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Sessile drops in weightlessness: an ideal playground for
challenging Young’s equation
Marc Medale 1✉ and David Brutin 1

Sessile drop creation in weightlessness is critical for designing scientific instruments for space applications and for manipulating
organic or biological liquids, such as whole human blood or DNA drops. It requires perfect control of injection, spreading, and
wetting; however, the simple act of creating a drop on a substrate is more complex than it appears. A new macroscopic model is
derived to better understand this related behavior. We find that, for a given set of substrate, liquid, and surrounding gas properties,
when the ratio of surface free energies to contact line free energy is on the macroscopic scale, the macroscopic contact angle can
vary at static equilibrium over a broad volume range. It can increase or decrease against volume depending on the sign of this ratio
up to an asymptotic value. Consequently, our model aims to explore configurations that challenge the faithful representativity of
the classical Young’s equation and extends the present understanding of wetting.
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INTRODUCTION
A sessile drop is a liquid drop deposited on a solid substrate and
surrounded by a gaseous environment. Sessile drops are
ubiquitous all around us, either in natural environment (raindrops
on a surface), or in industrial processes in which liquids intervene.
For scientific purposes, they can be processed by injecting liquid
through a small hole in the substrate, as shown in Figure 1.
The underlying scientific question is, given a set of solid–liquid-

gas material properties and injected volume, what is the
macroscopic size and shape of the resulting sessile drop?
The first answer to this question is provided by the classical

Young’s equation1, Eq. (1), which was formulated roughly two
centuries ago. Nevertheless, it remains an undisputed reference
for the determination of macroscopic contact angles, denoted by
θ (cf. Fig. 1), according to its famous relationship:

σsg � σsl ¼ σlg cosθ (1)

where σsg, σsl, and σlg are the interface free surface energies, and
the subscripts s, l, and g represent a solid, liquid, and gas,
respectively. The effectiveness of Young’s equation lies in its
ability to translate subtle and complex molecular-scale physico-
chemical interactions near material interfaces to the macroscopic
scale in a simple manner. However, as Young’s equation is
assumed to be general, it remains unclear why neither the contact
line free energy nor gravity forms a part of the macroscopic
contact angle relationship in this equation. One possible answer is
that in most classical cases, these two parameters are negligible
with respect to the surface free energies, inducing only second-
order deviations as compared with the leading mechanisms.
However, from a scientific standpoint, the question is whether
there are configurations for which these two contributions could
lead to non-negligible effects.
Indeed, several experiments have shown some influence of

volume on the macroscopic contact angle under Earth’s gravita-
tional conditions2–7. These experiments show that a volume
dependence exists for macroscopic sessile drops on Earth for
several sets of liquid/substrate/surrounding gas (water on PTFE in
air, alkanes on Teflon in air, etc.), provided that the sessile drop

size remains below its capillary length. Above the latter, self-
adaption of the local interface curvature to the hydrostatic
pressure is the dominant contact line mechanism. Hence, the
static macroscopic contact angle becomes independent of the
drop volume. To explain the influence of volume on macroscopic
contact angle, Boruvka and Neumann8 introduced the concept of
line tension associated with the triple line (first introduced by
Gibbs more than a century and a half ago) and suggested a
modified version of Young’s equation to account for it4,6,7.
However, no definitive consensus has emerged regarding a
physical understanding of the translation of events from the
microscopic to the macroscopic scale9,10, but a recent and
sounding review provides many inputs that enable to make its
own view on this tentacular line tension topic11.
Thus, revisiting a way to determine the macroscopic contact

angle of sessile drops in a manner different from the well-
established one could either be tremendously risky at the worst or
very ambitious at best. However, this is the goal of the present
study in order to explore configurations that challenge the faithful
representativity of the classical Young’s equation.
Indeed, a second possibility or alternate approach is to

determine the macroscopic contact angle of sessile drops
following the pioneering work of Laplace12, who, unlike Young,
considered a macroscopic mechanistic approach. This resulted in
the famous Young–Laplace equation that governs the shape of
any interface separating non-miscible fluids, as it relates the
capillary pressure to the liquid–gas surface tension and mean
interface curvature. Unfortunately, this governing equation is a
highly nonlinear differential equation that has no analytical
solution in its most general form. However, in the case of
axisymmetric sessile drops, Bashforth and Adams13 were the first
to provide very accurate numerical solutions by means of high-
order Taylor series expansions, which agreed well with the best
experimental results available at that time. Based on this
pioneering numerical work, numerous improvements have been
achieved to enhance the capabilities and accuracy of the original
calculation methods14. Notably, minimizing the total free energy
of a sessile drop enables the recovery of both the Young–Laplace
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equation and Young’s equation for the contact angle in
completely independent ways15. However, most existing numer-
ical methods for axisymmetric sessile drops16–19 assume knowl-
edge of at least two geometrical quantities from among sessile
drop volume, height, or wetted radius. Only when this information
is available can these methods be used to determine the static
contact angle for a given set of material properties or to deduce
some of the latter when all geometrical quantities are known
through experiments.
To the best of the authors’ knowledge, no such influence of

volume on macroscopic contact angle has been reported yet in
weightlessness. Therefore, the present study focuses on the
potential influence of contact line tension on macroscopic contact
angle and on providing a better design for future experiments on
weightless sessile drops. Therefore, geometrical data on sessile
drops are not assumed to be a prerequisite and one seeks for the
complementary approach with respect to classical one. Further-
more, it is assumed that the set of material properties is known,
along with one of the geometrical target quantities of the sessile
drop, either its volume, height, or wetted radius. Then, all other
related geometrical quantities to be determined (static macro-
scopic contact angle, etc.) are predicted. In addition, some more
generic, albeit related questions are addressed: What are the
equilibrium sizes and macroscopic shape of a weightless sessile
drop of a prescribed volume for a given set of properties of liquid,
substrate, and surrounding gas materials? How do the related
geometrical quantities, such as static macroscopic contact angle,
drop wetted radius, and height evolve with respect to sessile drop
volume? How does the bulk pressure in the sessile drop evolve
in turn?

RESULTS
Exploring the parameter space
As the proposed model is proven to be capable of reproducing
the volume dependence of the macroscopic contact angle (see
the “Methods” section for all notations), the parameter space in
weightlessness is explored. For conciseness, the focus is on the
main feature of the model through parametric studies that
investigate the influence of the three leading parameters, i.e.,
sessile drop volume V, surface free energy ratio S, and the sign
of the contact line tension σslg. These parametric studies were
performed by solving Eqs. (7) for the macroscopic contact angle in
the range 0; π� ½ using the Mathematica software20. Once the
macroscopic contact angle is computed, the three related
geometrical quantities of interest—drop wetted radius, height,
and sphere radius—can be explicitly obtained using Eq. (6A)(6B)
(6C)(a–c).

Influence of volume for given sets of liquid–solid–gas properties.
Let us first consider the influence of the sessile drop volume on its
shape for various values of S and both signs of contact line
tension σslg. The resulting macroscopic contact angle is plotted
against all dimensionless geometrical quantities (L, h, r, and R) in
Figure 2, for S ¼ 0; ± 1=3; ± 2=3; ± 0:99, cf. figure caption, and
lσ ¼ ± 10�3S, except for the case of S ¼ 0, where lσ is set to ±

10−3. Solid (dashed) lines represent the positive (negative) values
of the S=lσ ratio. First, the limit angle associated with this
macroscopic model, denoted as θlim in Eq. (9), always tends to
π
2 ½1� sign ðσslgÞ�, regardless of the sign of S. This suggests that
when the length lσ is commensurable at the macroscopic scale, it
dictates the limit behavior when the drop size reaches its lowest
macroscopic limit. Moving slightly away from singularity, the
macroscopic contact angle is now well-defined and continuously
increases (decreases) with the sessile drop size, depending on
whether σslg is positive (negative), up to its asymptotic limit,
θ1 ¼ arccosS. Thus, a crossover between hydrophobic (non-
wetting) and hydrophilic (wetting) behaviors or vice-versa only
occurs if the S=lσ ratio is negative. Furthermore, the asymmetry
with respect to π/2 of the trigonometric functions in Eq. (7)
induces a strong asymmetry in the macroscopic contact angle for
low drop sizes. The macroscopic contact angle varies mono-
tonically with the dimensionless drop sizeL, height h, and wetted
radius r, as shown in Fig. 2a–c. However, it exhibits a non-
monotonic behavior with respect to the sphere radius for positive
lσ (see Fig. 2d. Finally, as can be observed from Fig. 2, the chosen
definition of the reference length is optimal. It enables the
depiction of the full picture in the smallest span range of the drop
size, as compared with other dimensionless quantities, h, r, or R,
which would require at least one more decade. Furthermore, one
can notice that the widely used plot of macroscopic contact angle
versus wetted radius, Figure 2(c), does not contain the lowest
asymptotic limits fairly reproduced in Fig. 2a. On the other hand,
Fig. 2d interestingly indicates that positive lσ always leads to the
existence of a minimal sphere radius, whose value depends on S.
Above this minimum, any given sphere radius admits two
macroscopic contact angles, as the relationship between these
two related quantities is multi-valued.
The definition of Wθ is derived from the closely related

behavior of the relative variation in the macroscopic contact angle
over its span range, defined as ϑ ¼ θ�θ1

θlim�θ1
. The latter is plotted

against the dimensionless drop size in Fig. 3a and emphasizes the
asymmetry between the positive and negative values of the S=lσ
ratio. Furthermore, this log–log scale plot clearly indicates that
there are three distinctive regions with specific behaviors. The first
is at the upper-left corner of the plot, where curves asymptote
either the ordinate axis for negative lσ or the unity horizontal line
for positive one. Therefore, it is a connecting region to θlim, which
spreads over very different drop size ranges, depending on θlim. In
the opposite plot corner, in the region of the largest drop sizes,
the final asymptotic 1=L behavior occurs. Between these two
extreme regions lies the transition region, whose extension
strongly depends on the S=lσ ratio. These specific behaviors
enable us to derive related functions, fco, fpa, defined in Eq. (10C)–
(10D), which are at the core of the proposed definition of Wθ . To
appreciate how representative is the proposed model, the
computed macroscopic contact angle θ is plotted against the
proposed dimensionless number Wθ in Figure 3(b) for all
considered volumes, S and lσ values. The collapse of data in
this plot indicates that Wθ accurately represents the macroscopic
contact angle dependence on sessile drop volume and material
properties of the system, and it is actually able to characterize it.
The plots in Figure 4 display how the various dimensionless

geometrical quantities related to the spherical cap model (wetted
radius, height, and spherical cap radius) evolve both with respect to
the dimensionless drop size and to the proposed dimensionless
numberWθ . The dimensionless sessile drop radius (wetted radius, r)
is plotted against the dimensionless drop size L in Fig. 4a and
against the dimensionless contact angle Wθ in Fig. 4b. For positive
lσ, contact line tension induces wetting; thus, it starts with an
asymptotic value that is approximately one order of magnitude
greater than the smallest drop size. Its initial slope is horizontal with
respect to both the dimensionless drop size and the contact angle.

Fig. 1 Sketch of sessile drop, injected from below through a sub-
millimetric hole in the substrate. V is drop volume, r is wetted
radius, θ is macroscopic contact angle.
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Then, it evolves in the transition region in a quasi-logarithmic
manner and reaches the region of its asymptotic linear behavior.
The higher the value of S, the higher the wetted radius at a given
drop size. In contrast, for negative lσ, the dimensionless drop radius
evolves linearly with drop size above the transition region. The plot
of sessile drop radius against the dimensionless contact angle Wθ

expands this underlying behavior, as shown in Fig. 4b.
The dimensionless height of the sessile drop (h) is plotted against

the dimensionless drop size L in Fig. 4c and dimensionless contact
angle Wθ in Fig. 4d. The height clearly exhibits symmetric behavior
compared with the drop wetted radius with respect to the sign of
the contact line tension lσ. Indeed, positive values of the latter induce
wetting, which translates into greater spreading and consequently a
smaller drop height at a given drop size. Thus, the higher the S=lσ
ratio, the smaller the sessile drop height for a given sessile drop size.
Finally, the dimensionless sphere radius (R) is another geometric

quantity of interest, as it determines the sessile drop bulk pressure for
a given liquid–gas surface tension, as per the Young–Laplace
equation. It is plotted against the dimensionless drop size L in Fig.
4e and dimensionless contact angle Wθ in Fig. 4f. Unlike the
dimensionless drop radius and height, the dimensionless sphere
radius exhibits a peculiar behavior for positive lσ. It exhibits a
minimum value that increases with S. Therefore, since the capillary
pressure evolves as 1/R, this minimum value is associated with an
extreme bulk pressure in the sessile drop, which is of practical

interest to design weightless experiments. Conversely, for negative lσ,
the sphere radius continuously increases with decreasing drop size.
Some sessile drop shapes are shown in Fig. 5 in the axisymmetric

(r, z) frame for several sample volumes, six values of S, and a
negative S=lσ ratio. These shapes clearly display a continuous
evolution of the static macroscopic contact angle with respect to S
and sessile drop volume. The latter is small (few degrees) owing to
the limited volume range that can be distinctively represented in the
same figure; however, it is perceptible.

Influence of material properties for given drop volume. The sessile
drop shapes of four given volumes (V ¼ 10, 102, 103, and 104) are
plotted in Fig. 6 for seven values of S (in the range
S 2 ½�0:99; 0:99�, with six uniform increments). For the consid-
ered drop volumes, which are greater than those for which line
tension dominates alone, the influence of volume on the
macroscopic contact angle is stronger for negative values of S
than for positive ones. Therefore, in this case, the higher the
sessile drop volume, the stronger the influence of S on its shape.

DISCUSSION
A new macroscopic mechanical model was derived to compute
the shape of weightless sessile drops in static equilibrium. Our
initial motivation was to understand more clearly the repeatability

Fig. 2 Macroscopic contact angle versus dimensionless geometrical quantities (L, h, r and R), for S ¼ �0:99 (blue), −2/3 (cyan), −1/3
(green), 0 (yellow), 1/3 (orange), 2/3 (red) and 0.99 (magenta). a versus dimensionless drop size L; (b) versus dimensionless drop height h;
(c) versus dimensionless wetted radius r; (d) rersus dimensionless sphere radius R.
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issues encountered while creating sessile drops in weightlessness
by injecting liquid through a small hole in a substrate21,22. The
derived model is based on the classical Young–Laplace equation,
Eq. (4), supplemented with a constitutive relationship for the
pressure difference across the liquid–gas interface, Eq. (5).
Assuming a flat, smooth, and homogeneous solid substrate, the
model considers both the surface densities of the free energy at
the solid–liquid and liquid–gas interfaces, along with the line
density of energy along the contact line. The ± sign in Eq. (5)
accounts for the contact angle hysteresis associated with an
advancing or receding contact line. First, the resulting governing
equation, Eq. (7), clearly indicates that the volume affects the
macroscopic contact angle only when (σsg− σsl)/σslg, the ratio of
the difference in the substrate surface tensions to the contact line
one, is commensurable on the macroscopic scale.
The volume dependence of the macroscopic contact angle

results from the solution of the derived governing equation, Eq.
(7). Indeed, unlike in Boruvka and Neumann’s line tension
model4,6–8, no a priori explicit dependence of the macroscopic
contact angle on the drop radius was introduced in the proposed
model. Therefore, the main outcome of the present mechanistic
macroscopic model is that neither the classical Young’s equation1

nor the modified Young’s equation proposed by Boruvka and
Neumann8 are appropriate for determining the macroscopic
contact angle of weightless sessile drops. The evidence of this
assertion is contained in Eq. (2), which is the governing equation
for the macroscopic contact angle derived from our weightless
model with respect to the drop wetted radius r (instead of drop
volume V, that results in Eq. (7)). It reads:

ð2� 3 cos θþ cos3θÞ þ sin2θ Sþ 2
r
σslg

σlg
� 1� tan2

θ

2

� �� �
¼ 0

(2)

Interestingly, this governing equation expressed in drop wetted
radius, Eq. (2), evidence that in weightlessness the macroscopic
contact angle does not evolve as simply as in the 1/r Boruvka and
Neumann’s model, but in much more subtle highly nonlinear way.
Indeed, upon approaching the very small drop volumes for which
line tension dominates, the obtained behavior significantly
deviates from the 1/r slope because of the highly non-linear
trigonometric functions involved in the spherical cap model.

These latter dominate the sessile drop shape at the lower limits of
macroscopic volumes, as depicted in Figs. 2 and 3a.
Furthermore, the proposed model reproduces the influence of

volume on the macroscopic contact angle of a sessile drop, which
has been reported in several ground experimental studies2,3,6.
Interestingly, in weightlessness, the influence of volume on the
macroscopic contact angle exists over a much wider range of drop
size, as no capillary length exists, unlike under Earth’s gravity
conditions. Indeed, unlike in the latter, it is not obscured by any
hydrostatic pressure effect on the local interface curvature, as no
capillary length exists in weightlessness. This enabled us to
perform extended parametric studies on volume size effects. The
proposed macroscopic model has a lower bound volume at which
only line tension dictates the limit behavior, hydrophobicity
(hydrophilicity), depending on whether its sign is negative
(positive). Indeed, when the drop size reaches the lowest
macroscopic limit, the related macroscopic contact angle
approaches its limit value, θlim ¼ π

2 ½1� sign ðσslgÞ�, regardless of
the sign of S. No lower sessile drop volume can be considered, as
the present macroscopic model reaches its limit of physical
representativity. At this lower limit, the driving mechanisms that
act at microscopic scales, such as meniscus curvature, are not
accounted for. Upon increasing the drop volume from this lower
bound, the macroscopic contact angle continuously evolves with
respect to the drop volume toward its asymptotic infinite value,
θ1 ¼ arccosS. Notably, this infinite limit value coincides exactly
with that from the classical Young’s equation, Eq. (1), although the
latter is not involved in the present model. Therefore, the volume
dependence of the macroscopic contact angle is maximum for
negative values of (σsg− σsl)/σslg and increases with the magni-
tude of Sj j. Furthermore, a crossover between hydrophobic (non-
wetting) and hydrophilic (wetting) behaviors or vice versa always
occurs for a specific sessile drop volume,Vco ¼ 1= Sj j3, when (σsg
− σsl)/σslg is negative, i.e., when the line tension and surface
tension act in opposite directions.
Furthermore, the macroscopic contact angle can vary at static

equilibrium over a broad volume range and it can increase or
decrease against volume depending on the sign of the surface to
line ratio of free energies until it reaches its asymptotic value.
Finally, the injection pressure is not a relevant control parameter
for creating in a well-controlled way sessile drops of a target
volume by injecting liquid through a small hole in the substrate.

Fig. 3 Macroscopic contact angle versus dimensionless drop size L and dimensionless number characterizing the contact angle Wθ.
a Relative macroscopic contact angle ϑ versus dimensionless drop size L; (b) Macroscopic contact angle versus dimensionless contact angle
Wθ.Wθ ¼ �0:99 (blue), −2/3 (cyan), −1/3 (green), 0 (yellow), 1/3 (orange), 2/3 (red) and 0.99 (magenta). The solid (dashed) lines represent the
plots for positive (negative) S=lσ .
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Indeed, the injection pressure evolves in a strongly non-linear
manner with sessile drop volume: it continuously decreases
against drop volume for negative S=lσ cases, whereas conversely,
it first increases and then decreases (please refer to Fig. 4e). Thus,
feedback control systems based on pressure only are likely to be

unstable, so the authors recommend enslaving the injection mass
flow rate to drop volume instead of drop pressure. Actually, a
constant injection pressure would result in a continuously
accelerating injection flow rate, which makes inertia terms to
become more and more prevalent, and prevent to achieve at the

Fig. 4 Plots of related sessile drop dimensionless quantities. a, b Wetted radius, c, d drop height, e, f sphere radius, for S ¼ �0:99 (blue),
−2/3 (cyan), −1/3 (green), 0 (yellow), 1/3 (orange), 2/3 (red), and 0.99 (magenta). The solid (dashed) lines represent the plots for positive
(negative) S=lσ .
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end of the injection stage a sessile drop of prescribed target
volume. Moreover, since it exists some macroscopic contact angle
hysteresis from advancing and receding contact line modes,
getting back from an oversized drop to an accurate target volume
becomes even much trickier.
Future research must focus on experiments in weightlessness

on sessile drops for much larger volume ranges than those that
exist under Earth’s gravity conditions. Indeed, the present
weightless model clearly indicates that the macroscopic contact
angle asymptotically converges towards the value of the Young’s
equation in the limit of large volumes. So, in this limit weightless
experiments can provide reference data for the surface tension
values (σsg, σls, and σlg), which are crucial for accurate predictive
modeling. Then, considering on the other hand the lower volume
range, one can evaluate in turn the line tension value σslg,
enabling us to assess the validity of the volume dependence of
the macroscopic contact angle. Finally, one can check the model
predictions on limit volumes for both hydrophilic and hydro-
phobic cases. If such experiments confirm the predictions of the
proposed model, they will potentially have an impact on the
current physical understanding of sessile drops, even under Earth
gravity conditions. If the sessile drop volume influences the
macroscopic contact angle in weightlessness, it should also have
the same effect under Earth gravity. However, this is somehow
blurred or screened by the self-adaption of the local interface
curvature to the hydrostatic pressure, which becomes the
dominant contact line mechanism as soon as the drop size
exceeds some fraction of its capillary length. Therefore, the
authors believe that the present weightless model could never-
theless predict some representative results either in microgravity
or Earth gravity conditions, provided the relative perturbation
induced by the hydrostatic pressure with respect to capillary one

does not exceed few percent (below 10%), according to a first
order perturbation technique. Hence, the validity of the classical
Young’s equation1 for the macroscopic contact angle is affected to
some extent by the volume dependence previously reported in
ground experiments2,4–7.

METHODS
A new model
Let us consider the static mechanical equilibrium of a weightless sessile
drop of a given volume and with a fixed set of properties for the liquid,
substrate, and surrounding gas. To prevent unnecessary modeling
complexity and related issues, the solid substrate is assumed to be flat,
smooth, and homogeneous. To create this sessile drop by injecting liquid
through a small hole in the substrate (monotonously advancing contact
line), the supplied injection pressure should overcome the free energies
associated with the curved liquid–gas interface, wetting a certain amount
of substrate area at the liquid–solid interface, and the advancing contact
line, respectively.

Governing equations. Assuming a sufficiently slow injection flow rate,
such that inertia and viscous dissipation terms are negligible with respect
to the surface and line free energies, the mechanical work associated with
liquid injection for a sessile drop of volume V is:Z

V
piðvÞ � pe½ �dv ¼

Z
Alg

σlg daþ
Z

Asl

ðσsl � σsgÞ daþ
Z

Lslg

σslg dl (3)

where pi and pe are the liquid drop bulk pressure and surrounding gas
pressure, respectively; σlg, σsg, and σsl are the liquid–gas, solid–gas, and
liquid–solid surface densities of the surface free energy, respectively; and
Alg and Asl are the liquid–gas and solid–liquid interface areas, respectively.
Finally, σslg is the line density of the three-phase zone free energy
associated with the macroscopic contact line, defined as the perimeter of
the wetted surface, Lslg.

Fig. 5 Influence of sessile drop volume on its shape in the small to medium range. V ¼ 5 (dark blue), 25 (brown), 50 (purple), 100 (orange),
150 (green), 200 (yellow) and 250 (light blue), for six values of S and negative S=lσ . a S ¼ �0:99; (b) S ¼ �2=3; (c) S ¼ �1=3; (d) S ¼ 1=3; (e)
S ¼ 2=3; (f) S ¼ 0:99.
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To proceed in this weightless static mechanical equilibrium, it is
noteworthy that the bulk pressure in the liquid drop and surrounding gas
pressure are both constant, so their difference behaves accordingly; this
results in a constant curvature of the liquid–gas interface. Consequently,
the weightless sessile drops are spherical caps. This geometrical feature
and its associated trigonometric relationships are crucial for deriving any
analytical expression that relates the mechanical equilibrium to quantities
associated with the macroscopic shape of the sessile drop in a closed form:
volume (V), wetted radius (r), height (h), and static macroscopic contact
angle (θ).
A static equilibrium results in a normal and tangential macroscopic force

balance at the solid–liquid and liquid–gas interfaces, respectively. Its
normal component to the substrate leads to the Young–Laplace equation:

pi � pe ¼ 2 σlg
sin θ
r

¼ 2σlg
R

(4)

where R is the radius of the resulting spherical cap.
To derive a well-posed governing equation, a constitutive relationship

was introduced for the bulk pressure of weightless sessile drop. Therefore,
assume that any difference in chemical potential between the liquid, solid
substrate, and surrounding gas produces adhesive or repulsive forces at the
molecular scale acting along their respective solid–liquid, liquid–gas, and
three-phase zone. Then, these forces can translate into pressure in the bulk
of the liquid drop. Assuming thermodynamic equilibrium, both the surface
and line densities of free energy become constant, enabling the formal
integration of Eq. (3). Then, dividing the integrated equation by the
consistent drop volume leads to the proposed local constitutive

relationship for the bulk pressure:

pi � pe ¼
σlg πðr2 þ h2Þ þ σsl � σsg

� �
πr2 ± σslg 2πr

Vci
(5)

where the ± in front of the contact line free energy (σslg) is associated with
the contact angle hysteresis, with a positive (negative) sign for an
advancing (receding) contact line. Moreover, the consistent volume
integration is such that the final governing equation satisfies the surface-
to-volume ratio for any spherical cap, that is, Vci= 3V/2. Equating the bulk
pressure differences from Eq. (4) and Eq. (5) and replacing R, r, and h with
their respective trigonometric relationships defined in Eq. (6A)(6B)(6C),

R ¼ 3V
πð2� 3 cos θþ cos3θÞ
� �1=3

(6A)

h
r
¼ tanðθ=2Þ (6B)

r ¼ 6V

π tanðθ2Þ½3þ tan2ðθ2Þ�

" #1=3
(6C)

the following governing equation for the weightless macroscopic contact
angle θ of the advancing contact line is finally obtained:

2� 3 cosθþ cos3θð Þ13 tan θ
2

� �
3þ tan2 θ

2

� �� 	� �2
3 � 2

2
3 1þ tan2 θ

2

� ��S
� �h i

V
1
3

þ tan θ
2

� �
3þ tan2 θ

2

� �� 	� �1
3 ¼ 0

(7)

Fig. 6 Influence of S on sessile drop shape for four volumes and seven values of S, ranging from −0.99 (dark blue) to 0.99 (light blue),
separated by six equidistant steps. a V ¼ 10; (b) V ¼ 102; (c) V ¼ 103; (d) V ¼ 104 .
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S and V are two dimensionless numbers that determine the macroscopic
contact angle in weightlessness. They are related to the physical
parameters of the problem, as follows:

S ¼ σsg � σsl
σlg

(8A)

V ¼ V

l3ref
(8B)

lref ¼ 16π
3

� �1
3

lσj j (8C)

where lσ ¼ σslg
σlg

and lref are the physical reference lengths of the weightless
sessile drop. However, another scale associated with the volume of the
derived macroscopic model can also be defined:

lmac ¼ lim
θ!θlim

V
1
3; with θlim ¼ 0þ if σslg > 0; otherwise θlim ¼ π� (9)

According to this definition, the minimal macroscopic length lmac is the size
of the weightless sessile drop above which a macroscopic contact angle
can be determined using Eq. (7). Conversely, below lmac, we expect the
presented macroscopic model to be irrelevant.
The expression of Eq. (7) is dimensionless, which reveals the direct

influence of the SV
1
3 product on the macroscopic contact angle.

Therefore, this is a key component in the definition of a dimensionless
number, which quantifies the static macroscopic contact angle of a
weightless sessile drop. The first method introduced herein is defined as
follows:

Wθ ¼ 2
π
arccosSþ sign ðσslgÞ � 1

� �
ð1� sÞf co þ s f pa
� 	þ sign ðσslgÞ

(10A)

s ¼ 1þ tanh aLþ bð Þ½ �=2 (10B)

f co ¼ exp � L� 1
c

� �d !
(10C)

f pa ¼ e
fLþ g

þ 1
L

(10D)

L ¼ V
1
3=lmac (10E)

The proposed definition ofWθ, Eq.(10A), is tailored to lie within �1; 1½ � and to
indicate the hydrophobic, neutral, or hydrophilic behavior of the weightless
sessile drop for negative, null, or positive values, respectively. Moreover, it
represents the signed dimensionless distance to cross-over behavior. To
meet all these requirements, we introduce a sigmoid function, defined as s in
Eq. (10B), which is built on the hyperbolic tangent for generating a smooth
transition between the contrasting behaviors encountered at the limit angle
and away from it. L is the dimensionless drop length for characterizing the
macroscopic contact angle in weightlessness. fco and fpa, account for the
specific behaviors encountered over the entire variation range. fco connects to
the limit angle θlim at L ¼ 1, and fpa enables the transition from this
connecting region to the asymptotic region of hyperbolic 1=L behavior. All
constants (a, b, c, d, e, f, and g) depend on S, lσ, and sign(σslg), which are the
physical parameters of the problem.

Model validation using published experimental data. Before discussing the
proposed model, it is important to validate it using existing experimental
results. Unfortunately, to the best of the authors’ knowledge, none of the
published experimental results on weightlessness include any quantifiable
dependence of the macroscopic contact angle on volume. Therefore, the
results obtained using the proposed model are plotted in Figure 7 against
the experimental data obtained considering Earth’s gravity conditions.
Although a broad range of fluids, substrates, and surrounding gases are

involved in the five selected experimental results2,3,6, fitting the S and lσ
parameters of the proposed model to the lower drop size experimental
points in each of the considered cases enables us to determine the
influence of volume on the macroscopic contact angle satisfactorily.
Interestingly, the results of the proposed weightlessness model deviate
from those of Earth gravity experiments as soon as the drop size reaches
some fraction of its capillary length (water/air fluids: λc ≈ 2.6 mm, ethylene
glycol/air fluids: λc ≈ 2.0 mm, respectively). This occurs because the
influence of volume no longer exists under gravity conditions, whereas it

persists in weightlessness. A sharp departure is observed for the most
hydrophobic case of water on a polyethylene substrate2 for a drop radius
exceeding r= 1.7 mm (drop volume from Table 1 in Herzberg and Marian2

translated into drop radius, as shown in Eq. (6C)). Moreover, this case is that
of highest slope among the five considered cases (S ¼ �0:96). For the
second hydrophobic case of water on polytetrafluorethylene (PTFE), a
milder deviation occurs between the present model and experimental
results from Ponter and Yekta-Fard3 above a comparable radius of r >
1.7 mm. For both hydrophobic cases considered here, fairly consistent lσ
have been introduced to fit experimental results from Herzberg and
Marian2 and Ponter and Yekta-Fard3, lσ= 0.25mm and 0.035mm,
respectively. On the other hand, for the three hydrophilic cases, either
for Dodecane on FC-721 substrate and Zonyl FSC one, or ethylene glycol
on DDOAB substrate6, only a slight volume dependence of the
macroscopic contact angle is observed, which results in a minute slope
for the three cases. This explains why only minor deviations can be
observed for drop radii beyond r= 4 mm, cf. Fig. 7. Moreover, very small lσ
have been introduced to fit the experimental values from6 comparatively
to those introduced for the two hydrophobic cases, a same lσ=
−0.015mm in the three cases.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from https://doi.org/
10.5281/zenodo.4382265.
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