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The ejection of large non-oscillating droplets from a
hydrophobic wedge in microgravity
Logan J. Torres1,2 and Mark M. Weislogel 1,2✉

When confined within containers or conduits, drops and bubbles migrate to regions of minimum energy by the combined effects
of surface tension, surface wetting, system geometry, and initial conditions. Such capillary phenomena are exploited for passive
phase separation operations in micro-fluidic devices on earth and macro-fluidic devices aboard spacecraft. Our study focuses on the
migration and ejection of large inertial-capillary drops confined between tilted planar hydrophobic substrates (a.k.a., wedges). In
our experiments, the brief nearly weightless environment of a 2.1 s drop tower allows for the study of such capillary dominated
behavior for up to 10 mL water drops with migration velocities up to 12 cm/s. We control ejection velocities as a function of drop
volume, substrate tilt angle, initial confinement, and fluid properties. We then demonstrate how such geometries may be employed
as passive no-moving-parts droplet generators for very large drop dynamics investigations. The method is ideal for hand-held non-
oscillatory ‘droplet’ generation in low-gravity environments.
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INTRODUCTION
Liquid drop dynamics is a large field of research within the fluid
mechanics discipline. In general, provided buoyancy and inertia
are sufficiently low, wall-bound drops and free drops assume
constant curvature minimal surface energy states attributed to
capillary forces due to surface tension. For poorly or nonwetting
wall-bound liquid drops in the air, the force of gravity quickly
overwhelms that of surface tension as drop volumes increase.
Such large drops are better described as puddles1, with drops
better identified for small volumes Vt (σ/ρg)3/2, where σ is the
liquid surface tension, ρ is the density difference across the liquid
interface (≈ρl, the density of the liquid), and g is the acceleration
field strength, i.e., gravity with go= 9.8 m/s2. For free drops,
inertial forces such as the drag from the surrounding gas of
density ρg and characteristic velocity difference U can also quickly
overwhelm those of surface tension such that we expect drop
volumes limited to Vt 44(σ/ρgU2)3. In terrestrial environments, U
is often dependent on g; i.e., for falling drops of characteristic
radius R, U ~ (8ρlRg/3ρg)1/2, and Vt (27/2)(σ/ρlRg)3; larger drops
break up until the latter condition is satisfied.
Thus, in terrestrial environments, wall-bound drop volumes are

approximately limited to V ~ g−3/2 and free drops to V ~ g−3. In
either case, capillary oscillation and viscous settling times are
characterized by τcap ~ (ρlV/σ)1/2 and τvisc ~ V2/3/ν, respectively,
where ν is the kinematic viscosity of the liquid. From such
relationships it is easy to see how significant reductions in gravity
level dramatically increase liquid volumes that might remain
categorized as ‘droplets.’ For example, in the nearly weightless
environment of orbiting or coast spacecraft, local body force
accelerations are indeed low, with g ~ 10−8go reported for free
fliers2, and with ‘microgravity’ conditions common for crewed
vehicles where g ~ 10−6go. In microgravity, wall-bound drop
volumes increase ~109-fold, capillary response times increase
~104-fold, and viscous settling times increase ~106-fold. Increases
in free drop properties are larger: drop volumes ~1018-fold,
capillary response times ~109-fold, and viscous times ~1012-fold.
Because spacecraft employ large liquid inventories such as

propellants, fuels, cryogens, coolants, and water, they are not
only facilities aboard which to further investigate enormous drop
dynamics phenomena, they are also vehicles aboard which such
phenomena may arise routinely in engineering systems. One
critical example is the destabilization of fluid surfaces in
large ~ 8m diameter partially filled liquid fuel tanks in response
to any number of perturbations to the spacecraft such as
aerodynamic drag, stage separation, docking, thrust resettling,
orbital maneuvers, and others.
In this paper, we introduce and analyze a simple method for

producing large oscillation-free liquid drops for subsequent
investigations and applications. The method exploits the micro-
gravity environment to form and deploy such drops, the dynamics
of which may then be studied in a microgravity environment.
These large drops require significant time to form and eject—up
to tens of minutes aboard orbiting spacecraft3, minutes aboard
sounding rockets4, and seconds in terrestrial drop tower facilities5.
In fact, robust large drop formation and deployment in

microgravity conditions can be a challenging task. For example,
the most common method involves the growth and detachment
of a pinned drop at the tip of, say, a syringe needle6. During the
growth phase, the drop often de-pins from the needle tip and
wets its outside surface leading to asymmetries and deployment
failure. Even when pinning is perfect the detachment process
frequently leads to rivulet rupture, satellite droplet production,
ingestion of small bubbles, and perturbations to the drop in the
form of low-frequency and high-frequency capillary waves,
uncontrolled translation, and potentially undesirable rotation.
Other methods with similar challenges may be cited7–10.
Several recent investigations11,12 have demonstrated a method

for large drop ejection from puddles that jump spontaneously
from hydrophobic surfaces during routine 2.1 s drop tower tests—
the puddle at 1−go becomes a drop in 0−go. Figure 1a–g
illustrates such puddle jumping for a 5 mL water puddle on a
textured PTFE surface with static contact angle θ= 150°. Despite
the short duration of the drop tower test, low-g drop volumes
produced in this manner can be over 30,000-fold larger than
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similar terrestrially investigated drop phenomena13. Unfortunately,
the sudden reduction in gravity initiates a radially inward capillary
wave that constructively interferes at the drop axis resulting in an
increasing variety of events with increasing puddle volume; i.e.,
geyser formation, satellite drop ejection, bubble ingestion, drop
fission, and large amplitude underdamped oscillations with
damping times far longer than the drop tower test time available
(ref. Fig. 1d–f). For water puddles between 0.04 and 400 mL, drop
detachment occurs within between 0.1 and 2.0 s with ejection
velocities Uj between 0.7 and 12 cm/s (ref. Fig. 1g). Discrepancies
and irregularities are observed for large puddles where initial
condition symmetry is difficult to achieve for the nonwetting
puddles in a 1−go environment.
In the case of puddle jumping employed as a method to deploy

large drops in low-g environments for further research, many
interesting phenomena related to that process can be studied.
The behavior of recoiling non-wetting moving contact lines,
inertial contact lines14, highly inertial nonlinear capillary surface
oscillations, analogies to droplet rebound phenomena, and
numerical method benchmarking are a few such studies. The
puddle jumping method is particularly useful in drop tower tests
due to its simple implementation. Unfortunately, the large
amplitude under-damped oscillations created during the puddle
jump sequence add complexity to further interactions down-
stream. We note that the puddle jump method is capable of such
non-oscillatory drop ejections, but only for a restricted class of
highly viscous liquids15.
However, if such a method could deploy equally large though

significantly less perturbed drops, further uniquely low-g drop
dynamics investigations could be pursued such as the study of
large dynamic drop wall impact investigations, Leidenfrost drop
impacts, electrostatic droplet manipulation studies16, and others.
We pursue the present work in hopes of establishing such a
method using a super-hydrophobic (SH-) wedge. We study the
performance of the device from a primarily empirical perspective.

In general, we seek a passive large drop deployment method
that ejects large non-oscillating drops in the brief low-g
environment established in a 2.1 s drop tower. As shown in Fig.
1h–l, we modify the puddle jump method by adding a tilted SH
plate just above the 1−go puddle. As the puddle begins to recoil
following the step reduction of g-level during the drop tower test,
a capillary pressure gradient is established in the partially confined
liquid which drives it out of the wedge as a large drop, largely free
of oscillations.
The passive migration of gas bubbles and wetting liquid slugs in

acute wedges has been studied extensively with the wedge
alternatively referred to as an interior corner, interior edge, a
tapered channel, non-parallel plates, tilted plates, etc. Terrestrial
research regarding micro-fluidic applications is reported by myriad
authors17–24 with demonstrations of passive bubble removal from
multi-phase flows in microgravity provided by only a few25–27.
Due in part to the limited access to low-g environments, less

attention has focused on inertial-capillary dominated liquid drops
in non-wetting wedges28 satisfying θ > π/2−α, where θ is the
equilibrium contact angle of the surface and α the wedge half-
angle. The short-term goal of this work is to observe how the
wedge geometry controls ejection velocity for large drops while
considering the limited time for ejection afforded by drop towers.
We highlight design guides for large quiescent drop generators
for follow-on research conducted in drop towers as well as in
other reduced gravity facilities (i.e., parabolic aircraft, suborbital
rockets, and spacecraft).

RESULTS
Ejected drop position and velocity: experiments and
predictions
As annotated in Fig. 1, drop tower experiments depicted in Fig. 2
are conducted to determine drop locations xave(t) as functions of
time for a variety of drop volumes V, drop initial locations xr0 , and

Fig. 1 ‘Low-gravity’ puddle and SH-wedge droplet ejection in drop tower tests. a–g 20 Hz sequence of 5 mL dyed water puddle jump from
a textured PTFE-coated hydrophobic substrate with θ= 150° following the step reduction in gravity during simple drop tower test: a static
1−go interface, b inward radial capillary wave formation, c–e geyser formation, and f, g detachment at steady velocity Uj. h–l Drop tower test
of 5 mL ‘puddle jump’ in SH-wedge of α= 2.5°: h static 1−go puddle, i–k acceleration under internal capillary pressure-driven flow, and l
ejection at t= 1.9 s with non-oscillating steady velocity Uw ≈ 10 cm/s.
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wedge half-angles α. The transient average drop locations xave for
all experiments are presented in Fig. 3, with details provided in
Supplementary Table 1. The wedge ejection velocities Uw are
calculated from central differences and identified by linear red
slopes. The red ticks indicate the time tw at which the drops pass
through their inscribed locations xrins . Drop trajectory histories that
do not include such tick marks do not fully eject within the drop
time available tw>tdrop. Such ‘no-ejection’ drops are in the process
of moving through the wedge. They achieve the constant
‘ejection’ velocity but do not pass the inscribed location xrins . In
all tests presented, the drop behavior is characterized by a
transition to constant velocity. Experiments conducted that do not
exhibit a constant maximum drop velocity (linear regions in Fig. 3)
are not reported.
The experimental average exit velocities are normalized by the

theoretical maximum velocity ~U (ref. Eq. (5)) as Uw=~U � U�
w and

plotted against the capillary confinement parameter x�o (ref.
Eq. (7)) in Fig. 4 using solid symbols for non-ejected drops and

open symbols for ejected drops. Horizontal and vertical error bars
provide measurement uncertainty, with an average relative
uncertainty of ±10%. Repeatability of a 2 mL drop in a wedge of
half-angle α ¼ 2:5� at xo � xcap for x�o ¼ 0:62 is observed to be Uw

= 10.03 ± 0.02 cm/s for three tests conducted.
The predicted velocity (from Eq. (5)) is presented in Fig. 4 using

small, closed circular symbols. The model over-predicts velocity for
all x�o as expected, but with decreasing error as x�o ! 1 where the
model assumptions are most appropriate. An average model
discrepancy of ±67% is achieved without consideration of
complex effects due to transients, refined geometry, moving
contact line dynamics, and others. An approximate linear trend is
observed for both experimental and theoretical velocities in Fig. 4,
the experimental data being correlated for wedge design
purposes by

U�
wl ¼ 0:64 x�o; (1)

providing a quick estimate with ±18% average error.

Fig. 2 Drop rig, drop tower facility, and wedge test cell. a Image of experiment rig, b suspended within drag-shield, and c placed in the drop
tower. d An exploded view of an SH-Wedge test cell of wedge half-angle α.
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Ejection times for drops that achieve xrins within tdrop are
presented in Fig. 5. Predicted ejection times tw (from Eq. (6)) are
plotted with the data in Fig. 5a. As anticipated, the predicted
times are shorter than observed in the experiments. A correction
of the form

tw corr ¼ 1:82
ρR4s
4σgo

� �1=4

csc α� 1ð Þ; (2)

yields an average error of ±14% as shown in Fig. 5b. Additionally,
using the linear model ejection velocities Uwl ¼ 0:64 ~Ux�o from Eq.
(1) and the distances to the inscribed locations xrins � xro � Δx, the
form of Eq. 2 is re-derived from twl ¼ Δx=Uwl yielding

tw corr ¼ 1:56
ρR4s
4σgo

� �1=4

csc α� 1ð Þ; (3)

with an average error of ±16%, as shown in Fig. 5c. No specific
trend in ejection times are found with respect to x�o . However, the
form of Eq. (3) derived from the linear capillary confinement
parameter ejection velocity model closely matches the corrected
ejection time of Eq. (2) which is derived from first principles. Thus,

either Eq. (2) or (3) can serve adequately for wedge drop generator
design.

DISCUSSION
The hydrophobic wedge geometry provides an attractive degree
of control for use as a passive, large volume, low-g drop generator.
The nearly non-oscillating drops generated during the experi-
mental drop tower investigation range in volumes from 0.5 ≤ V ≤
10mL with ejection velocities between 3:37 � Uw � 12:01 cm/s
and oscillation amplitudes typically <3% of spherical radius
dimension at ejection. Without the time limitation of a drop
tower, significantly larger and slower drops could be ejected for a
variety of fundamental and applied investigations. For example,
low-speed impacts of large non-oscillating drops on heated
surfaces above the Leidenfrost temperature could be uniquely
studied employing the hydrophobic wedge geometry.
The results provided suggest the use of the capillary confine-

ment parameter x�o and its correlations to predict wedge drop
generator performance. The confinement parameter combines

Fig. 3 Collage of capillary migration drop tower experiments (ref. Supplementary Table 1). Transient location of averaged drop position
xave (cm) vs. t (s) for wedges 1.0˚ ≤ α ≤ 3.8˚ and drops 0:5 � V � 10mL with varying initial locations resulting in confinements 0:1 � x�o � 0:80.
Plots are arranged in order of increasing maximum drop velocity Uw which generally increases with x�o . Inscribed drop locations are noted by
red tick marks when achieved. Static equilibrium locations are noted by blue tick marks.
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drop volume, drop initial condition/position, and wedge half-
angle into a single term that can be used to approximate drop
ejection velocity and ejection time for a hydrophobic wedge (Eqs.
(1) and (3), respectively). Alternatively, the semi-empirical ejection
time of Eq. (2) also provides predictions based on an ideal energy
transfer velocity limit, closely matching the empirically derived
ejection model time Eq. (3). For the 23 nominal drop tests
presented, average prediction uncertainties in Eqs. (1)–(3) are <±
20%. With such tools in hand, one can expect to eject drops of
volume V ~ 2mL with ejection velocities Uw ~ 9 cm/s in 0.5 s drop
towers, V ~ 10mL at Uw ~ 12 cm/s in 2 s towers, and V ~ 30mL at
Uw ~ 13 cm/s in 5 s towers.
The present work serves as a foundational demonstration for

continued investigations in drop migration in non-wetting tapered
geometries. The energy model presented in the “Methods” section is
a zeroth-order approximation, accounting for inertial and capillary
energies over viscous losses and contact angle hysteresis. The drop
time in all cases presented is less than the viscous time scale tdrop<tν .
Future work may seek to expand the analytic model to such effects
to increase accuracy as well as adapt the model for fluids of various
viscosities. Additionally, identification of the no-ejection limit for
wedge bound drops is of interest and expected as drop volume V
and wedge half-angle α decrease. A few experiments regarding these
topics were carried out. Figure 6a presents snapshots of five drop
tests of 1mL drops in an α= 4° wedge with varying kinematic
viscosity ν. As expected, increased viscosity serves to reduce ejection
velocity for drops of the same initial confinement parameter x�o .
Figure 6b time sequence of a small volume V= 0.2mL drop inside a
α= 2.7° wedge demonstrates a no-ejection regime where the drop
transitions to a final resting location xrf set by contact angle
hysteresis, in contrast to the inertial-capillary ejected drops studied
throughout the preceding sections.
Other tapered hydrophobic geometries, such as a cone or

rectangular diffuser, are also of interest for future investigations
and applications. A tapered hydrophobic cone varies from the
wedge in a few interesting ways. For instance, a capillary drop will
occlude the entire cross-section of a cone, restricting air flow from
the advancing side to the receding side of the drop. For migration

to occur, air must flow through the vertex of the cone or around
the drop along the hydrophobic surface. The drop migration
velocity is thus air flow limited. This feature can be used to reduce
the drop migration velocity to nearly zero. A single demonstrate of
a conical drop generator is shown in Fig. 6c–e. A 3D-printed cone
with α= 2° in Fig. 6d is shown in Fig. 6e image with a 0.71mL
drop ejecting with steady velocity 7.2 cm/s.
Further research seeks to implement the wedge drop generator

into capillary drop dynamics investigations where large quiescent
slow-moving drops are required, particularly for space experi-
ments where the duration of microgravity is essentially unlimited.
Such an environment is conducive to large sample size experi-
ments, which require continuous deployment of identical drops.
Integration of a hydrophobic wedge and a fluid injection system
could meet such a requirement. Figure 7a presents a simple
schematic for a system using a hydrophobic wedge and syringe
pump. Fluid is injected at a steady rate Qin near the apex of the
wedge where it grows into a large drop until detachment occurs
and the drop migrates away under the capillary pressure. Fig. 7b
provides a drop tower demonstration of Fig. 7a. A single image
captures three drops of volume V= 0.29 ± 0.01 mL in an α= 4°
wedge at stages of (1) growth, (2) detachment, and (3) ejection,
with eventual ejection velocities of Uw ¼ 10:2 ± 0:1 cm/s for the
drops from a constant water flow rate of Qin ¼ 48mL/min. Further
tests could be performed to investigate the effect of wedge
geometry, fluid properties, and injection rate on ejection time,
ejection velocity, drop oscillation, frequency, and amplitude.
A drop-on-demand device could integrate the wedge geometry

into a hand-held ‘drop shooter’ for astronaut demonstrations and
experiments. Figure 7c–e schematics outline a three-step hand-
controlled process. In Fig. 7c a drop of desired volume is
deposited between two parallel planar hydrophobic surfaces with
prescribed uniform initial separation H. In Fig. 7d the top surface is
rotated until the downstream opening reaches the required
diameter for the injected drop 2Rs. In Fig. 7e the drop migrates
along the device eventually ejecting at the opening. Such a device
could be operated to produce a range of large oscillation-free low-
g drop ejection volumes and velocities to accommodate the
desired drop dynamics investigation requirements.
In general, large, nearly oscillation-free drops can be passively

deployed in low-g environments by injecting liquid into a simple
superhydrophobic wedge. The wedge geometry damps large
oscillations of the initially distorted drops (i.e., puddles) on the way
to becoming spherical drops in microgravity environment. Drops
of volumes 0.5–10.0 mL ejected at velocities 3.4–12.0 cm/s were
demonstrated herein during the short-duration experiments
performed in a 2.1 s free fall drop tower. The impacts of initial
drop confinement, wedge half-angle, viscosity, orientation with
respect to gravity, and contact angle hysteresis were investigated
in a cursory manner. A means of estimating ejection velocity to
within ±20% is provided as a function of drop volume, initial
position, and wedge half-angle for water drops. The method may
be uniquely suited for further large droplet impact investigations
using drop towers, parabolic aircraft, suborbital rockets, or orbiting
or coast spacecraft.

METHODS
Experiments
All our experiments are conducted using the 2.1 s Dryden Drop
Tower located at Portland State University, which is depicted
schematically in Fig. 2. The 22.2 m tall tower provides a brief 2.1 s
free fall period with maximum acceleration t10−4go. The test rig
shown in Fig. 2a contains all necessary experiment components
including a wedge test cell, diffuse LED backlight panel, batteries,
and HD Panasonic HC-WX970 120 fps video camera. The

Fig. 4 Normalized drop velocities U�
o ¼ Uw=~U versus capillary

confinement parameter x�o . Experimental data is denoted by
symbols with error bars for constant drop velocity ejections. The
solid symbols identify tests that did not reach xins, but do establish
Uw. Corresponding theoretical velocities are represented by small,
closed circular symbols without error bars identified from the
cylindrical puddle surface energy difference approximation of Eq.
(5). An approximate linear trend in both experimental (from Eq. (1))
and theoretical velocities are observed and shown using the black
overlayed lines, with both tending towards agreement as x�o ! 1,
shown by the extrapolated converging dashed lines.

L.J. Torres and M.M. Weislogel

5

Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA npj Microgravity (2021)    52 



experiment rig experiences low acceleration during its decent due
to the drag shield.
A typical SH-wedge test cell is shown in exploded view in Fig. 2d.

Aluminum Oxide 320-grit sandpaper adhered to a metal plate via
transfer tape is spray-coated with a polytetrafluoroethylene-based
(PTFE) commercial aerosol spray (King Controls Magic Dome) to
create planar marginally super-hydrophobic substrates with aver-
age apparent static contact angles of θ= 147 ± 3°, as determined
by height-width measurements of 10 low-Bond number sessile
drops on each surface. For the large drop volume tested roll-off
angles are indeed low <2°. The assembled wedge test cell is fixed to
the test rig with the lower wedge substrate perpendicular to
gravity. With the assembled test rig and test cell hanging inside the
drag shield, a drop of distilled water is delicately deposited onto the
lower face of the SH-wedge via calibrated graduated syringe and
then delicately rolled to the desired wedge location by slightly
pitching the test rig.
Images of the spontaneous low-g flow phenomena as shown in

Fig. 1h–l are captured and analyzed via open-source image
analysis software FIJI29. Reduced data such as wetted planar area
and front, back, and centroid locations are gathered. Over 200
drop tower tests were conducted to investigate or utilize the
wedge ejector. A selection of 29 of these tests that support the
present work are summarized herein, specific details of which are
included in Supplemental Tables 1 and 2. These experiments are
discussed in the previous sections, while a brief review of the
driving forces of the phenomena will follow. Sample trajectory

plots from tests varying drop volume, wedge angle, and initial
position are provided in Fig. 3 which show average drop position
in the wedge xave with time t. It is learned that highly confined
droplets (i.e., large droplets in small wedge angles and close to the
wedge vertex) eject with the highest velocities which are
quantitatively captured by the non-dimensional capillary confine-
ment parameter x�o. We show that for the highest quality ejections
with minimal residual droplet oscillations, confinement in the
wedge should be maintained at least until the droplet achieves its
inscribed configuration as shown in Fig. 1l.

Analysis
Capillary driving force. The Young–Laplace equation ΔP ¼ σH
defines the pressure jump across a gas-liquid interface exhibiting
surface tension σ and local surface curvature H. Applied to the
idealized capillary puddle in Fig. 8a, b, a net liquid phase driving
pressure difference can be written in terms of the principal radii of
curvature

ΔP � σ
1
R3

� 1
R1

� �
; (4)

where R1 and R3 are the receding and advancing radii of curvature,
respectively. The radius R2 is shared by both advancing and
receding curvatures and cancels from Eq. (4). The approximation
of Eq. (4) applies along the positive x-axis for uniform planar
wedges and symmetric fluid bodies in the x–y plane. It is this
negative pressure gradient that leads to bulk motion away from

Fig. 5 Experimental (open symbol) and theoretical (x symbol) ejection times tw with respect to the capillary confinement parameter x�o .
The vertical dashed lines associate the theoretical prediction with the corresponding experimental measurement. Legend at lower right. a Eq.
(6), b Eq. (2), and c Eq. (3).
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Fig. 7 Steady periodic droplet ejection and schematic for hand-held low-g wedge drop generator. a Example schematic of a continuous
wedge drop generator through growth and detachment of drops near the apex of a planar hydrophobic wedge. b Image of drop tower test
demonstration where a water stream of Qin= 48mL/min is injected into an α= 4° wedge, breaking up into 0.29 mL drops with ejection
velocity Uw= 10.2 cm/s. c A desired volume of liquid is injected between parallel hydrophobic surfaces, d the upper surface is rotated to
desired wedge angle until in e the drop migrates and ejects at right.

Fig. 6 Viscous effects, contact angle hysteresis effects, and a conical SH droplet shooter. a Drop tower images at t= 0.58 s of 1mL viscous
drops ranging in kinematic viscosity from 1 to 89 cSt. Increased viscosity decreases the viscous time scale tν= Ls2/ν, thus initiating early transition to
constant velocity as well as decreased ejection velocity. b A time sequence of a 0.2mL drop in hydrophobic wedge of α= 2.8° during a drop tower
test. By t= 1.4 s the drop has slowed and stopped by contact angle hysteresis. c Schematic of a conical hydrophobic drop generator design and d
3D-printed model constructed as two halves. e Drop tower test image of a 0.71mL drop ejecting from the α = 2° cone with velocity Uw= 7.2 cm/s.
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the wedge vertex. Under low-g conditions, the gradient
diminishes with R1 ! R3 as the drop acquires an increasingly
spherical configuration. Concus and Finn proved the existence of a
stable equilibrium point for static drops exhibiting static contact
angle θ> π=2þ α, where the equilibrium radius R1 ¼ R3 � Req is a
function of wedge geometry and wetting conditions30, Req ¼
f ðα; θ; VÞ (refer to Fig. 8b). However, for sufficiently large θ, despite
viscous resistance and finite dynamic contact angle hysteresis,
migrating inertial-capillary drops routinely overshoot the confined
equilibrium location xreq and achieve spherical states as they pass
through the inscribed location xrins ¼ Rs (csc α–1) where the drop
is tangent to both wedge surfaces and Rs is the spherical drop
radius. Thus, for the dynamic drops of this study, Eq. (4) applies
when xr<xrins .

Simplified energy model. In a similar manner to Attari et al. and
numerous others, a simplified energy model requires minimal
analytical effort to gather insight relating to drop ejection
transients and ejection velocity limits. Referring to Fig. 8c, d, the
surface energy (SE) difference from confined state (1) to free state
(2) is converted to kinetic energy (KE) of the bulk fluid via KE2=
SE1−SE2, ignoring work and dissipation during the transition. In
the limit of small wedge half-angle α and large volumes V, the
non-axisymmetric interface configuration of Fig. 8c (1) is
approximated by the axisymmetric cylindrical disc configuration
of Fig. 8d (1). Deriving the surface energies for the simplified states
and solving for the bulk velocity, a modified version of the jump
velocity is found to be

Uw ¼ ~U � cos θþ πH3

V

� �1=2

� 62=3

2
πH3

V

� �1=3
" #1=2

; (5)

where H � 2 σ=ρgoð Þ1=2 is the capillary height and ~U �
4σgo=ρð Þ1=4 is the maximum theoretical velocity of the drop in

the large puddle limit πH3=Vð Þ1=3� 1 for θ ≈ 180°. Equation (5)
resembles that derived in Attari et al., except for the contact angle
term which accounts for reduced energy due to the presence of
the upper surface. Dividing the maximum distance the fluid must
travel to reach its inscribed length xrins by the maximum ejection
velocity ~U provides a characteristic ejection time

tw ¼ ρR4s
4σgo

� �1=4

csc α� 1ð Þ; (6)

where again Rs ¼ 3V=4πð Þ1=3. The simplified forms of Eqs. (5) and
(6) serve as design guides for wedge drop generators where a
specified ejection velocity is desired and where the duration of
free fall is limited. The experimental validation of such predictions
and their underlying assumptions are investigated in part herein.

Impact of initial conditions. For the drop tower experiments, a
puddle of known volume is deposited at some initial position
xro < xrins within a superhydrophobic wedge. A fixed drop position
is assured when Eq. (4) is either zero or balanced by another force
(i.e., tilt with respect to gravity). The initial conditions are met by
varying the wedge center-line angle relative to gravity as shown in
Fig. 9a, the former case occurring at β= 90°−α≡ β⊥ and the latter
over the range 0� � βk � β< β?. When β ¼ β?, gravity is
perpendicular to the lower face of the wedge allowing the large
drop to establish a symmetric disk-like puddle of capillary height
H � 2 σ=ρgoð Þ1=2 when V 	 σ=Δρgoð Þ3=2. For βk � β< β?, the
drop is drawn into the vertex to various degrees by its own weight
resisted only by the capillary pressure gradient Eq. (4). The drop
elongates along the wedge vertex reaching a maximum length
when β ¼ βk. Following the effective step-reduction in the gravity
of the drop tower tests, reorientation of the β ¼ β? initial
condition follows that of puddle jumping (ref. Fig. 1a). However,
the upper surface of the wedge suppresses the rim roll-up motion

Fig. 8 Idealized capillary drop migration in SH-wedge with idealization of initial and final puddle/drop states. a Top view and b profile
view with (1) initial, (2) confined transient, and (3) inscribed states identified in b. Characteristic radii of curvatures R1 and R3 approximate the
capillary pressure gradient inside the drop. Advancing and receding menisci represented by xa and xr are referenced from the wedge vertex.
Initial and inscribed locations of the receding edge are identified by xro and xrins. The approximate ‘average’ drop location is
defined as xave ¼ ðxa þ xrÞ=2. c Actual and d simplified models in (1) confined and (2) inscribed states. The free inscribed drop of radius Rs
attains velocity Uw.
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which in turn suppresses geyser formation by interfering with
vertical elongation, ultimately producing a highly damped drop
migration and ejection along the wedge midplane or centerline. In
contrast, the minimally damped drop of β< β? rolls-up along the
wedge axis, forming a geyser and resulting in high amplitude
deformations and under-damped oscillations during migration
and ejection, characteristics similar to puddle jumping. Numeri-
cally computed initial equilibrium conditions for three configura-
tions of β for a 1 mL drop in a wedge with α= 4° and θ= 150° are
shown in Fig. 9a. K. Brakke’s Surface Evolver algorithm31 is
implemented using the SE-FIT software32. Corresponding drop
tower experiments are provided in Fig. 9b. The differences in drop
distortion are best observed at t= 0.27 s with the horizontal case
β= 86° producing the least distortion.
The damping mechanism of β ¼ β? wedges is primarily

attributed to the upper confining wall which at small α limits
vertical drop motion during the roll-up sequence increasing
interference and viscous dissipation of capillary waves during the
early stages of the flow. Maximum interference and dissipation for
a drop in a superhydrophobic wedge occurs as α ! 0 with HwtH,
where Hw is the distance between the two surfaces. As
demonstrated in the drop tower tests of Fig. 10, a 2 mL puddle
rebounds between parallel hydrophobic substrates at various
separation distances HtHwtD, where D is the drop spherical
diameter. By digitally tracking the planar drop area, the
characteristic time constant is τ ¼ 3:91=ζωn, where ζ is the
damping ratio and ωn is the natural frequency for each height Hw,
and is calculated from the logarithmic decrement of successive
peaks from the resultant exponentially decaying sinusoidal
response. The time constant τ decreases with Hw/D as listed in
Fig. 10 and as predicted under the viscous time scale τν 
 H2

w=4ν.
Experiments are primarily conducted at center-line angles β ¼ β?

since this initial condition produces the most uniformly damped
ejected drops at xrins . The receding edge initial location for drops in
such wedges is bounded by xcaptxrotxrins , where xcap ¼
H= cos α tan 2α approximates the receding edge location where
the drop just makes contact with the upper surface. Normalizing
each term in this boundary inequality by xrins and subtracting each
from unity produces

x�o ¼ 1� xo
4π
3V

� �1=3 sin α
1� sin α

(7)

and

x�max � 1� 1:61 Bo�1=2
V ¼ 1� 3:22 Bo�1=2

V
tan α

tan 2αð1� sin αÞ (8)

such that 0t x�o t x�max. We note that for πH3=V � H2=R2c ¼ 1, a
zero-velocity ejection occurs at θ= 130° according to Eq. (5).
Similarly, for πH3=V � 1, we find θ→ 90° for Uw= 0. Equation (7)
provides a measure of confinement for drops satisfying πH3=V < 1.
For the drop tower experiments, maximum confinement occurs as
xo ! xcap resulting in x�o ! x�max. In the limits of small wedge half-
angles α ! 0 and large drop volumes V ! 1, total confinement
is given as x�o ! x�max ! 1. In contrast, as x�o ! 0 no confinement
is achieved. Equation (7) combines variables V, α, and xo into a
single parameter that is employed to characterize the dependent
variables of the superhydrophobic wedge ejection time and
velocity.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Fig. 9 Effect of wedge angle β relative to gravity on oscillation amplitude and frequency at ejection location. a Numerically computed
initial shapes of 1 mL drops in hydrophobic wedges of θ= 150° for α= 4° and β= 0°, 45°, and 86°, and b drop tower experiments of
cases in (a).

Fig. 10 Low-g droplet rebound between parallel SH plates. 10 Hz images from drop tower tests of 2mL water drops between parallel
hydrophobic surfaces with varying separation height Hw. The computed time constant τ ¼ 3:91=ζωn for planar area oscillation decay
decreases with the separation height Hw as predicted by the viscous time scale τν 
 H2

w=4ν.
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