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Identification of phenocopies improves prediction of targeted
therapy response over DNA mutations alone
Hamza Bakhtiar 1,6, Kyle T. Helzer1,6, Yeonhee Park2, Yi Chen2, Nicholas R. Rydzewski1, Matthew L. Bootsma1, Yue Shi 1,
Paul M. Harari1, Marina Sharifi 3, Martin Sjöström4, Joshua M. Lang 3, Menggang Yu2 and Shuang G. Zhao 1,5✉

DNA mutations in specific genes can confer preferential benefit from drugs targeting those genes. However, other molecular
perturbations can “phenocopy” pathogenic mutations, but would not be identified using standard clinical sequencing, leading to
missed opportunities for other patients to benefit from targeted treatments. We hypothesized that RNA phenocopy signatures of
key cancer driver gene mutations could improve our ability to predict response to targeted therapies, despite not being directly
trained on drug response. To test this, we built gene expression signatures in tissue samples for specific mutations and found that
phenocopy signatures broadly increased accuracy of drug response predictions in-vitro compared to DNA mutation alone, and
identified additional cancer cell lines that respond well with a positive/negative predictive value on par or better than DNA
mutations. We further validated our results across four clinical cohorts. Our results suggest that routine RNA sequencing of tumors
to identify phenocopies in addition to standard targeted DNA sequencing would improve our ability to accurately select patients
for targeted therapies in the clinic.
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INTRODUCTION
Over the last decade, targeted therapies against a large range of
oncogenic pathways have emerged as valuable additions to our
anti-cancer armamentarium1,2. Targeted therapies have demon-
strated particular success in patients harboring specific driver
mutations, usually in their respective targets3,4. The FDA has
approved EGFR inhibitors in EGFR-mutant NSCLC5–7, BRAF
inhibitors in both BRAF-mutant melanoma8,9 and NSCLC10 PI3K
inhibitors in PIK3CA-mutant breast cancer11 and PARP inhibitors in
Homologous Recombination Deficient (HRD) ovarian12 and
prostate13 cancer.
For many of the genes with FDA approved biomarker

indications, there are frequently known hotspot mutations, such
as the V600 mutations in BRAF14. Although the presence of these
driver mutations tend to be informative for identifying patients for
targeted therapies, there are often mutations of unknown
significance which fall elsewhere in the gene that may or may
not convey sensitivity15. Thus, the response in patients who harbor
these mutations is not uniform, and many patients fail to respond
even though they carry the driver mutation of interest16–20.
Additionally, others lacking a mutation may still show benefit from
treatment. The reasons for the variability in response are multi-
factorial. First, not all mutations alter the function of the protein
and different mutations can have wildly different phenotypic
impacts depending on the location and amino acid change.
Second, regulation via epigenetic, post-transcriptional, and post-
translational changes can modulate the impact of mutations and
lead to incomplete penetrance of the expected phenotype. Finally,
there may be other modes of activation for a particular oncogenic
pathway upstream, downstream, or even in a different pathway
independent of mutations in the target itself.
The activation of many oncogenic pathways leads to distinct

transcriptomic changes. However, to date, work assessing gene

expression patterns mimicking DNA alterations has been limited
in scope to specific targets or cancer types. We hypothesized that
gene expression signatures that identify phenocopies of altera-
tions in key DNA alterations would improve predictions of
response and resistance to targeted therapies. For example, these
signatures could identify additional tumors which phenocopy
EGFR-mutant tumors that would respond to anti-EGFR therapy,
without necessarily carrying an EGFR mutation. Likewise, these
phenocopy signatures could also identify tumors with an EGFR
mutation of unknown significance that do not display the EGFR-
mutant phenocopy, and do not respond to anti-EGFR therapy.
Herein, we developed phenocopy signatures of mutations in key
cancer genes on 9248 patient samples across cancer types and
validate in 1982 cell line experiments across three datasets. We
found that these signatures improved our ability to predict
response to targeted therapies compared to DNA mutations
alone. We also demonstrated that these phenocopy signatures
predict response in clinical cohorts and shift under the selective
pressure of treatment. Unlike most of the previous literature in this
area21–33, we do not directly train models to predict drug
response. Instead, the association of drug response to our
phenocopy signatures arise as an indirect but intended side effect.

RESULTS
Model design
We first sought to define expression-based “phenocopy” signa-
tures for various DNA mutations in therapeutically actionable
pathways in cancer (Fig. 1). We designed the phenocopy
signatures to identify RNA expression patterns of mutated tumors.
The underlying assumption is that mutations in key oncogenic
driver genes will be pathogenic more often than not, and that
these pathogenic mutations will result in a somewhat uniform set
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of downstream transcriptional changes. Machine learning models
such as XGboost do not require perfect information, and can learn
these patterns even in the face of noise in the data (i.e. even with
some non-pathogenic passenger mutations). To build these
phenocopy signatures, we utilized publicly available data from
TCGA, which contains mutation status and RNA expression data
for over 11000 tumor samples across 33 different tumor types. For
each actionable gene, an XGBoost model was trained using gene
expression profiles of pan-cancer tumor samples paired with the
known DNA alteration status. Each model was then trained to
define a gene expression signature for eight different targetable
pathways (EGFR, BRAF, PI3K-AKT, PARP/HRD, ERBB2, mTOR, JAK,
and MAPK). To assess if the phenocopy signatures could predict
drug response, independent data from the GDSC, CCLE and
DepMap datasets were used which contain gene expression, DNA
mutations, and drug responses across 969, 917, and 578 cancer
cell lines, respectively. Additionally, we analyzed four clinical
studies which have gene expression and treatment data for
patients treated with a drug targeting one of the pathways listed
above.

Phenocopy signature predictions
After assigning a predicted alteration status to each cell line in the
testing set with the XGBoost-driven model as described above, we
investigated how many cell lines in our validation cohorts were
marked as altered by the phenocopy signature alone, the DNA
mutation status alone, or by both. DNA alterations were
additionally split into mutations which have a known or predicted
deleterious or pathogenic effect and those with unknown
significance (Supplementary Fig. 1). Our goal was not to create
signatures that would perfectly predict cell lines’ alteration

statuses, as this would not offer additional insights. Instead, we
created our phenocopy signatures so they would identify cell lines
that phenotypically mimicked gene expression patterns of altered
cell lines, whether or not they carried a canonical driver mutation.
For all pathways, we found discordance between actual DNA
mutation status and phenocopy predictions which suggests that
there is additional information from the phenocopy signatures
that may help inform drug response predictions.
Diverse tumor types are well represented across the cell line

validation cohorts (Supplementary Figure 2). We next sought to
understand the impact of CNV in the genes in each pathway. We
clearly observed that CNV changes in the pathway are more
frequent in the samples that have a phenocopy expression profile
without a mutation (Supplementary Fig. 3). Since CNV influences
gene expression, this suggests a potential mechanistic explanation
for why these samples are demonstrating a gene expression
phenocopy in the absence of a mutation in a driver gene. When
we performed a similar analysis examining mutations instead of
CNV, the differences were much less pronounced, again support-
ing the role of CNV in influencing the phenocopy gene expression
patterns (Supplementary Fig. 4).

Phenocopy signatures improve pan-cancer drug response
predictions across multiple pathways
Next, we assessed how our gene-expression based phenocopy
signatures performed in adding predictive information on
targeted therapy drug response compared to DNA alterations
alone. To assess if the discordance between actual DNA mutation
status and the phenocopy signature predictions improves
predictions of drug response, we chose to assess eight different
pathways: four of which have clinically actionable mutations in
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various cancer types (BRAF8–10, BRCA13,34,35, EGFR5–7, and
PIK3CA11) and four of which are targets of ongoing research,
but do not yet have FDA-approved indications (MAPK36,37,
ERBB238,39, mTOR40, and JAK41). We next tested if the phenocopy
signatures improved the ability to predict drug response for drugs
targeting these pathways. To accomplish this, we examined linear
models of drug response to treatment targeting each pathway in
the independent GDSC, CCLE, and DepMap cohorts, with both the
true DNA alteration status and the phenocopy signatures as
independent variables. To assess significance, a multiple-testing
FDR-corrected chi-squared statistic was calculated for each drug/
gene combination to determine if the addition of the phenocopy
signature to DNA alterations alone improved the ability to predict
drug response. Overall, model performance was significantly
improved in 68% of cases across 165 different therapies targeting

these eight pathways (Fig. 2). For 61% of drugs targeting EGFR,
75% of drugs targeting BRAF, 80% of drugs targeting PI3K-AKT,
50% of drugs targeting PARP/HRD, 64% of drugs targeting MAPK,
90% of drugs targeting ERBB2, 53% of drugs targeting mTOR, and
50% of drugs targeting JAK, the phenocopy signatures signifi-
cantly added to DNA mutations alone.
We next sought to further examine the individual pathways and

drugs in more detail. Volcano plots of the contributions of the
phenocopy signatures, DNA mutations, and pathogenic mutations
in the linear models redemonstrated how the phenocopy
signatures added to DNA mutations for drugs targeting pathways
with and without mutations as FDA indications (Fig. 3, top four
panels and bottom four panels, respectively). Of note, negative
coefficients represent expected estimates, where the actual
mutation status or predicted mutation status from the phenocopy
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Fig. 2 Phenocopy signatures significantly add to DNA mutations in predicting drug response across oncogenic pathways. Linear models
for drug response were used to assess how much the phenocopy signatures added to DNA mutations across pathways. Each data point used
in the boxplot represents a model for a single drug in a dataset. A larger χ2 value represents a more significant contribution of the phenocopy
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signature is associated with increased sensitivity to the drug. BRAF
pathogenic mutations in particular successfully predicted
response to BRAF inhibitors even after taking into account the
phenocopy signatures, though the phenocopy signatures still
demonstrated independent predictive signal. However, for the
other pathways, phenocopy signatures generally outperformed
DNA mutations (pathogenic or otherwise) in predicting response
to targeted drugs across multiple agents and gene targets. These
results are particularly impressive given that the phenocopy
signatures were not directly trained to predict drug response, and
instead appear to do so simply by virtue of their biological
imperative, which is to identify phenocopies of DNA alterations.

Sensitivity, specificity, PPV, and NPV of phenocopy signatures
Sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) are commonly used to evaluate clinical
biomarkers. In our cell line models, we defined responders as the
top quartile. Across all the drugs and pathways tested, 28% of cell
lines with a mutation were classified as responders. When limited
to pathogenic mutations, this percentage was similar at 26%. In
cell lines without a mutation but were predicted to be a
phenocopy, a slightly higher 31% were classified as responders,
though the sensitivity in individual pathways was frequently
higher. The sensitivity of the phenocopy signatures in mutation-
negative cancer cell lines was on par with DNA alterations for
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EGFR, BRAF, and MAPK, and better than DNA alterations for PI3K-
AKT, PARP/HRD, ERBB2, MTOR, and JAK. Oncogenic activation of
ERBB2 (gene encoding HER2) in particular is thought to be heavily
influenced by amplification, and our results suggest that a
mutational phenocopy signature may provide complementary
information. The specificity of the phenocopy signatures was high
across pathways in identifying responders in cell lines without
DNA mutations (Fig. 4). The PPVs in cell lines without mutations
are almost all improved compared to the results observed with
DNA mutations, with the exception of BRAF in which the DNA
mutations perform particularly well (Fig. 5). As with specificity, the
NPVs are high for the phenocopy signatures across groups. These

results confirm that the phenocopy signatures are successfully
finding additional responders without DNA mutations with high
specificity. While the sensitivity is not as high as the specificity, it is
still comparable or better than DNA mutations alone.

Clinical validation
In addition to assessing our model in cell line datasets, we next
sought to assess the efficacy of predicting drug response from a
phenocopy signature in clinical data. We were able to identify
several publicly available clinical cohorts that had treatment
response and/or pre/post treatment resistance information for
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treatments specifically targeting the pathways of our phenocopy
signatures. We first examined the BRAF pathway and identified
three BRAF-mutant melanoma cohorts with gene expression data
(GEO IDs: GSE50509, GSE65185, GSE99898) that were all treated
with anti-BRAF therapies (dabrafenib, vemurafenib, trameti-
nib)42–44. In all three cohorts, pre-treatment (sensitive) and post-
treatment (resistant) samples were obtained from the same
patients. Because the three cohorts were quite small, and similar in
nature, we combined the results of all three. No additional DNA
sequencing data were available for these cohorts. Our normal-
ization approach and phenocopy signatures were applied without

modification to each of the three cohorts. Overall, the majority
(77.8%) of the pre-treatment (treatment-sensitive) samples were
predicted to be BRAF mutation phenocopies, consistent with the
fact that all the tumors were known to have BRAF mutations. Not
all BRAF mutations are necessarily driver mutations. Thus, we
would not expect the phenocopy predictions to match up exactly
with the DNA mutations. The pre-treatment baseline phenocopy
percentage is similar to the response rate of 68% to dabrafenib
plus trametinib in the landmark COMBI-d and COMBI-v clinical
trials45. However, this rate decreased to 64.3% in the post-
treatment (treatment-resistant), with a borderline p-value of
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0.0806 (Fig. 6A). This is consistent with our in-vitro data that the
BRAF phenocopy signature predicts response to BRAF inhibitors,
as the resistant tumors had a lower rate of phenocopies.
Everolimus is only approved in hormone-receptor positive

HER2-negative advanced breast cancers. We next identified a
cohort of ER+ breast cancer patients (GSE119262) who were
treated with neoadjuvant everolimus (which targets the mTOR
pathway) followed by surgery46. In this cohort, both treatment
response information and pre-treatment (sensitive) vs. post-
treatment (resistant) samples were available. We first examined
just the pre-treatment samples. While only a small number were
predicted as mTOR mutation phenocopies, 100% of these
responded (as defined in the original publication46) to anti-
mTOR therapy compared to 75.8% of the non-mTOR phenocopy
tumors (Fig. 6B). The overall phenocopy percentage was 8.7% in
the pre-treatment samples, which is similar to the 9.5% response
rate to everolimus plus exemestane shown in advanced hormone-
receptor positive breast cancer in the landmark BOLERO-2 clinical
trial47. When we further examined our phenocopy signature in
pre-treatment and post-treatment samples, again none of the
non-responder tumors (pre- or post-treatment) were predicted as
phenocopies. In the responder tumors, there was a decrease in the
rate of phenocopy tumors from 14.3% pre-treatment (sensitive) to
4.17% post-treatment (resistant; Fig. 6C). This is consistent with
our in-vitro data which demonstrates that a phenocopy signature
predicts response to mTOR inhibitors, as the post-treatment
resistant tumors had a lower rate of phenocopies. While the small
numbers are under-powered to detect statistical significance, the
results are nonetheless consistent with our hypothesis.

DISCUSSION
Targeted therapies have shown great promise in treating a variety
of cancer types, but to date only benefit a minority of cancer
patients. A major reason is that targeted therapies perform
optimally in patients whose specific tumors are uniquely
dependent on the targeted pathway, which is currently assessed

by identifying key driver mutations. The majority of patients lack a
DNA alteration, and we do not currently have other biomarkers to
identify additional patients who could benefit from these targeted
treatments. With the creation of large pharmacogenomic data-
bases2,23,48, most published efforts have been focused on
specifically training molecular signatures to predict drug
response21–32. Our phenocopy approach differs from this direct
approach. Instead, we trained phenocopy signatures to identify
the gene expression patterns that accompany common driver
gene alterations in cancer. We then demonstrate that this indirect
approach improves the ability to predict pan-cancer treatment
response across eight oncogenic pathways compared to DNA
mutation status alone. To our knowledge, this is the first report of
the successful global application of a phenocopy strategy in
predicting drug response in vitro and in clinical cohorts.
We show that in mutation-negative tumors, the phenocopy

signatures can identify a subset that respond to targeted therapies
with high specificity. These results suggest that phenocopy
signatures add to clinically actionable mutations in predicting
therapy response and could be used in clinical settings to identify
mutation-negative patients who may benefit from targeted
therapy with high specificity. While the sensitivity is not as high,
it is comparable to DNA mutations alone and doubling the
number of patients eligible for targeted therapies would represent
an enormous clinical advancement. In addition, phenocopy
signatures could also be used to help guide treatment decisions
for patients with variants of unknown significance. Finally, most
drug-biomarker indications are currently limited to specific cancer
sites. Our training and validation cohorts are pan-cancer datasets,
potentially allowing for a tremendous expansion of current
targeted therapy indications across multiple cancer types.
The transcriptome-wide measure of gene expression via RNA-

seq has been shown to be a useful metric to complement DNA
alteration data in predicting drug responses in many contexts,
given that gene expression provides a more functional snapshot
of the cell’s phenotypic state compared to its genomic sequence.
For example, gene expression-based RB1 loss signatures have
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 Dabrafenib/Vemurafenib/Trametinib

89.3% (25/28)

10.7% (3/28)
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B) Breast Cancer

100% (18/18)

Non Responders 

 Neoadjuvant everolimus

85.7% (24/28)

14.3% (4/28)
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C) Breast Cancer

95.8% (23/24)

4.17% (1/24)

PostTreatment (resistant) 

 Neoadjuvant everolimus responders

Prediction
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Fig. 6 Clinical validation of phenocopy signatures. Our BRAF and mTOR phenocopy signatures were applied to BRAF-mutant melanoma (A)
and breast cancer cohorts (B, C), respectively. Altered or unaltered status indicates the alteration status assigned by the BRAF/mTOR
phenocopy signatures. Pre-treatment samples were considered sensitive, and post-treatment samples were considered resistant per the
original datasets.
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been shown to be prognostic across cancer types (but have not
been assessed regarding drug response)49, and Ras-pathway
activation signatures have been shown to predict MEK inhibitor
sensitivity50. Additionally, in a study examining the contributions
of various molecular data types for assessing drug response, gene
expression was found to be the most predictive metric across all
cancer types when compared to gene mutation, copy number,
methylation status, and tissue origin22. However, the same study
found that combinations of data types were better at predicting
drug response within cancer sub-types, highlighting the useful-
ness of combining DNA mutation status with RNA signatures for
drug response predictions.
The primary limitation of this study is that the majority of drug

response validation was based on cell lines, albeit in three large
independent cohorts. We do have some clinical validation in
public datasets, which were the only available cohorts with gene
expression data from sensitive/resistant samples that we could
identify. Nonetheless, further validation in larger clinical cohorts
and trials is required. Clinical trials or cohorts of targeted therapies
with transcriptome-wide RNA profiling are rare, though more
recently have begun to have more use such as in the WINTHER
trial (NCT01856296)51. This is partly because most commercial
DNA sequencing panels do not include whole-transcriptome RNA-
seq. Our study provides strong rationale for expanding clinical
Next-Gen Sequencing to include RNA-seq, and provides a pan-
cancer, platform-independent, phenocopy biomarker with which
to select patients for inclusion in a next-generation clinical trial of
targeted therapies in patients without driver DNA mutations.
Indeed, these phenocopy signatures will be integrated into the
planned biomarker-driven Alliance A032102 PREDICT trial in
prostate cancer.

METHODS
We trained our phenocopy signatures on all protein-coding DNA
alterations in the clinical TCGA dataset, which has minimal
treatment response information. This is possible because we are
not directly training on drug response, and our indirect approach
has an added benefit in allowing us to save all cell line and clinical
datasets with drug response for validation without having to
worry about information leakage. Previous approaches directly
training on cell line drug response face challenges in identifying
suitable validation cohorts, as many of the cell lines overlap
between different cell line datasets and clinical validation cohorts
are rare.

DNA mutation annotation
DNA mutations were annotated with Annovar52. Only protein
sequence-altering mutations were included. Silent, splicing,
intronic, upstream, and downstream mutations were excluded
from our analysis. The rate of pathogenic (defined by ClinVar) non-
coding mutations was rare (Supplementary Table 1). To identify
mutations with stronger evidence for being pathogenic, ClinVar
and various computational tools (SIFT, Polyphen-2 HVAR,
Polyphen-2 HDIV, and FATHMM) were used. A sample was
considered to have a pathogenic mutation if predicted by any
of the computational tools or marked as pathogenic or likely
pathogenic by ClinVar. A total of eight oncogenic signaling
pathways with targeted drugs and mutations in the key driver
genes were assessed (EGFR, BRAF, PI3K-AKT, PARP/HRD, ERBB2,
mTOR, JAK, and MAPK). EGFR mutations were assessed for the
EGFR pathway. BRAF mutations were assessed for the BRAF
pathway. PIK3CA, AKT1, and AKT2 mutations were assessed for the
PIK3-AKT pathway. BRCA1/2, ATM, and PARP1/2 mutations were
assessed for the PARP/HRD pathway. ERBB2 mutations were
assessed for the ERBB2 pathway. MTOR mutations were assessed
for the MTOR pathway. JAK1/2/3 mutations were assessed for the

JAK pathway. MAPK11, MAPK12, MAPK13, MAPK14, MAPK3, MAPK1,
MKNK1, MKNK2, MAP2K1, MAP2K2, MAPK8, MAPK9, and MAPK10
were assessed for the MAPK pathway. While amplifications and
deletions are also important, we chose not to include these for
training due to the lack of consistent thresholds for determining
when a copy number change influences function, as well as the
significant effects of tumor purity on copy number in the clinical
samples.

Phenocopy signature training
Prior to training the phenocopy signature we filtered each dataset
to only include genes within the pathway of interest as
determined by the Reactome53 database of gene pathways
(Supplementary Table 2). For each gene pathway, we removed
cancer types with an alteration rate below 5% from our TCGA
training dataset. We then used a gradient tree boosting approach
to train phenocopy signatures which predicted mutation status
(true or false) based on RNA expression. Gradient tree boosting
(e.g. XGboost) is an ensemble learning method where decision
trees are constructed to minimize a differentiable loss function.
This is done through a gradient descent algorithm where trees are
iteratively fit to the direction of steepest descent of the loss
function. XGboost builds upon ensemble tree models such as
random forests by adding a regularization term, designed to
control model complexity and avoid overfitting. We trained our
signature on the TCGA dataset using the R XGboost package
(version 1.4.0.1). XGboost offers a GPU-based implementation of
gradient tree boosting that leverages a histogram algorithm to
find candidate splits, which provides immense speed improve-
ments. We applied this approach with a hinge loss function and
used 10-fold cross validation to tune the depth and number of
trees, with model accuracy assessed using Receiver Operator
Curve (ROC) Area Under the Curve (AUC). A total of eight
phenocopy signatures were trained, one for each oncogenic
signaling pathway, and were locked prior to independent
validation.

Independent validation of the phenocopy signatures in GDSC,
CCLE, and DepMap
Each of the eight oncogenic pathways were tested in the GDSC,
CCLE, and DepMap cohorts. Response for drugs specifically
targeting each pathway was assessed per pathway as above.
Mutations were assessed as above. The phenocopy signatures
were applied without modification to the GDSC/CCLE/DepMap
datasets and resulted in predicted mutation status to identify
phenocopies. GDSC, CCLE, and DepMap sets were validated
independently. As all three study cancer cell lines and anti-cancer
drugs, there is overlap. However, as the experiments were done at
different times with different techniques, we chose to investigate
them as independent datasets.

Statistical approach
To compare whether the phenocopy signatures improved the
ability to predict response to targeted therapies, we created linear
models with the actual drug response (Z-score for the IC-50 for
GDSC, the ActArea for CCLE, AUC for DepMap) as the dependent
variable, and the actual and predicted mutation status as the
independent variables. For the CCLE, IC-50 was not utilized due to
55% of all IC-50 values being the maximum tested concentration
of 8 μM, therefore activity area (ActArea) was used, where a higher
ActArea corresponds to increased sensitivity23. For DepMap, 69%
of IC-50 values were reported as NA, thus AUC was used as a
measure of drug response. While using the same drug response
metrics across datasets would have been ideal, diverse measures
can provide complementary information even with the same cell
lines/drugs and ensure our results are independent of the dataset.
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Model fit was determined using the ordinary least squares
approach. Coefficients from the model indicate how strongly the
actual and predicted alteration statuses contribute to drug
response. We also performed a likelihood-ratio test using the
chi-square statistic (χ2) to compare a single parameter model
(mutation status alone) and a two parameter (mutation status and
the phenocopy signature) model in order to assess if the
phenocopy signature was significantly adding to DNA mutations
alone in predicting drug response. Because the models are nested,
the degrees of freedom equal the difference in the number of free
parameters in the two models. Thus, the two parameter model is a
significant improvement over the single parameter model if the
observed χ2 statistic is >4.5 corresponding to a Benjamini-
Hochberg FDR multiple testing corrected p-value cutoff of 0.05.

Sensitivity and specificity of the phenocopy signature in
predicting drug response
We next assessed the sensitivity and specificity of the phenocopy
signatures. Because drug response was a continuous variable in
our cell line datasets, we stratified “responders” and “non-
responders” based on the top quartile vs. the bottom three
quartiles54. To better understand the performance in the context
of DNA mutations, we considered three subgroups: (1) cell lines
without mutations, (2) cell lines with mutations that were not
predicted to be pathogenic (e.g. unknown clinical significance)
and (3) cell lines with mutations predicted to be pathogenic. We
then compared this to the sensitivity and specificity of mutations
alone, or pathogenic mutations alone.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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