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Immune cell infiltration signatures identified molecular
subtypes and underlying mechanisms in gastric cancer
Yilin Lin 1,2, Xiaoxian Pan3, Long Zhao1,2, Changjiang Yang1,2, Zhen Zhang1,2, Bo Wang1,2, Zhidong Gao1,2, Kewei Jiang1,2,
Yingjiang Ye1,2, Shan Wang1,2 and Zhanlong Shen 1,2✉

Increasing evidence has clarified that the tumor microenvironment (TME) is closely related to the prognosis and therapeutic efficacy
of cancer. However, there is no reliable TME evaluation system used to accurately predict the prognosis of and therapeutic efficacy
in gastric cancer. We evaluated the immune microenvironment score (IMS) of 1422 gastric cancer samples based on 51 immune cell
signatures. We explored the relationship between the IMS and prognosis, immune cell infiltration, cancer subtype, and potential
immune escape mechanisms. The results show that activation of the stroma and decreased levels of immune infiltration were
associated with a low IMS. A high IMS was characterized by Epstein–Barr virus infection, increased mutation load, microsatellite
instability, and immune cell infiltration. A high IMS was also related to high expression of immune checkpoint molecules (PD-1/PD-
L1). Finally, patients with a high IMS had a better response to PD-1/PD-L1 inhibitors and may be more suitable for immune
checkpoint inhibitors (area under the curve= 0.81). In addition, a low IMS may be converted into the immune-infiltrating subtype
after romidepsin treatment. Stratification based on the IMS may enable gastric cancer patients to benefit more from
immunotherapy and help identify new cancer treatment strategies.
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INTRODUCTION
Gastric cancer is the fifth most common malignant tumor and the
fourth leading cause of cancer death1. Although its morbidity and
mortality have declined in the past few years, gastric cancer is still
a serious global health problem2–4. At present, surgery, che-
motherapy, radiation therapy, and targeted therapy are the main
treatment methods for gastric cancer5. The American Joint
Committee on Cancer (AJCC) staging system and histological
classification are the most important tools for the stratification,
classification, and treatment of patients with gastric cancer6,7. In
recent years, high heterogeneity has been found in gastric cancer,
and new stratifications have been proposed for gastric cancer8. In
addition, it is necessary to identify other important factors to
stratify patients more precisely with gastric cancer to better guide
clinical treatment and improve prognosis.
Immunotherapy has emerged as a treatment option in recent

years and mainly induces antitumor effects by regulating the
immune system, and immunotherapy has achieved revolutionary
progress in the treatment of malignant tumors9. However, the
current dilemma facing immunotherapy is the lack of accurate
prediction of efficacy. The tumor microenvironment (TME) is a
complex ecosystem consisting of various types of cells and other
noncellular components of the extracellular matrix with obvious
heterogeneity10. Recent studies have provided an in-depth
understanding of the TME, which has provided new opportunities
for immunotherapy11–13. Studies suggest that a positive response
to immunotherapy usually depends on the dynamic interaction
between tumor cells and immunomodulators in the TME14–16.
Tumor cells inhibit the response and function of infiltrating
immune cells by affecting the PD-1/PD-L1 signaling pathway and
secreting inhibitory factors such as interleukin 2 (IL-2) to induce
immune escape17. The TME recruits and expands

immunosuppressive cells, such as regulatory T cells (Tregs),
tumor-associated macrophages, and bone marrow-derived sup-
pressor cells, which are some of the main effector cells inducing
an immunosuppressive TME18–20. One study divided the TME into
different phenotypes based on the degree of immune cell
infiltration: immunoinflammatory phenotype, exclusion pheno-
type, and desert phenotype; this study also proposed the
importance of selecting appropriate treatment strategies accord-
ing to the phenotype of effector immune cells21. Cancer-
associated fibroblasts, which are present in large numbers, in
the TME form a high-density extracellular matrix, which hinders
the absorption of drugs and the intratumoral infiltration of
immune cells, leading to different immune responses22. Studies
have revealed that the TME has high heterogeneity and an
influence on the immune response. Therefore, the development of
more precise stratification methods considering the state of the
TME is urgent for optimizing the efficacy of immunotherapy.
At present, some researchers have analyzed the effect of the

heterogeneity of the TME on immunotherapy. Peng et al.
constructed a signature of T cell dysfunction and exclusion, and
it was found that this signature was more accurate than PD-L1
expression and tumor mutation burden (TMB) in predicting the
efficacy of immunotherapy in melanoma23. Yang et al. also
constructed an immune-related signature to predict the efficacy of
immunotherapy24. In addition, Zeng et al. evaluated the immune
subtypes of gastric cancer through the CIBERSORT algorithm,
thereby establishing the TME score of gastric cancer patients to
evaluate the patient’s immune efficacy25. These studies have
revealed the importance of the TME score in immunotherapy, but
their research is only for the analysis of T cells or stratification
according to the CIBERSORT algorithm. The CIBERSORT algorithm
only counts 22 TME cells, and most TME cells were not included26.

1Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, PR China. 2Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal
Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing 100044, PR China. 3Department of Radiotherapy, First Affiliated Hospital of Fujian Medical
University, Fuzhou, Fujian 350004, PR China. ✉email: shenzhanlong@pkuph.edu.cn

www.nature.com/npjgenmed

Published in partnership with CEGMR, King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-021-00249-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-021-00249-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-021-00249-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-021-00249-x&domain=pdf
http://orcid.org/0000-0001-6811-634X
http://orcid.org/0000-0001-6811-634X
http://orcid.org/0000-0001-6811-634X
http://orcid.org/0000-0001-6811-634X
http://orcid.org/0000-0001-6811-634X
http://orcid.org/0000-0002-8717-2686
http://orcid.org/0000-0002-8717-2686
http://orcid.org/0000-0002-8717-2686
http://orcid.org/0000-0002-8717-2686
http://orcid.org/0000-0002-8717-2686
https://doi.org/10.1038/s41525-021-00249-x
mailto:shenzhanlong@pkuph.edu.cn
www.nature.com/npjgenmed


Therefore, it is urgent to adopt a new evaluation system to include
more TME cells for stratified analysis.
In this study, we focused on evaluating TME characteristics to

study the immune activity, prognosis, and immunotherapy
response in gastric cancer. Fifty-one TME cells were included,
and 27 TME cell types associated with the survival of gastric cancer
were identified based on six independent cohorts of patients with
gastric cancer. Based on these 27 TME cell types, an immune
microenvironment score (IMS) for gastric cancer was established.
The relationship of the IMS with gene expression profiles, somatic
copy number variations (SCNVs), and mutations was analyzed. We
found that the IMS is a powerful prognostic biomarker and
predicts the response to immune checkpoint inhibitors. The
flowchart of this research is shown in Supplementary Fig. 1

RESULTS
Identification of survival-related immune cells used to
construct IMS
To develop an IMS for gastric cancer, six gastric cancer cohorts
were included (Supplementary Data 1). A total of 51 TME cell
signatures from previously published research were analyzed.
Single-sample gene set enrichment analysis (ssGSEA) was used to
estimate the immune enrichment score based on each of the 51
TME cell signatures for each gastric cancer patient in each cohort.
Univariate Cox regression analysis was used to estimate the utility
of the immune enrichment score for survival in each gastric cancer
cohort. The results indicated that a total of 38 TME cells were
associated with the survival of gastric cancer (Supplementary Data
2). Meta-analysis revealed that a total of 27 TME cells were
significantly related to the survival of gastric cancer in the overall
cohort (P values < 0.05, Fig. 1a and Supplementary Data 3). The
infiltration characteristics of these 27 TME cells are shown by the
heatmap in the ACRG and The Cancer Genome Atlas (TCGA)
cohorts (Supplementary Fig. 2). A total of 27 survival-related TME
cells containing 463 marker genes are shown in Supplementary
Data 4.
Next, we calculated the IMS of each gastric cancer patient in the

cohort and divided the patients into a high IMS group and a low
IMS group by using the median IMS as the cutoff value. The results
revealed that patients with a high IMS had a longer survival time
than patients with a low IMS in the ACRG cohort (P values < 0.05,
Fig. 1b).

The relationship between the IMS and clinical features in
gastric cancer
Gastric cancer was divided into four subtypes in the ACRG cohort.
Our research found that the IMS was the highest in the
microsatellite instability (MSI) subtype, followed by the MSS/
TP53-negative subtype and the MSS/TP53-positive subtype. The
IMS level was the lowest in the epithelial-mesenchymal transition
(EMT) subtype (Fig. 1c). There were significant differences in the
IMS between the four subtypes (Kruskal–Wallis test, P value <
2.2e–16). Similarly, we also found that the IMS was the highest in
the Epstein–Barr virus (EBV) subtype and MSI subtype in the TCGA
cohort (Fig. 1c, Kruskal–Wallis test, P value < 2.2e–16).
We further explored the relationship between IMS and other

clinical features. We found that patients with gastric cancer aged
>65 years had higher IMSs than those aged ≤65 years in the ACRG
and TCGA cohorts (P values < 0.05, Supplementary Fig. 3a). There
was no significant difference in IMS between males and females in
the ACRG cohort (P value= 0.093, Supplementary Fig. 3b).
However, females had higher IMSs than males in the TCGA cohort
(P value= 0.035). Next, we continued to analyze the relationship
between the IMS and the AJCC stage. The results showed that the
IMS was the highest in stage I disease, while the IMS was the
lowest in stage III and stage IV disease (P value= 2.04 e−17,

Supplementary Fig. 3c), indicating that the IMS may have been
related to the progression of gastric cancer in the ACRG cohort.
However, in the TCGA cohort, although the IMS also showed the
highest expression in stage I disease, there was no significant
difference in the IMS between disease stages in this cohort (P
value= 0.38). Therefore, more data and meta-analyses may be
needed to obtain a more reliable conclusion. Next, we further
analyzed the pathological subtypes (the intestinal type, diffuse
type, and mixed type) in the ACRG cohort. Since the sample size of
mixed subtypes is small (eight samples), we exclude these
samples here. The IMS of intestinal-type patients was significantly
higher than that of diffuse-type patients (all P values < 0.05,
Supplementary Fig. 3d). In addition, MLH1-negative gastric cancer
had a higher IMS than MLH1-positive gastric cancer (Supplemen-
tary Fig. 3d). Gastric cancer was also divided into six subtypes in
the TCGA cohort. The six subtypes were C1 (wound healing), C2
(IFN-γ dominant), C3 (inflammatory), C4 (lymphocyte depleted), C5
(immunologically quiet), and C6 (TGF-β dominant). Our results
showed that C2 samples had a high IMS (Supplementary Fig. 3e).
A Sankey diagram of these data was generated with the R package
ggalluvial (Supplementary Data 5 and Fig. 1d).
To further analyze the characteristics of the high and low IMS

groups, KEGG functional enrichment analysis of the gastric cancer
samples was performed with ssGSEA. To our surprise, the low IMS
group was highly enriched in stromal and oncogenic pathways,
such as the mTOR signaling pathway, WNT signaling pathway,
adherens junction pathway, TGF-beta signaling pathway, and focal
adhesion pathway. The high IMS group was enriched in pathways
related to dMMR and immune activation, including mismatch
repair, natural killer cell-mediated cytotoxicity, Toll-like receptor
signaling, T cell receptor signaling, B cell receptor signaling, and
chemokine signaling pathways (Fig. 1e).

Landscape of IMS in gastric cancer
We assessed a set of genes related to specific biological processes
identified by Mariathasan et al.27. In this analysis, high expression
of EMT markers, including EMT1, EMT2, and EMT3, angiogenesis
characteristics, and panfibroblast TGFβ response characteristics
(Pan-F TBRS) were also found in the low IMS group. The CD8
effector and antigen presentation signatures were significantly
highly expressed in the high IMS group (Fig. 2a). The Spearman
correlation analysis results confirmed that these signatures were
significantly related to the IMS (Fig. 2b).
Next, we analyzed the infiltration level of 27 cells in high and

low IMS. The results showed that most cells had significant
differences between the high-IMS and low IMS groups (Fig. 2c).
Our previous research found that a high IMS was related to MSI

(Fig. 1c, e). For this reason, we were interested in the relationship
between IMS and DNA damage repair pathways. We analyzed a
total of eight DNA damage repair signatures (CF, MMR, FA, HRR,
BER, NER, NHEJ, and TLS). We were surprised to find that these
pathways were significantly differentially enriched between the
high and low IMS groups (Fig. 2d), and the IMS was significantly
positively correlated with the normalized enrichment scores
(NESs) of these pathways (Fig. 2e). In addition, most of the results
were verified with GSEA software (Fig. 2f).

Potential extrinsic immune escape mechanism in gastric
cancer (TCGA cohort)
Previously published studies have explained that different tumor
subtypes may have different extrinsic immune escape mechan-
isms, such as suppression of immune cells, activation of
immunosuppressive cells, and high expression of immunosup-
pressive cytokines28. Our previous study found that the low IMS
group had more quiescent cells and activated innate immune cells
(Treg cells, resting mast cells, and plasmacytoid dendritic cells
(pDCs)) than the high IMS group, suggesting that patients in the
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Fig. 1 The distribution of the IMS in gastric cancer. a Immune cell types that have survival significance in gastric cancer. A meta-analysis was
used to evaluate the overall survival effect of each immune cell type. Circles with a black border represent survival significance in an
independent cohort as determined through univariate Cox analysis. Red points indicate an HR value >1, implying a potential risk factor. Blue
points indicate an HR value less than 1, implying a potential favorable factor. The size of the circle represents the level of the HR.
b Kaplan–Meier curve of OS according to the IMS in the ACRG cohort (log-rank test, P value < 0.0001). c The relationship between gastric
cancer subtypes and the IMS (Kruskal–Wallis, P value < 2.2 × 10–16). The central line represents the median value. The bottom and top of the
boxes are the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. d Sankey diagram
showing the relationship between the IMS and gastric cancer subtypes. e KEGG pathways enriched in the high and low IMS groups were
analyzed by GSVA. Heatmaps were used to visualize these signaling pathways. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 2 The effect of the IMS in gastric cancer (ACRG cohort). a Differences in immune-related pathways and stroma-activated pathways,
including the EMT, TGF-beta, angiogenesis, effector CD8 T cell, and antigen presentation pathways, between the high and low IMS groups
(Wilcoxon test). b The relationship between the signature scores of immune-related pathways and stroma-activated pathways and the IMS
(Spearman analysis). c The differential expression of 27 survival-related immune cell types in patients with high and low IMS. The central line
represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers
encompass 1.5 times the interquartile range. d Heatmap showing the enrichment scores of eight DNA damage repair (DDR) pathways in
gastric cancer samples. e Correlation analysis between the enrichment scores of the eight DNA pathways and the IMS (Spearman analysis).
f GSEA of DDR pathways for the high IMS group versus the low IMS group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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low IMS group may have an insufficient adaptive immune
response (Fig. 2c). The high IMS group had not only abundant
and active innate and adaptive immune cells but also immuno-
suppressive cells (Treg cells) (Fig. 2c), suggesting that immuno-
suppressive cells may play a role in immune escape in this
subtype. Our further analysis found that both high and low IMS

samples had higher expression of chemokines, ILs, and interferon
than adjacent normal tissue samples (Supplementary Fig. 4a).
Moreover, the high IMS group had higher expression of
immunostimulatory and immunosuppressive cytokines than the
low IMS group. We wanted to know whether this difference was
caused by SCNV, but the results showed no significant differences
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in SCNV between the high and low IMS groups (Supplementary
Fig. 4b).

Potential intrinsic immune escape mechanisms in gastric
cancer (TCGA cohort)
We analyzed some factors related to tumor immunogenicity, such as
TMB, cancer testis antigen (CTA), IHT, homologous recombination
repair deficiency (HRD) (telomeric allelic imbalance (TAI), large-scale
state transition (LST), and loss of heterozygosity (LOH)), chromosomal
aneuploidy, and antigen-producing ability (Fig. 3a). The high IMS
group had a higher TMB (P value < 0.05), and the low IMS group had
higher levels of CTA, IHT, HRD (including TAI, LST, and LOH), and
chromosomal aneuploidy. However, we further compared the two
groups and found that the high IMS group had higher expression of
MHC I-related antigen-presenting molecules than the low IMS group
(all P < 0.001, Fig. 3b, left). We employed a list of costimulatory and
coinhibitory molecules (https://www.rndsystems.com/cn/research-
area/co-stimulatory-and-co-inhibitory-molecules) to compare the
expression of immunomodulatory molecules between the high
and low IMS groups. The results showed that the high IMS group had
higher expression of immunomodulatory molecules than the low IMS
group (most P values < 0.05, Fig. 3b, right). However, SCNV cannot
explain the difference in the expression of molecules between the
two groups (most P> 0.05, Fig. 3b).
In addition, we proved that there was a significant positive

correlation between the IMS and MSI, TMB, and immune checkpoint
molecule expression, suggesting a correlation between immuno-
genicity and immune checkpoint molecules. The IMS and other
immunogenicity indicators (the CTA, HRD, and intratumoral hetero-
geneity (ITH) scores) were significantly negatively correlated (Fig. 3c).
However, the expression of immune checkpoint molecules was not
significantly correlated with immunogenicity indicators (Fig. 3c).
Finally, we further analyzed the correlation between the IMS and the
expression of immune checkpoint molecules (PDCD1, CD274, and
CTLA4) in different subtypes based on microsatellite stability status
(MSS, MSI-L, and MSI-H) (Fig. 3d). Our results revealed that the IMS
was significantly positively correlated with the expression of the
three immune checkpoint molecules in the MSS and MSI-H subtypes
(all P values < 0.05). However, the IMS was not significantly related to
the expression of PDCD1 and CD274 in the MSI-L subtype (P value >
0.05).

Correlation of genomic alterations with the IMS in gastric
cancer (TCGA cohort)
We further explored the relationship between the IMS and
genome alterations (including SCNVs and mutations). We first
analyzed the GISTIC scores and copy number gain/loss frequen-
cies in the high and low IMS subtypes. The results showed that the
low IMS group had higher GISTIC scores and copy number gain/
loss frequencies than the high IMS group. The low IMS group also
had a higher copy number gain/loss percentage (Fig. 4a). Then, we
analyzed the differences in fraction genome altered (FGA), fraction
genome gain (FGG), and fraction genome loss (FGL) among
different subtypes. We found that there was no significant

difference between the different AJCC stages (Fig. 4b). However,
the MSI-L subtype had the highest FGA, FGG, and FGL values,
while the MSI-H subtype had the lowest FGA, FGG, and FGL values
(Fig. 4b). This result suggests that an increased copy number gain/
loss frequency may be a factor contributing to a low IMS in gastric
cancer patients.
Next, we analyzed the association between gene mutations and

the IMS. The mutation status of 4714 genes was significantly
correlated with the IMS by Spearman’s analysis (|Spearman’s
correlation| > 0.1, P value < 0.05, Supplementary Data 6). Based on
the correlation coefficient, the top 20 gene mutations that were
significantly related to the IMS are illustrated in Fig. 4c. Among the
4714 genes, we included the top 20 genes with the highest
mutation frequency in the total TCGA cohort in Fig. 4d. We found
that PIK3CA, ARID1A, and KMT2D were among the 20 most
frequently mutated genes and were involved in the top 20
mutations that were significantly related to the IMS. Moreover,
most of the gene mutation frequencies in the high IMS group
were higher than those in the low IMS group, except for the TP53
gene mutation frequency. Therefore, we wanted to explore
whether these gene mutations were a potential intrinsic immune
escape mechanism of the high and low groups. The results
showed that the expression of immune checkpoint molecules
(CD274, PDCD1, and CTLA4) in the groups with PIK3CA, ARID1A,
and KMT2D mutations was mostly significantly higher than that in
the wild-type group (Fig. 4e), and the expression of immune
checkpoint molecules in the TP53-mutated group was significantly
lower than that in the wild-type group. Finally, we analyzed
whether these genes affect the survival of patients with high IMS
and low IMS. Although the overall P value was significant,
mutations in these four genes did not affect the survival of
patients with high IMS or low IMS (Fig. 4f).

IMS is a marker for prognosis and can predict postoperative
adjuvant treatment benefits
We stratified gastric cancer samples to estimate the relationship of
IMS with overall survival in the ACRG cohort (Fig. 5a). Significant
differences were observed among most subtypes. We also
analyzed the survival of the high and low IMS groups in the
other four cohorts (Supplementary Fig. 5a). The meta-analysis
results showed that a high IMS was associated with a longer
survival time than a low IMS in gastric cancer (Supplementary Fig.
5b). To explore whether the IMS had a strong ability to predict
prognosis, we evaluated the IMS of all cancer samples in the TCGA
database (33 cancers). Significant differences in overall survival
rates were observed between the low and high IMS groups in 11
independent TCGA cancer cohorts (Fig. 5b): the BLCA, BRCA, CESC,
HNSC, LUSC, OV, READ, SKCM, STAD, THCA, and UCEC cohorts.
Meta-analysis showed that the IMS had obvious pancancer effects
(high IMS and low IMS, hazard ratio (HR)= 0.88 (0.81, 0.94), P
value < 0.001).
In addition, through univariate and multivariate Cox regression

analysis, we found that age, stage, postoperative adjuvant
chemotherapy, and IMS were independent prognostic factors for

Fig. 3 Correlation between the IMS and potential intrinsic immune escape mechanisms in gastric cancer (TCGA cohort). a Top:
comparison of tumor mutation burden (TMB), cancer testis antigen (CTA) score, intratumoral heterogeneity (ITH) score, and homogeneous
recombination deficiency (HRD) score between the high and low IMS groups. Bottom: comparison of aneuploidy score, loss of heterozygosity
(LOH) score, telomeric allelic imbalance (TAI) score, and large-scale state transition (LST) score between the high and low IMS groups. The
central line represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The
whiskers encompass 1.5 times the interquartile range. b Top: comparison of the log2-fold changes in MHC, costimulator, and coinhibitor
mRNA expression at the tumor site relative to that in paired normal tissue. Bottom: comparison of the log2 ratio of the copy number values of
MHC molecules, costimulators, and coinhibitors for the high and low IMS groups. c Correlation between the IMS and immune checkpoint
molecule expression and the tumor immunogenicity score. d Scatter plot revealing the correlation between the IMS and immune checkpoint
molecule (CD274, PDCD1, and CTLA4) expression in different subtypes (MSS, MSI-S, and MSI-H). *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001, ns P value > 0.05.
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gastric cancer (Fig. 5c). To further evaluate whether IMS is related
to postoperative treatment benefits, we screened stage II–IV
patients in the ACRG cohort. The results showed that in the high
IMS and low IMS groups, postoperative chemotherapy reduced
patient recurrence and prolonged survival time (Fig. 5d). However,
in the low IMS group, postoperative chemotherapy reduced the

patient’s recurrence and prolonged the survival time compared
with high IMS without chemotherapy. The results indicate that
patients with lower IMS can benefit more from chemotherapy
after surgery, and it is recommended that patients with lower IMS
undergo adjuvant chemotherapy after surgery. Later, we further
analyzed the influence of postoperative radiotherapy on the
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prognosis of gastric cancer. The results show that postoperative
radiotherapy can significantly improve the prognosis of patients
with high and low IMS (Fig. 5e). In the low IMS group,
postoperative radiotherapy benefited more.

IMS may be an indicator to predict the efficacy of
immunotherapy for gastric cancer
To further explore the relationship between IMS and immunother-
apy, we used immunofluorescence staining to analyze CD8 cell
infiltration in high and low IMS. The results showed that the CD8
cells in the high IMS group significantly infiltrated the middle of
the tumor tissue compared with the low IMS group (Fig. 6a), which
is consistent with the transcriptome results we analyzed. The
tumor immune function abnormality and exclusion (TIDE) algo-
rithm found that the high IMS group may respond to PD-1/PD-L1
inhibitors (Fig. 6b).
We further used the PRJEB25780 cohort (PD-L1 inhibitor to treat

advanced gastric cancer) to analyze whether IMS can predict
immune efficacy. The results revealed that the PR/CR group had a
significantly higher IMS than the SD/PD group (Fig. 6c), and 83% of
the patients in the PR/CR group had high IMS (Fig. 6d). The IMS of
samples with different treatment responses are shown in Fig. 6e. It
was satisfactory that the area under the curve (AUC) value of IMS
for predicting immunotherapy response was higher than that of
MSI status, EBV status, and combined positive score (CPS) (Fig. 6f).
When we combined IMS with MSI status, EBV status, and CPS, the
AUC value was as high as 0.982.

Predicting the chemosensitivity of drugs in high IMS or low
IMS
Immunotherapy is an important discovery in cancer therapy, but
chemotherapy has always been an important strategy for post-
operative treatment. Therefore, we used the CTRP and PRISM
databases to predict potential therapeutic drugs for gastric cancer.
The results showed that clofarabine, SNX-2112, gemcitabine,
topotecan, raltitrexed, rubitecan, and irinotecan were more
suitable for patients with high IMS (Fig. 7a). For patients with
low IMS, ABT-737, ML162, PI-103, and romidepsin may be effective
for treatment (Fig. 7b). Among them, we found that the AUC value
of romidepsin was the lowest among these 11 chemotherapy
drugs, which implies that romidepsin may have good treatment
sensitivity in high IMS and low IMS.
With this discovery, we searched the dataset of romidepsin

treatment of cancer through the Gene Expression Omnibus (GEO)
database. In GSE155452 uveal melanoma cell line (mel202), after
romidepsin intervention, the expression of CD274 was signifi-
cantly increased, and the expression of TNFRSF9 and TNFRSF14
was significantly different (Fig. 7c). In GSE70120, bladder transi-
tional cell carcinoma (UM-UC-3) also showed significantly
increased expression of CD274 and significantly high expression
of MHC molecules and coinhibitory and costimulatory molecules
(Fig. 7d). In the VM-CUB1 cell line, however, although the
expression of CD274 was significantly reduced, significantly high
expression of MHC molecules and coinhibitory and costimulatory
molecules was still found (Fig. 7e). This result suggests that after

romidepsin treatment, tumor cells are more likely to be exposed
to immune monitoring. Immune cells may recognize and kill
tumor cells faster, but there is also immunosuppression (increased
expression of CD274).
In summary, our findings strongly suggest that IMS was

significantly associated with tumor phenotype and further
elucidate the potential mechanisms and therapeutic strategies
between the high and low IMS groups. IMS is a strong favorable
marker for gastric cancer. The illustrations for this study are shown
in Fig. 8.

DISCUSSION
Immunotherapy has shown strong antitumor activity in the
treatment of solid tumors such as melanoma, nonsmall-cell lung
cancer, and prostate cancer29–31. Although the success of
immunotherapy is exciting, immunotherapy still faces many
challenges32. Through in-depth exploration, researchers have
realized that the TME is complex and diverse in terms of immune
status, and different aspects of the TME have been shown to have
important impacts on prognosis and the efficacy of immunother-
apy33,34. In this study, gastric cancer patients were stratified
according to characteristics of the TME, and these results will
deepen the understanding of the effects of the TME on antitumor
and immune responses and will guide more effective immu-
notherapy strategies.
In this study, we constructed the IMS for each sample based on

27 types of cells in each independent gastric cancer cohort.
Patients with a high IMS had better overall survival rates than
those with a low IMS. We also explored whether the IMS had a
strong ability to assess prognosis. To do so, we extended our
analysis to include 33 cancers from the TCGA database. A high IMS
was found to be a potential protective factor (HR < 1) in 19 cancers
(Fig. 5b). Significant differences in overall survival were observed
in 11 independent cohorts: the BLCA, BRCA, CESC, HNSC, LUSC,
OV, READ, SKCM, STAD, THCA, and UCEC cohorts. Although the
results of the subgroup analysis were heterogeneous, the meta-
analysis revealed that the IMS had obvious pancancer effects (HR
= 0.81 (0.76, 0.87), P value < 0.01). It may be a powerful marker for
predicting the prognosis of cancer.
We further analyzed the characteristics of the high and low IMS

groups in gastric cancer. Increasing evidence suggests that solid
tumors can be divided into an immune inflammatory type (hot
tumor), characterized by adaptive immune activation, and an
immune exclusion type (cold tumor), with innate immunity and
interstitial activation15,21,35. Our research revealed activation of
adaptive immunity in the high IMS group and innate immunity
and interstitial activation in the low IMS group (Fig. 2c). Although
the low IMS group also showed immune cell infiltration, the
infiltrating immune cells were located only around cell nests
surrounded by matrix, suggesting that the cells could not enter
the parenchyma, leading to the failure of antitumor immunity36.
We also verified our findings with the result (Fig. 6a). Some studies
have found that patients with the MSI and EBV subtypes of disease
are sensitive to immune checkpoint inhibitor therapy37–39. EBV-
positive tumors have low TMB but strong immune infiltration40.

Fig. 4 Correlation of genomic alterations with the IMS in gastric cancer. a Comparison of the somatic copy number variations (SCNVs)
between the high IMS group and the low IMS group in the TCGA gastric cancer cohort. b Differences in fraction genome altered (FGA),
fraction genome gain (FGG), and fraction genome loss (FGL) values in different AJCC stages, pathological subtypes, and IMS subtypes
(Kruskal–Wallis). c Heatmap showing mutations in the genes of interest in gastric cancer samples. These mutations were significantly related
to the IMS in the TCGA gastric cancer cohort. d Top 20 most frequently mutated genes associated with the IMS in the TCGA gastric cancer
cohort. e PIK3CA, ARID1A, and KMT2D mutations significantly increased the expression of immune checkpoint molecules (CD274, PDCD1, and
CTLA4). TP53 mutation significantly reduced the expression of immune checkpoint molecules (CD274, PDCD1, and CTLA4). The central line
represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers
encompass 1.5 times the interquartile range. f The relationship between mutations in PIK3CA, ARID1A, KMT2D, and TP53 and prognosis. *P <
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Matrix activation in the EMT and gastric cancer subtypes has been
identified as the main factor leading to the failure of checkpoint
inhibitor therapy41. Our study found that the IMS was significantly
increased in the EBV subtype and MSI subtype, while the IMS was
lowest in the EMT subtype and gastric cancer subtype. Moreover,
the EMT and TGF-β signaling pathways were activated in patients

with a low IMS, and extensive immune pathways and DNA
damage response pathways were activated in patients with a high
IMS. These results are consistent with the results of previous
studies. These results further show that the IMS is a powerful and
robust tool for stratifying patients with gastric cancer and further
determining the immunophenotype of gastric cancers.
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The immune escape mechanisms of tumors play an important role
in tumor treatment, especially immunotherapy. We further explored
the immune escape mechanisms in the high and low IMS groups.
The expression of chemokines, ILs, and interferon was significantly
lower in the low IMS group than in the high IMS group
(Supplementary Fig. 4a), and the expression of these molecules
was significantly related to tumor extrinsic immune escape
mechanisms28. The immunogenicity of tumors and the expression
of checkpoint molecules are the most important factors related to
intrinsic escape42. Blocking the PD-1/PD-L1 pathway can induce
immune cells to kill tumors and has been shown to provide a long-
lasting response in a variety of cancers43–45, including gastric cancer.
However, it has been found that this method is only applicable in a
small number of patients, and multiple studies have found that PD-
L1 expression, MSI status, and TMB are biomarkers for predicting
immune benefits37,46. Our results found that TMB and MSI status
were not significantly related to the expression of most immune
checkpoint molecules. However, what is very surprising is that the
IMS was significantly related to the expression of the immune
checkpoint molecules TMB and MSI (Fig. 3c). The high IMS group
showed significantly elevated expression of MHC class I molecules,
and research reports have confirmed that tumors can escape T cell
attack by suppressing MHC class I molecule expression47. These
results further prove that the IMS we established may be an effective
targeted predictive biomarker. To further understand the difference
between the high and low IMS groups, we analyzed the whole-
exome sequencing data of gastric cancer samples categorized
according to the IMS. We found that patients with a low IMS had
significantly higher copy number gain/loss frequencies than patients
with a high IMS. This result is very similar to previous reports48. We
explored the gene mutations in the high and low IMS groups. The
results showed that the frequency of gene mutations in the high IMS
group was significantly higher than that in the low IMS group. This
difference may be one of the reasons for the increased TMB in
patients with a high IMS.
To explore the relationship between IMS and immunotherapy,

we used the TIDE algorithm to predict the response of high IMS
and low IMS to immunoassay inhibitor (anti-CTLA4 and anti-PD-1/
anti-PD-L1) treatment. The results showed that high IMS
responded to anti-PD-1/anti-PD-L1 treatment in gastric cancer,
while low IMS did not (Fig. 6b). In addition, we used the
PRJEB25780 cohort (PD-L1 inhibitor) to evaluate some indicators
for the evaluation of immune efficacy. Our research also found
that MSI status (AUC= 0.693), EBV infection status (AUC= 0.708),
and CPS (AUC= 0.785) have good predictive power, but to our
satisfaction, IMS has the highest AUC value (AUC= 0.81). And
when we combined these indicators to predict immunotherapy
response, we found that the predictive ability was greatly
improved (AUC= 0.982, Fig. 6f). This also further suggests that
IMS is a potential indicator for predicting the response of gastric
cancer immunotherapy.
To further explore therapies for patients with low IMS, we

predicted that romidepsin may be suitable for patients with low IMS
through the PRISM database (Fig. 7b). Related studies have also
found that romidepsin treatment may increase tumor immune
infiltration, but it also promotes the expression of PD-1/PD-L1. We

further analyzed the results of three cancer cell lines (mel202, UM-
UC-3, and VM-CUB1) after romidepsin intervention (Fig. 7). Interest-
ingly, we found that after romidepsin intervention, the expression of
MHC molecules, cosuppressor genes, and costimulatory genes
increased significantly. This suggests that this low IMS patient may
change from an EMT subtype (cold tumor) to an immune-infiltrating
subtype (hot tumor) after romidepsin treatment. This provides very
exciting news for the treatment strategy of patients with low IMS.
Patients with low IMS may benefit more from romidepsin combined
with immunotherapy.
There are some limitations to this study. First, we analyzed the

heterogeneity of the TME and estimated the IMS of each sample, but
we did not consider the heterogeneity within the tumor, which is
also an important factor affecting prognosis and treatment. Second,
classifying the gastric cancer samples according to only the median
IMS value was not a robust way to categorize the samples, but as
correlation analysis was used in our research, this problem was
somewhat lessened; however, more effective methods may be
needed to explore the best cutoff value. Third, we performed
genomic analysis, which does not reflect the cause of the event, and
more in-depth basic research may be required in the future.
In summary, this work demonstrates the potential molecular

mechanisms affecting the differences between high- and low-IMS
samples. This study helps us understand the distribution of
immune infiltration and immune escape mechanisms in gastric
cancer. The IMS can be used to stratify patients and identify those
who will benefit more from immunotherapy and to uncover new
strategies for cancer treatment.

METHODS
Data acquisition and preprocessing
The gene expression profiles and corresponding clinical information of
patients with gastric cancer were obtained from the GEO and TCGA
databases. The postoperative chemotherapy and radiotherapy dataset for
gastric cancer was obtained from the MD Anderson Cancer Center cohort
(GSE28541). The PD-L1 treatment cohort for gastric cancer was obtained
from the European Nucleotide Archive database (PRJEB25780). The
transcriptome data of the cell line before and after romidepsin treatment
were obtained from GSE155452 and GSE70120. These samples were not
treated before surgery.
A total of 1422 gastric cancer samples from six cohorts (GSE84437,

GSE34942, GSE15459, GSE57303, ACRG cohort, and TCGA-STAD (stomach
adenocarcinoma)) were included in the study. These patients were not treated
before surgery. The “CEL” file for the microarray data from Affymetrix® was
downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/). The data were
standardized using the robust multiarray averaging method with the “affy”
and “simpleaffy” packages49. For microarray data from other platforms, the
normalized matrix files were downloaded from GEO. For the cohorts from
TCGA, RNA sequencing data (in fragments per kilobase per million (FPKM))
were downloaded from the Genomic Data Commons (GDC) data portal
(https://portal.gdc.cancer.gov/). Then, the FPKM values were transformed into
transcripts per kilobase million (TPM) values.

Gene set enrichment analysis and functional annotation
Gene set enrichment analysis (GSEA) of the gastric cancer cohorts was
performed with GSEA software (version 4.1.0). ssGSEA was used to

Fig. 5 Prediction of gastric cancer prognosis and postoperative adjuvant treatment response. a Univariate Cox regression was used to
analyze the prognostic value of the IMS in subgroups based on subtype or clinical characteristics. An HR < 1.0 indicates that a high IMS is a
favorable prognostic factor. b Univariate Cox regression analysis revealed the IMS as a favorable prognostic factor for 19 cancers. A meta-
analysis was performed to evaluate the prognostic value of the IMS for pancancer. c Univariate and multivariate Cox regression analysis of the
relationship between sex, age, postoperative chemotherapy, and IMS and prognosis. The results show that age, postoperative adjuvant
chemotherapy, and IMS are independent prognostic factors. d The results showed that postoperative chemotherapy can reduce the risk of
recurrence and prolong the survival of patients with high and low IMS. CT chemotherapy. The log-rank test was used to perform survival
analysis, and significant differences are displayed in the figure. e Postoperative radiotherapy can significantly improve the prognosis of
patients with high and low IMS. The log-rank test was used to perform survival analysis, and significant differences are displayed in the figure.
RT radiotherapy.
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Fig. 6 Prediction of the response to immune checkpoint inhibitor treatment. a Immunofluorescence staining revealed that the expression
of CD8 T cell infiltration and PD-L1 protein in the high IMS group was significantly higher than that in the low IMS group (Wilcoxon test, P
value < 0.05). b The tumor immune dysfunction and exclusion (TIDE) algorithm showed that the high IMS group responded to PD-1/PD-L1
inhibitor treatment (P value < 0.05), while the low IMS group did not respond to immune checkpoint inhibitor treatment (P value > 0.05). c The
complete response (CR)/partial response (PR) group had a higher IMS than the stable disease (SD)/progressive disease (PD) group (Wilcoxon
test, P value= 0.0013). d Proportion of patients responding to PD-L1 inhibitor immunotherapy: CR/PR and SD/PD: 83%/17% in the high IMS
group and 39%/61% in the low IMS group (P value < 0.05, χ2 test). e Waterfall plot illustrating the IMS according to the immunotherapy
response in the PRJEB25780 cohort. f The predictive value of IMS, MSI status, EBV status, and CPS in PD-L1 inhibitor immunotherapy patients.
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Fig. 7 Prediction of the sensitivity to chemotherapy drugs in patients with a high and low IMS. a Drugs sensitive to chemotherapy in
patients with a high IMS. b Drugs sensitive to chemotherapy in patients with a low IMS. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
c Differentially expressed costimulatory and coinhibitory molecules after romidepsin treatment in the mel202 cell line. d Differentially
expressed MHC, costimulatory, and coinhibitory molecules after romidepsin treatment in the UM-UC-3 cell line. e Differentially expressed
MHC, costimulatory, and coinhibitory molecules after romidepsin treatment in the VM-CUB1 cell line. *P < 0.05. The center line of all boxplots
represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers
encompass 1.5 times the interquartile range.
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calculate the standardized enrichment score via the GSVA package50.
ssGSEA ranks the gene expression values of a sample and uses the
empirical cumulative distribution function of the genes in the signature
and the rest of the genes to generate enrichment scores. Fifty-one TME
cell signatures were collected via a literature search, and they were
considered reliable26,51–53. The gene set file “c2.cp.kegg.v6.2” was
downloaded from the Molecular Signatures Database (https://www.

gsea-msigdb.org/gsea/index.jsp). The immune checkpoint signature,
antigen processing machinery signature, CD8 T cell effector signature,
WNT target signature, EMT signature, angiogenesis characteristics
signature, Pan-F TBRS signature, and repair of DNA damage signature
were obtained from previous studies27,51,54. The R package clusterPro-
filer was used for functional annotation of genes55.

Fig. 8 The illustrations for this study. Identify gastric cancer immune subtype characteristics based on IMS and guide prognosis and
treatment strategies.
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Calculation of the immune microenvironment score (IMS) for
gastric cancer
The NES of each immune cell was obtained by ssGSEA for each gastric cancer
sample. Univariate Cox regression analysis was used to evaluate the
relationship between the NES and overall survival in each gastric cancer
cohort. Then, a meta-analysis was used to estimate the overall HR and P value
with the R package meta. Only immune cell signatures with an overall P value
less than 0.05 in the meta-analysis were included in the study56.
Finally, the IMS for each sample in each cohort was defined as follows:

IMS ¼
Xn

i¼1

NES�
Xm

j¼1

NES (1)

where NESi is the NES of immune cell signatures with an HR less than 1 in
the overall cohort and NESj is the NES of immune cell signatures with an
HR more than 1 in the overall cohort.

Collection of immune-related data
Several bioinformatics immune parameters were considered, such as TMB,
HRD, ITH, aneuploidy score, CTA expression, LOH, TAI, and LST. The results
for these immune parameters for gastric cancer patients were collected
from GDC (https://gdc.cancer.gov/about-data).

Comparison of genomic alterations in different gastric cancer
subtypes
Gastric cancer mutation data (VarScan2) were downloaded from GDC.
Genes with mutation frequencies less than 2.5% were excluded from the
analysis. Gastric cancer SCNV data were collected from GDC. The GISTIC
score and gene copy number amplification and deletion data for each
sample were analyzed by GISTIC 2.0 software. The FGA value of each
gastric cancer sample was determined57. The position of the gene on the
chromosome was visualized with the R package RCircos.

RNA sequencing analysis of gastric cancer samples
A total of 36 fresh gastric cancer samples were collected from Peking
University People’s Hospital. All patients had signed an informed consent
form, and the research protocol was approved by the Ethics Committee of
Peking University People’s Hospital. These patients were not treated before
surgery. Two tumor tissues were collected immediately after each
specimen was isolated: one was stored in liquid nitrogen, and the other
was fixed in formalin. According to the manufacturer’s instructions, an RNA
extraction kit (ER501-01, TransGen Biotech, Beijing, China) was used to
extract sample RNA from samples stored in liquid nitrogen. A NanoDrop
was used to detect RNA purity, and an Agilent 2100 bioanalyzer (Thermo
Fisher Scientific, USA) was used to detect RNA concentration and integrity.
Next, an mRNA library was constructed, the RNA was fragmented into
small fragments, and cDNA was combined. After incubating the cDNA
fragment with A-tailing mix and RNA Adaptor Index for end repair, it was
further amplified by PCR. Then, qualified double-stranded PCR products
were used to construct the final library. A total of 30 qualified samples
were further sequenced on the BGISEQ-500 platform (Beijing, China). TPM
was used to calculate the expression level of genes.

Immunofluorescence staining
The gastric cancer tissue block was embedded in paraffin and continuously
cut into 3 µm sections and placed on a glass slide. The slices were baked at
72 °C for 1 h, dewaxed with xylene, and dehydrated with gradient alcohol.
After rinsing five times with phosphate-buffered saline (PBS), 2 min each
time (1‰ Tween 20 is added to PBS), then after high-pressure repair, rinse
again with PBS five times. The processed sections were immersed in a 3%
hydrogen peroxide solution, incubated at room temperature for 10min,
and washed with distilled water and PBS. Next, CD8 mouse-derived
primary antibody (Santa Cruz, sc-70794, USA; 1:100) was added to the
slices in equal proportions, incubated at 37 °C for 1 h, and rinsed with PBS
three times for 5 min each time. Alexa Fluor 488-labeled goat anti-mouse
IgG (Jackson, 115-545-003, USA; 1:1000) was added in equal proportions of
secondary antibody mixture. After incubating at 37 °C for 25min, the cells
were rinsed with PBS three times for 5 min each time, allowed to dry and
mounted with 4’,6-diamidino-2-phenylindole, dihydrochloride (Invitrogen,
S36942, USA). An AXIO Scan. Z1 scanner was used to scan. Finally, the
percentage of positive cells was counted, and the results were confirmed
by two pathologists.

Prediction of immunotherapy response and chemotherapeutic
drug sensitivity
The TIDE algorithm (http://tide.dfci.harvard.edu/) and submap algo-
rithm (https://cloud.genepattern.org/gp) were used to predict the
clinical response of patients with high- or low-IMS subtypes to immune
checkpoint inhibitors58. The CTRP2.0 database and PRISM database
were used to predict the sensitivity of high- or low-IMS-subtype
chemotherapeutics by referring to the method of Yang et al. The
CTRP2.0 database contains sensitivity data of 481 compounds, and the
PRISM database contains sensitivity data of 1448 compounds. Accord-
ing to PRISM and CTRP2.0, which contains data on the drug sensitivity
AUC value, these two data sets use the AUC as a measure of drug
sensitivity, and a lower AUC value indicates increased sensitivity to
treatment59. We used the cell line expression profile of the CCLE
database as the training set for drug sensitivity prediction and TCGA-
STAD as the test set.

Statistical analysis
Univariate Cox regression analysis was used to evaluate the relation-
ship between features of interest and overall survival. The limma
package in R was used to determine the differentially expressed
signaling pathways in the gastric cancer cohorts. The ggplot2 package
and ComplexHeatmap package were used to draw heatmaps and other
maps. The R package forestplot was used to draw forest plots, and the
R package meta was used for meta-analysis. The correlation coefficient
between immune cell inflammation was determined by Spearman’s
and distance correlation. The Wilcoxon rank sum test was used to
analyze the difference between two groups. One-way ANOVA and the
Kruskal–Wallis test were used to compare differences between three or
more groups. Correlation matrices were created with Pearson’s or
Spearman’s correlation.
The overall survival curve was estimated by the Kaplan–Meier

method, and the difference between survival distributions was
evaluated by the two-sided log-rank test implemented in the R package
survival. The R package survminer was used to draw the Kaplan–Meier
survival curve. The specificity and sensitivity of the IMS were assessed
through receiver operating characteristic curves, and the AUC was
quantified using the pROC R package.
All statistical P values were two-sided, and P < 0.05 was considered

statistically significant. All analyses were performed with R software
(version 4.0.2).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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