data, x norm
1 ; :::; x norm

Δt , are available. Hence, the model has to
make predictions recursively by successively using the former
prediction x̂ norm

t to predict the maximum internal stress x̂ norm
tþ1 in

the next time-step. The input and output at the testing phase are
shown in Table 2, in which, the previous predictions are served as
the model input. It takes ~20 s to generate one entire simulation
(228 time-steps).

Baseline models
StressNet has two characteristics. One is that the damage channel
is incorporated as reference information to improve accuracy in
multi-step predictions on maximum internal stress. The other is
that the MAPE and MSE are adaptively fused as loss functions
according to the data properties. To show the performance of the
proposed StressNet, we selected the diverse baseline models as
benchmark. To ensure a fair comparison, all the benchmark
methods are trained using the same Adam optimizer.

● Historical Average: Historical average predicts the maximum
internal stress at time step t by using the average value of all
simulations at the same time step. In the experiments, the

average of all training simulations at each time step is
calculated and used as the prediction of the test data.

● LSTM: LSTM27 is a popular method for time series
prediction, which combines the long term and short term
temporal dependencies to make the prediction. In the
experiment, it is hard for the LSTM to give a reasonable
prediction of each simulation (228 time-steps in all) only
based on the initial ten time-steps of data. So in the LSTM,
the value of Δt is set to 50, which means that the initial 50
time-steps of data are used as the input to recursively
predict the entire time-series.

● Bi-LSTM: The structure of Bi-LSTM29 takes both the forward
and backward temporal properties into consideration.
Similar to the LSTM, we also set Δt= 50 for the Bi-LSTM.

● StressNet + MSE: The Mean Squared Error (MSE) is used as
the loss function. The model structure of StressNet will be
described in Method section. The expression of the MSE is
given in Eq. (6).

● StressNet + MAPE: Another variant of the StressNet is using
the Mean Absolute Percentage Error (MAPE) as the loss
function. The expression of the MAPE is given in Eq. (7).

Fig. 4 Comparison of test results on channel yy (σyy) from different models. StressNet combined with Dynamic Fusion Loss Function has
the best performance (solid blue line).

Table 1. Input and output at the training phase.

Input Output

ðx norm
1 ; I1Þ; ðx norm

2 ; I2Þ; :::; ðx norm
Δt ; IΔtÞ x̂ norm

Δtþ1
ðx norm

2 ; I2Þ; ðx norm
3 ; I3Þ; :::; ðx norm

Δtþ1 ; IΔtþ1Þ x̂ norm
Δtþ2

… …

ðx norm
T�Δt�1; IT�Δt�1Þ; ðx norm

T�Δt ; IT�ΔtÞ; :::; ðx norm
T�1 ; IT�1Þ x̂ norm

T

Table 2. Input and output at the testing phase.

Input Output

ðx norm
1 ; I1Þ; ðx norm

2 ; I2Þ; :::; ðx norm
Δt ; IΔtÞ x̂ norm

Δtþ1
ðx norm

2 ; I2Þ; ðx norm
3 ; I3Þ; :::; ðx̂ norm

Δtþ1 ; IΔtþ1Þ x̂ norm
Δtþ2

… …

ðx̂ norm
T�Δt�1; IT�Δt�1Þ; ðx̂ norm

T�Δt ; IT�ΔtÞ; :::; ðx̂ norm
T�1 ; IT�1Þ x̂ norm

T
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Evaluation metrics
To evaluate the performances on predicting the peak and bottom
values of maximum internal stress equally, the MAPE is selected to
evaluate the performance of StressNet. The expression of MAPE is
given as Eq. (7). According to the section of Data Properties, one of
the important features of maximum internal stress is that it
fluctuates significantly. The MAPE is selected to treat data with
large and small values equally when evaluating the model
performance.

Performance comparisons
The numerical results of StressNet and baseline models are shown
in Table 3. Compared with the baseline models, the proposed
StressNet incorporates features from the damage channel and
uses the adaptively fusing loss function. To show the benefit of
incorporating the damage channel in multi-step predictions,
several classical time series prediction models are selected,
including Historical Average, LSTM27, and Bi-LSTM29. The results
show that StressNet significantly outperforms these time series
models even though the LSTM and Bi-LSTM took advantage of
using more initial data for model training.
In order to demonstrate the strength of the adaptively fusing

loss function, it is compared with its two components MSE and
MAPE. From the theoretical analysis, MSE performs better on large
values, while MAPE performs better on small values. Among all the
variants of the loss function, the results show that the fused loss
function achieves the best performance, with an error of 2%.
In order to better visualize the experiment results, the

predictions of the different models on the test data and the
corresponding ground truth are plotted in Figs. 3 and 4 for
channel xx and channel yy, respectively. The figures show that the
ground truth plot shows severe fluctuations and orders of
magnitude variation. Although the normalization technique
makes it smoother, such properties are still a challenge for
multi-step predictions. The results of the Historical Average show
that it successfully predicts the overall trend of changes but fails to
capture the fluctuations and peaks, which are critical factors
causing fracture growth. Bi-LSTM29 and LSTM27 share a similar
performance to the Historical Average. It mainly because they
both tend to pay more attention to the most recent data when
making the prediction. If multi-step prediction is conducted
recursively, their outputs tend to converge to the same value.
StressNet combined with the adaptively fusing loss function
successfully captures most of the fluctuations and receives
accurate predictions on both peak and bottom values.

DISCUSSION
Maximum internal stress is highly correlated with fracture
propagation within the material, and in turn, the presence of
fractures plays a key role in determining the level of internal

stresses. Due to these complex nonlinear inter-dependencies,
accurately predicting the maximum internal stress remains a
challenging problem in materials science. The contribution of this
work lies in designing a physics-based model, StressNet, which
combines the material fracture characteristics and the data
properties within a deep learning architecture. StressNet is
designed to predict the entire sequence of maximum internal
stress until material failure. Unlike statistical learning methods or
those using manually selected features, StressNet that directly
integrates the damage channel into the multi-step predictions,
and learns the features by minimizing a loss function. The
advantages of the StressNet could be summarized as follows. (i)
After training, the model can generate the entire time series of
maximum internal stress in about 20 s, which significantly reduces
the computation time from more than 4 h to 20 s as compared to
the high-fidelity HOSS model. (ii) Compared with statistical
learning models, the proposed model receives the best prediction
performance with an error of 2%. (iii) As a physics informed data-
driven model, StressNet is flexible enough such that it is easy to
generalize to other fracture propagation scenarios that involve
diverse loading conditions and different material properties.

METHODS
Temporal independent convolutional neural network (TI-CNN)
StressNet is a deep learning model that incorporates both the spatial and
temporal features of fracture propagation for maximum internal stress
prediction. Specifically, the Temporal Independent CNN (TI-CNN) captures
spatial features of the damage channel at each time step, and the
Bidirectional LSTM (Bi-LSTM) is adapted to capture the temporal features in
the fracture propagation and historical stress data. Spatial features in the
stress field indicate the material fracture path and distributions at each
time step. Temporal features both describe the dynamic properties of
fracture growth, which rely on external loadings and material physical
properties, and contain the features from historical stress data. The
proposed StressNet makes full use of various data formats (damage
channel and stress field) of HOSS simulation outputs, and fuses the spatial
and temporal features of those data. In this way, the maximum internal
stress in the future time-steps can be accurately predicted. In this section,
building blocks (TI-CNN and Bi-LSTM) of StressNet are firstly introduced.
Then, the detailed architecture of StressNet is discussed.
Changes in the fracture pattern could indicate changes in the maximum

internal stress; therefore, the TI-CNN extracts spatial features from the
damage channel to represent crack information (including length,
orientation, position, propagation, pairwise distance, etc.). As shown in
Fig. 5, the input of TI-CNN is a 3-way tensor with a shape of h ×w × Δt, in
which the third dimension represents the time interval. The original
convolution operation is directly applied to the entire tensor, which will
destroy the temporal dependencies40. To keep temporal dependencies
unchanged as well as extracting spatial features, in TI-CNN, the
independent convolution kernel is defined for the damage channel at
each time step. In a nutshell, the TI-CNN model consists of a stack of
distinct layers, and the input tensor (damage channels within a certain
interval) passes through these layers and outputs the features. Each of the
layers is tailored for stress prediction, which is introduced below.
Temporal Independent Convolutional Layer: Suppose that the input of

the lth convolutional layer is X l with a shape of Hl ×Wl × Δt, in which Hl and
Wl represent the spatial dimension, and Δt denotes the temporal
dimension. The corresponding convolutional kernel Kl has a shape of
d × d × Dl, in which d represents the spatial size of the convolutional kernel,
and Dl denotes the number of kernels. In the Temporal Independent
Convolutional Layer, the number of kernels (Dl) is set equal to the number
of input channels (Δt), and the convolution operation is conducted on each
input channel separately. The expression of Temporal Independent
Convolutional Layer is given as below equation.

X lþ1ðx; y; tÞ ¼
Xxþd�1
i¼x

Xyþd�1
j¼y
Klði � x; j � y; tÞX lði; j; tÞ (2)

In Eq. (2), X lþ1 2 RðHl�dþ1Þ ´ ðWl�dþ1Þ ´Δt represents the output tensor of
the lth convolutional layer, which is also the input of the next layer.

Table 3. Performances comparison among different models by
using MAPE.

Models Channel xx (σxx) Channel yy (σyy)

Historical Average 0.0808 0.0632

LSTM 0.1367 0.1023

Bi-LSTM 0.1103 0.0507

StressNet (MSE) 0.0386 0.0336

StressNet (MAPE) 0.0394 0.0340

StressNet (Dynamic Loss) 0.0218 0.0193
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In maximum internal stress prediction, the initial input of TI-CNN is a
time-series damage channel has a shape of h ×w × Δt, as Fig. 5 shows. To
capture spatial features and keep temporal dependencies unchanged, the
temporal independent convolution operation is conducted on the damage
channels. The output is further fed into the following pooling layer.
Pooling Layer: The pooling layer is, generally, a non-linear down-

sampling function. For the sake of consistency, suppose that the input of
the lth pooling layer is X l with a shape of Hl ×Wl × Δt, and the kernel size of
the pooling layer is d × d. The output of this layer X lþ1 has the shape
Hl
d ´ Wl

d ´Δt. In general, there are two kinds of pooling layers: average-
pooling and max-pooling. For the pooling operation, at first, each channel
of the input tensor is divided into non-overlapping partitions which share
the same spatial dimension (d × d) as the kernel. Then, for the average
pooling, the mean value of each partition is calculated, while for the max-
pooling, the maximum value of each partition is calculated.
Fractures only take up a small area in the material; therefore, if average

pooling is used, then the features of the large undamaged area would
dilute or even hide the features of the small damaged area. Therefore,
max-pooling is used in TI-CNN to amplify the features of fracture
propagation.
Fully Connected Layer: The fully connected layer takes the feature map

from the previous layer as the input and outputs the feature vector by
matrix multiplication. Suppose that the input of the fully connected layer is
X l with a shape of Hl ×Wl × Δt, it is at first reshaped into eXl 2 RHlWl ´Δt , and
the output of this layer is calculated in.

Xlþ1 ¼ WeXl (3)

In Eq. (3), W 2 RD ´HlWl represents the weight matrix in the fully connected
layer, and Xlþ1 2 RD ´Δt represents the output of the fully connected layer.
The output of the TI-CNN has a shape of D × Δt, which is the time series

feature vector containing the spatial properties and preserving temporal
dependencies of material fracture propagation.

Bidirectional LSTM (Bi-LSTM) on temporal dependency
Capturing temporal dependencies is essential in predicting maximum
internal stress with fracture propagation. LSTMs27 are efficient variants of
recurrent neural networks which can selectively remember the immediate
history of the input sequence and longer-term trends. However, LSTMs

only consider the forward pass over an input sequence; so the prediction
error accumulates when the former prediction results are used to make
multi-step predictions. To reduce the accumulated error, each step
prediction must be as precise as possible: not only consistent with the
forward property (from past to future) but also consistent with the
backward property (from future to past). Therefore, the temporal features
in fracture propagation and historical stress data are captured with a Bi-
LSTM29, to ensure that their predictions are consistent with forward and
backward temporal dependencies.
The structure of the Bi-LSTM29 is shown in Fig. 6, in which the model

predicts the x̂t given the input time series data xt−k, . . . , xt−1. Compared
with LSTM, it has one extra hidden layer to capture the backward temporal
properties within the input data. More specifically, for maximum internal
stress prediction, there are two sources of time-series data serving as the
input of Bi-LSTM, one of them is the time-series maximum internal stress,
and the other is the time-series spatial features extracted from the damage
channel (output of TI-CNN). The expressions of Bi-LSTM corresponding to
Fig. 6 are given below.

~ht ¼ f ðW1xt þW2
~ht�1 þ b1Þ

h
 

t ¼ f ðW3xt þW4 h
 

t�1 þ b2Þ
xt ¼ σðW5

~ht þW6 h
 

t þ b3Þ
(4)

In Eq. (4), the ~ht and h
 

t represent the forward and backward temporal
feature vectors at time t, respectively; Wi, i= 1, . . . , 6, denote the weight
matrices in the Bi-LSTM, bj, j= 1, 2, 3, represent biases; and xt represents
the prediction result.
In maximum internal stress prediction, the stress data have significant

variations and do not have an apparent trend in the first few time-steps,
which makes the multi-step prediction challenging. So Bi-LSTM is adapted
to capture the complex temporal dependency. In general, the Bi-LSTM is
mainly used for two purposes. First, separate Bi-LSTMs are adapted to
encode the historical maximum internal stress and the time-series spatial
feature vectors (extracted from damage channels), and output fixed-
dimension time-series feature vectors. Second, the time-series feature
vectors from two data sources are fused and decoded to make a
prediction. Detailed explanations will be given in next section.
Based on the coupling effect between maximum internal stress and

fracture propagation, it is hard to predict the future maximum internal

Fig. 6 Architecture of the Bi-LSTM. The Bi-LSTM can be regarded as two layers of LSTM, in which the upper layer captures the forward
temporal features and the bottom layer captures the backward temporal features.

Fig. 5 Architecture of the TI-CNN model. In TI-CNN, the independent convolution kernel for the damage channel at each time step is
defined. In this way, the spatial features from the damage channel are extracted without changing the temporal dependencies.
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stress purely based on previous stress data. Therefore, the time-series
spatial feature vectors extracted from the damage channel is incorporated
to improve the performance of prediction. In next section, the structure of
StressNet is introduced to encode the dynamic properties of the maximum
internal stress and fuse the spatial internal and temporal features.

StressNet - Convolutional aided bidirectional LSTM
The basic building blocks of StressNet are introduced in previous sections.
TI-CNN is mainly used to capture the spatial features of the damage
channel, and Bi-LSTM is mainly used to encode the temporal dependencies
of historical data. StressNet is proposed to fuse the features from these
building blocks and improve the multi-step prediction performance.
The structure of StressNet is shown in Fig. 7. The goal is to predict the

maximum internal stress at the next time step, given the previous
maximum internal stress and damage channels, which is shown in Eq. (5).
The left branch of StressNet uses the Bi-LSTM to capture the bidirectional
temporal properties of historical maximum internal stress. Suppose that
initially, there are consecutive Δt steps of stress data xt−1, xt−2, . . . , xt−Δt,
the Bi-LSTM will encode their temporal dependencies into time-series
feature vectors with a shape of D × Δt (as the red part shown in Fig. 7). The
right branch of StressNet uses TI-CNN to extract spatial features of the
damage channels within the same consecutive time-steps It−1, It−2, . . . , It−Δt,
and then further extract the temporal features into time-series vectors with
the same shape D × Δt (as the blue part shown in Fig. 7). Up to now, at
each time step, there are two feature vectors with the same shape D
representing the features from the stress data and the damage channel,
respectively. Every pair of feature vectors are concatenated and fed into
the last Bi-LSTM layer to fuse and decode their temporal information.
Finally, the predicted maximum internal stress x̂t is given by the final fully
connected layer.

x̂t ¼ f ðxt�1; :::; xt�Δt; It�1; :::; It�ΔtÞ (5)

In summary, StressNet is designed to take the historical stress data (vector)
and damage channels (3-way tensor) as the input to predict the maximum
internal stress in the next time step. To generate the entire sequence of
stress data recursively, the previously predicted results will be fed into the
StressNet to make further predictions. As a surrogate model of HOSS
simulation, StressNet will be trained and validated on the simulations

generated from HOSS. After training, accurate prediction of maximum
internal stress is beneficial to ensure the material reliability and further
applied to evaluate its residual life.

Loss function
The loss function is used to evaluate the difference between the ground truth
and model prediction. The unknown parameters in our model are estimated
by minimizing the loss function. StressNet is tested on three different loss
functions, which are MSE, MAPE, and dynamic fusion of MAPE and MSE.
The MSE is calculated as Eq. (6). The MSE will tend to perform better in

predicting large values while ignoring small values to some extent. Also,
the MSE is easy to optimize.

MSE ¼ 1
T

XT
t¼1
ðx̂t � xtÞ2 (6)

The expression of MAPE is given as Eq. (7). In practice, unlike the MSE, the
advantage of MAPE is that it is a relative loss which treats the large and
small values equally. However, it is hard to get the minimum by using
gradient descent methods because of the absolute component.

MAPE ¼ 1
T

XT
t¼1

jx̂t � xt j
xt

(7)

In the problem of maximum internal stress prediction, the stress data
fluctuate significantly with time. Capturing those fluctuations requires
StressNet to predict both the large and small values precisely. Moreover,
StressNet should pay more attention to large values because they will have
a major impact on the fracture propagation. Furthermore, the loss function
should adapt to the stress fluctuation and be easy to converge. Based on
these requirements, an adaptive loss function is designed as the dynamic
fusion of MAPE and MSE. The expression is given below.

Lðθ; βÞ ¼ 1
T

XT
t¼1

λðβÞðx̂t � xtÞ2 þ ð1� λðβÞÞ ðx̂t � xtÞ2
x2t

 !
(8)

In Eq. (8), θ represents the trainable parameters in StressNet; β represents
the index of the current training epoch. λ is the hyper-parameter. It is the
function of β and is used to fuse the two components. The value of λ is

Fig. 7 Architecture of StressNet. The model consists of two branches. In the left branch, the Bi-LSTM encodes the temporal dependency
among historical maximum stress data into a series of vectors. In the right branch, TI-CNN followed by Bi-LSTM encodes the spatial and
temporal information of the damage channel into another series of vectors. By fusing features from these two branches, StressNet can predict
the maximum stress at the next time step.
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updated during the training process. In general, MSE tends to give better
prediction on large values, while MAPE tends to perform better on small
values. λ is set to a large value at the beginning of the training process to
get better performance on large target values. As the training process goes
by, the value of λ is decreased for improving prediction on the small target
values. This loss function is easy to optimize and is robust to large and
small values.
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