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A flexible computational pipeline for research analyses of
unsolved clinical exome cases
Timo Lassmann 1,8✉, Richard W. Francis1,8, Alexia Weeks1, Dave Tang1, Sarra E. Jamieson1, Stephanie Broley2, Hugh J. S. Dawkins3,
Lauren Dreyer2, Jack Goldblatt2, Tudor Groza1,2, Benjamin Kamien2, Cathy Kiraly-Borri2, Fiona McKenzie2,4, Lesley Murphy5,
Nicholas Pachter2, Gargi Pathak2, Cathryn Poulton2, Amanda Samanek6, Rachel Skoss 1, Jennie Slee2, Sharron Townshend2,
Michelle Ward2, Gareth S. Baynam1,2,4,7 and Jenefer M. Blackwell 1✉

Exome sequencing has enabled molecular diagnoses for rare disease patients but often with initial diagnostic rates of ~25−30%.
Here we develop a robust computational pipeline to rank variants for reassessment of unsolved rare disease patients. A
comprehensive web-based patient report is generated in which all deleterious variants can be filtered by gene, variant
characteristics, OMIM disease and Phenolyzer scores, and all are annotated with an ACMG classification and links to ClinVar. The
pipeline ranked 21/34 previously diagnosed variants as top, with 26 in total ranked ≤7th, 3 ranked ≥13th; 5 failed the pipeline filters.
Pathogenic/likely pathogenic variants by ACMG criteria were identified for 22/145 unsolved cases, and a previously undefined
candidate disease variant for 27/145. This open access pipeline supports the partnership between clinical and research laboratories
to improve the diagnosis of unsolved exomes. It provides a flexible framework for iterative developments to further improve
diagnosis.
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INTRODUCTION
Exome sequencing (ES) has enabled molecular diagnoses for
thousands of rare disease patients (reviewed1). Such studies
generally report an initial diagnostic rate of ~25−30%2–8,
generating interest in the development of better computational
tools to improve the diagnostic rate. One avenue to achieve this
has been through collaboration between clinical genetic services
and the research community9. For example, Eldomery et al.10

recently reported on systematic transfer of molecularly “unsolved”
exomes from a clinical to a research setting to accelerate
discovery. By recruiting additional family members from 74
initially proband-only ES cases they identified a potential
contributing variant in 51% (38/74) of cases. They concluded that
additional family members combined with enhanced bioinfor-
matics, including relaxed variant filtering, improves the diagnostic
yield. Others also report successful reassessment of unsolved
cases leading to improved diagnostic yields, including through
enhanced annotation and computational analyses8,11–13 as well as
through implementation of machine-learning algorithms14.
Here we report a study likewise built on the premise of routine

transfer of data for unsolved exomes from a clinical service to a
research setting to improve diagnosis. A robust, reproducible, and
flexible computational pipeline is developed to both aid in
diagnosis of unsolved cases and provide a framework for future
iterative computational development. The pipeline utilizes open
access tools and databases, and incorporates novel scripts and
tools developed in-house. Importantly, patient reports include
annotation of each variant with American College of Medicine
Genetics and Genomics (ACMG)-recommended pathogenicity
classifiers15 and links to ClinVar16,17. In addition to ranking 29/34

prior ES diagnoses used as a reference, candidate variants
classified as ACMG pathogenic/likely pathogenic were identified
for 22/145 unsolved cases, and a potential novel disease variant
for a further 27/145.

RESULTS
Participant demographics and clinical indications for genetic
diagnosis
Data from 179 consented individuals were suitable for analysis in
our pipeline. Of these, 34 (19%) had previously received a
molecular diagnosis from GSWA. The research team was initially
blinded to the diagnostic laboratory results, which ultimately
served as a validation reference for our analysis pipeline. The
mean ± SD age of participants at the time of enrolment was
8.03 ± 6.27 years, median age of 6.83, range 0−47 years.

Summary statistics for variant calling and annotation
One feature that could impact diagnostic accuracy and variant
ranking was the variable sequencing technologies employed.
Summary statistics are provided in Table 1. Allowing for the
difference in capture design, ES using Ion Torrent yielded 1.52
times as many indels per indel-containing gene compared to
Illumina, and 0.92 times as many SNVs per gene containing SNVs.
These differences are highlighted in Supplementary Fig. 1a where
Ion Torrent is seen to yield numerous indels either not present, or
at an apparent frequency of 1, in the EXaC_all database compared
to fewer such variants in Illumina data. These likely reflect
sequence alignment and variant calling errors. Similarly, there are
many more missense SNVs called using Ion Torrent compared to
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Illumina that are absent in EXaC_all (Supplementary Fig. 1b).
Caution is therefore required in interpreting variants for molecular
diagnoses based on indels and missense variants particularly in
Ion Torrent data.

Pipeline performance for previously diagnosed cases
The pipeline ranked 21/34 previous diagnoses as the top
candidate, with 26 in total ranked ≤7th, and 3 ranked ≥13th
(Table 2 and Supplementary Data 1). One variant was undetected
due to being on the uncaptured mitochondrial genome, four
failed filtering parameters, 2 with CallQ < 10, 2 with VQSLOD >
99.7. The latter two variants (KMT2D and TRPS1) received a ranking
of 1 when this cut-off was relaxed. Of the 29 subjects achieving a
diagnosis in the pipeline, 12 were sequenced on Ion Torrent, 15 on
Illumina TruSight™, and 2 on SOLiD (Table 2). Impact severity
(Table 2) was HIGH (frameshift; stop-gain; splice-site) for 7/15
Illumina, 5/12 Ion Torrent and 1/2 SOLiD diagnoses, and MEDIUM
(missense) for 8/15 Illumina, 7/12 Ion Torrent and 1/2 SOLiD
diagnoses. Diagnosis was achieved directly through the OMIM API
for 22 exomes (two through the phenotypic series), 11 of which
also returned a Phenolyzer score of 1 (Table 2). Diagnosis was
achieved in five cases using Phenolyzer scores alone. The average
Phenolyzer score for OMIM-diagnosed cases was (mean ± SD)
0.63 ± 0.40 compared to 0.16 ± 0.37 for diagnoses made using
only Phenolyzer scores. Mode of inheritance was autosomal
dominant for 17, autosomal recessive for 7, X-linked dominant for
1, and unknown for 5 cases. A total of 21 diagnoses were classified
as pathogenic/likely pathogenic using ACMG classifiers, 9 of which
were not present in ClinVar. Eight diagnoses were undefined. Of
the cases where our pipeline did not perform well (i.e. variants
ranked ≥13) we observe (Table 2): (i) the diagnosed variant ranked
13 was a hemizygous PTCHD1 c.2489 T > G (p.Ile830Arg) variant
that received a Phenolyzer score of 0.027 (i.e. 12 other gene
variants were ranked higher by Phenolyzer based on HPO terms);
(ii) for the diagnosed variant ranked 19, the clinical laboratory
diagnosis was based on compound heterozygosity at SKIV2L
c.904 C > T (p.Gln302*) and c.2662_2663delAG (p.Arg888Glyfs*12),
only the first of which was present in the SOLiD data with a low
Phenolyzer score (0.001; 18 other variants gave higher Phenolyzer
scores); and (iii) for the diagnosis with variants ranked 27 and 37,

the clinical diagnosis was based on compound heterozygosity at
SARDH (c.1442 G > A p.(Arg481His) and c.2032 G > A p.(Glu678Lys))
with neither variant identified by Phenolyzer. More recent review
of this patient by RUDDS9 suggests that these variants may be
benign (G.S.B.). None of these lower ranked variants were
identifiable through the OMIM API, and all were classed as
“undefined” using our ACMG classifier.
We compared rankings for the 29 subjects with a previous

diagnosis between our pipeline and those achieved using
Exomiser18 and AMELIE19 (Table 3). Compared to our pipeline,
AMELIE achieved a better rank in 14%, the same rank in 34%, and
a lower rank in 52% of cases. Similarly, Exomiser achieved a better
rank in 7%, the same rank in 41%, and a lower rank in 52% of
cases.

Pipeline performance for previously unsolved cases
As noted previously12, reviewing putative diagnostic variants from
ES data is challenging. Based on the performance of our pipeline
in the reassessment of previously diagnosed cases, we focused our
initial review of putative candidate variants on those ranked ˂10.
This was carried out by initial manual review of the patient reports
for the 145 unsolved cases by a member of the research team who
only had access to HPO terms for phenotypic information. This
was followed by a review of candidate diagnoses by at least two
members of the clinical team who then had full access to the
patient’s full clinical notes and history. Screenshots for sections of
example output files show the part of the report that provides
input information including sequencing platform and HPO and
OMIM disease terms (Fig. 1a) and the top three ranked candidates
from two reports (Fig. 1b) where the top candidate ranking is
based on OMIM (upper panel) or Phenolyzer score (lower panel).
Columns to the right of the Phenolyzer score provide information
from the OMIM API, mode of inheritance, CallQ, total read depth,
read depth for the reference allele, read depth for the alternative
allele, number of heterozygotes in the cohort, number of
homozygotes (for the alternative allele) in the cohort, total
number of HIGH impact variants in the given gene across the
cohort, and ACMG classification. The patient report variant table
can be filtered on one or more columns, as desired. Clicking on
the green dot to the left of rank 1 gene in Fig. 1b (upper panel)

Table 1. Summary statistics for variants called using different sequencing technologies.

Ion Torrent SOLID Illumina

N samples 56 7 116

Mean ± stdev variants per sample 44,326 ± 6980 35,383 ± 6661 30,985 ± 4935

N genes 18637 18527 20270

N genes with an indela (=indelgene) 11,879 5344 9250

N genes with an SNVb (=SNVgene) 18,533 18,098 20,120

N indelsa 37,191 7800 19,032

N SNVsb 209,718 85,859 246,808

Indelsa/gene 2.00 0.42 0.94

Fold difference (0= reference) 2.13 0.45 0.00

Indelsa/indelgene 3.13 1.46 2.06

Fold difference (0= reference) 1.52 0.71 0.00

SNVsb/gene 11.25 4.63 12.18

Fold difference (0= reference) 0.92 0.38 0.00

SNVsb/SNVgene 11.32 4.74 12.27

Fold difference (0= reference) 0.92 0.39 0.00

aIndel= insertion/deletion variant.
bSNV= single nucleotide variants.

T. Lassmann et al.

2

npj Genomic Medicine (2020)    54 Published in partnership with CEGMR, King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;



shows the evidence (Fig. 1c) used to diagnose the variant as
Floating Harbor Syndrome based on the OMIM Phenotypic Series
for Rubinstein Taybi Syndrome. For this patient the suspected
clinical syndrome Rubinstein Taybi was indicated by the attending
clinical geneticist (Fig. 1a). Detailed evidence used by the ACMG
classifier to determine variant pathogenicity is also shown in this
dropdown panel (Fig. 1c). Examples of the patient reports that can
be viewed in a web-browser are available at https://
richardwfrancis.github.io/sng_reports/.
Based on the review of the 145 patient reports for unsolved

cases (Supplementary Data 1), a candidate variant classified as
pathogenic/likely pathogenic by ACMG criteria was identified for
22/145 previously unsolved cases, 13 of which were not present in
ClinVar. The remaining nine were categorized as pathogenic/likely
pathogenic in ClinVar. A potential novel candidate variant (i.e.
classified “undefined”) was identified for a further 27/145
(Supplementary Data 1). Of these 49 putative variants, 18/145
were deemed of immediate clinical relevance (Table 4); others
remain under clinical review. For the 49 putative candidate
variants, 48 were ranked ≤7th (Supplementary Data 1). Except in
the case of one putative compound heterozygote, none of these
candidate diagnoses were heterozygous for variants previously
associated with autosomal recessive disorders. Candidate variants
were based on the OMIM API for 13/49 (27%) subjects, compared
to prior diagnoses where 76% (22/29) were based on access to this

resource. Mirroring this, Phenolyzer scores were also generally
lower for candidate variants compared to prior diagnosed variants
(Tables 2 and 4). It should be noted, however, that Phenolyzer
scores depend on the number and relative ranking of candidate
genes within an individual and are not normalized across
individuals. There were no significant differences in mean ± SD
read depth (Supplementary Data 1) for Ion Torrent (prior
diagnoses: 73.67 ± 37.49; candidate diagnoses: 80.85 ± 58.17)
compared to Illumina TruSight™ (prior: 84.23 ± 48.16; candidate:
70.26 ± 58.17) sequence data for either previous or candidate
diagnosed cases. Mean CallQ for variants called using Ion Torrent
(65.17 ± 34.77) was significantly (p= 0.007) lower than for Illumina
(98.77 ± 0.83) for prior diagnoses, with a similar trend for
candidate diagnoses (p= 0.15; Ion Torrent: 69.65 ± 73.43; Illumina
94.30 ± 15.08). Most candidate variants classified as pathogenic/
likely pathogenic by ACMG criteria were HIGH impact variants, all
of which were frameshifts for Ion Torrent whereas Illumina
diagnoses were mostly stop-gain or start-loss (Supplementary
Data 1). A number of variants were observed >1 in our cohort (as
were two of the prior diagnosed variants, Table 2). Given the
potential for sequence alignment errors, we only retained repeat
candidate variants where the variant was classified ACMG
pathogenic/likely pathogenic (or once for a possible compound
heterozygote) and the frequency of the variant in our cohort was
0.006 (2/358 chromosomes), i.e. below the accepted cut-off of 0.01

Fig. 1 Screenshots for sections of the patient reports output by the diagnostic pipeline. a shows the part of the .html file that provides
input information including sequencing platform and HPO and OMIM disease terms; b shows the top three ranked candidates from two
reports where the top candidate ranking is based on OMIM (upper panel) and Phenolyzer score (lower panel). Further columns to the right of
the Phenolyzer score provide information from the OMIM API, mode of inheritance, CallQ, total read depth, read depth for the reference allele,
read depth for the alternative allele, number of heterozygotes in the cohort, number of homozygotes in the cohort, total number of HIGH
impact variants in the given gene across the cohort and ACMG classification. The patient report variant table can be filtered on one or more
columns, as desired by the clinician or researcher. Clicking on the green dot to the left of the rank 1 variant in the upper panel shows c the
evidence used to diagnose this particular variant as Floating Harbor Syndrome based on the OMIM Phenotypic Series for Rubinstein Taybi
Syndrome.
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for rare alleles in the population. Information on ranked variants
replicated more than twice in our cohort were retained under a list
of unresolved variants for review by the clinical genetics team
(Supplementary Data 1). For both sequencing technologies the
majority of putative novel (i.e. not previously associated with a
rare disease phenotype) variants were MEDIUM impact missense
variants, reinforcing the imperative for functional data to support
validation of these variants.

Features of unresolved unsolved cases
It was not possible to assign candidate pathogenic variants for 96
unresolved cases through our pipeline (Supplementary Data 1).
Where a feasible candidate was ranked by OMIM or Phenolyzer
scores, we retained the information in the table for clinical review.
This included instances where the phenotype was correct for the
gene but the mode of inheritance was wrong, including instances
where ≥3 individuals carried the variant in our cohort. There were
44 patients for whom there were no ranked candidates based on
OMIM or Phenolyzer scores. Further features of the sequence data
for these unresolved cases are provided in the footnote to
Supplementary Data 1. Failure in the pipeline did not appear due
to sequencing technology per se, or the number of HPO terms
available. Possible explanations for our failure to identify a
candidate pathogenic variant include the gene not being in the
capture panel employed, the variant being captured but
pathogenicity not assigned to it, either because it was not
possible to assign definitive ACMG criteria and/or the relationship
between this gene and the clinical phenotype not yet being
reported in public domain databases. As the knowledge in public
domain databases expands, reanalysis of the current data could
lead to future identification of a disease-causing variant.

DISCUSSION
Here we developed and implemented a computational pipeline to
reassess exome data from previously unsolved cases as a research
partnership with clinical services. Our primary purpose here is to
report on the potential for this computational pipeline to rank
variants using a variety of tools to capture both phenotypic input
and variant evaluation according to ACMG guidelines and ClinVar
entries. The primary research output is the comprehensive,
intuitive web-based report (html file) generated for each patient
which can readily be reviewed on a case-by-case basis and
provides a summary for all putative deleterious variants in the
individual. We undertook a review of unresolved cases compared
to previously diagnosed cases to determine the potential of our
pipeline to identify and rank further candidate pathogenic
variants. The 49 candidate variants identified in this research
setting should not be viewed as diagnostic variants per se but are
selected to guide the team of clinical geneticists to review cases in
the cohort. Although most are not yet validated diagnostic
variants, on clinical review 18/49 were considered of immediate
relevance and have been taken forward for clinical diagnosis;
three have been validated by Sanger sequencing of patient plus
parents.
Evaluation of different sequencing technologies was not a

primary focus of our study. Nevertheless we, like others20,21, found
that it was important to be aware of differences in rates of
systematic sequencing and alignment errors in generating a
ranked list of candidate variants. In its current form the pipeline
benefits from accessing the OMIM API to match for genes
associated with specific disease terms, or in a phenotypic series, as
well as interrogating disease and HPO terms in Phenolyzer22.
Although the Phenolyzer22 tool itself accesses public domain gene
−disease databases (OMIM, Orphanet, ClinVar, Gene Reviews, and
GWAS catalogue), we found that direct interrogation of the OMIM
API could provide a candidate molecular diagnosis whenTa

b
le

2
co
nt
in
ue

d

Pa
ti
en

t
ID

R
an

k
G
en

e
Z
yg

o
si
ty

O
M
IM

A
PI
?

Ph
en

o
ty
p
ic

se
ri
es

Ph
en

o
ly
ze
r

sc
o
re

A
C
M
G

cr
it
er
ia

A
C
M
G

C
lin

Va
r

R
ep

o
rt
ed

M
o
I

Ty
p
e
o
f

va
ri
an

t
Va

ri
an

ta
rs

ID
N H
PO

te
rm

s

N
D
is

Te
rm

s
N

g
en

es
w
it
h
ra
re

va
ri
an

t

C
al
lQ

D
ep

th
R
ef

A
lt

Lo
F

N
H
et

N H
o
m

A
lt

SN
G
01

8
7

LO
Xc

H
o
m

0
0

0.
02

9
p
m
1,
p
m
2,
p
p
3

V
U
S

N
o
n
e

A
R

m
is
se
n
se

p
.T
h
r3
41

Pr
o

N
o
n
e

3
0

46
5

37
83

0
83

0
0

2

M
ea
n

0.
83

0.
08

0.
36

9
7.
17

0.
75

69
9.
08

65
.1
7

73
.6
7

28
.3
3

45
.3
3

SD
0.
39

0.
29

0.
40

3
5.
94

0.
45

18
4.
28

34
.7
7

37
.4
9

25
.3
1

24
.4
1

SO
Li
D

SN
G
00

8
1

N
R
A
S

H
et

1
0

0.
23

5
p
m
1,
p
m
2,
p
p
3

V
U
S

N
o
n
e

A
D

m
is
se
n
se

p
.T
h
r5
8I
le

N
o
n
e

7
1

25
5

38
10

5
5

0
1

0

SN
G
04

5
19

SK
IV
2L

H
et

0
0

0.
00

1
p
m
2

V
U
S

N
o
n
e

A
R

st
o
p
-g
ai
n

p
.G
ln
30

2T
er

rs
75

10
74

84
4

22
0

29
1

10
0

17
5

11
6

59
1

1
0

B
o
ld

h
ig
h
lig

h
ts

th
e
p
re
vi
o
u
sl
y
d
ia
g
n
o
se
d
ca
se
s
th
at

fa
ile
d
in

th
e
p
ip
el
in
e,

re
as
o
n
s
fo
r
w
h
ic
h
ar
e
an

n
o
ta
te
d
o
n
to

th
e
ta
b
le
.R

an
k
in
d
ic
at
es

ra
n
k
in

o
u
r
p
ip
el
in
e;

O
M
IM

A
PI
?
in
d
ic
at
es

w
h
et
h
er

th
e
d
ia
g
n
o
si
s
w
as

m
ad

e
b
y
d
ir
ec
t
ac
ce
ss

to
th
e
O
M
IM

A
PI

(1
=
ye
s;
0
=
N
o
);
Ph

en
o
ty
p
ic

Se
ri
es

in
d
ic
at
es

w
h
et
h
er

th
e
d
ia
g
n
o
se
d
g
en

e
w
as

id
en

ti
fi
ed

vi
a
th
e
p
h
en

o
ty
p
ic

se
ri
es

in
O
M
IM

(1
=
ye
s;
0
=
N
o
).
N
H
et

is
th
e
n
u
m
b
er

o
f

in
d
iv
id
u
al
s
in

th
e
co

h
o
rt

h
et
er
o
zy
g
o
u
s
fo
r
th
e
va
ri
an

t;
N
H
o
m

th
e
n
u
m
b
er

o
f
h
o
m
o
zy
g
o
u
s
in
d
iv
id
u
al
s.
Tw

o
p
at
ie
n
ts

w
er
e
d
ia
g
n
o
se
d
as

co
m
p
o
u
n
d
h
et
er
o
zy
g
o
te
s.

P
p
at
h
o
g
en

ic
,L
P
lik
el
y
p
at
h
o
g
en

ic
,V

U
S
va
ri
an

t
o
f
u
n
kn

o
w
n
si
g
n
ifi
ca
n
ce

(c
at
eg

o
ri
ze
d
as

u
n
d
efi

n
ed

in
o
u
r
p
ip
el
in
e)
,L
oF

n
u
m
b
er

o
f
lo
ss
-o
f-
fu
n
ct
io
n
va
ri
an

ts
se
en

in
th
is
g
en

e
in

th
e
co

h
o
rt
.

a F
u
ll
d
et
ai
ls
o
f
tr
an

sc
ri
p
ts

ar
e
p
ro
vi
d
ed

in
Su

p
p
le
m
en

ta
ry

Ta
b
le

S2
.

b
C
o
m
p
o
u
n
d
h
et
er
o
zy
g
o
te
,s
ec
o
n
d
va
ri
an

t
d
id

n
o
t
fi
lt
er

th
ro
u
g
h
th
e
p
ip
el
in
e

c S
am

e
va
ri
an

t
re
la
te
d
in
d
iv
id
u
al
s.

T. Lassmann et al.

5

Published in partnership with CEGMR, King Abdulaziz University npj Genomic Medicine (2020)    54 



Phenolyzer failed or gave a very low score. This is assisted by
incorporation of the OMIM phenotypic series, which is not
currently implemented in Phenolyzer, and by more up-to-date
information in OMIM compared to the incidence of OMIM stored
within Phenolyzer. Nevertheless, the simple implementation of
these two resources has been successful in (a) identifying a high
proportion (29/34) of previously diagnosed variants; (b) providing
a good yield (22/145) of candidate molecular variants for unsolved
cases classified as ACMG pathogenic/likely pathogenic; and (c)
providing a potential novel disease variant for a further 27/145
unsolved cases. While the latter will provide more of a challenge
for validation, we note that not all the previously diagnosed
variants were classified as ACMG pathogenic/likely pathogenic. In
addition, 9/21 (43%) diagnosed variants classified as ACMG
pathogenic/likely pathogenic, and 13/22 (59%) candidate variants
classified as ACMG pathogenic/likely pathogenic, were not present
in ClinVar17. ClinVar directly accepts rather than curates classifica-
tions from submitters. Here we took a systematic approach to

assign ACMG classification based on existing evidence in the
public domain. While there was significant overlap in classification
between our method and results found in ClinVar, it is not
surprising that differences occur. Furthermore, as there are no
strict rules on implementing ACMG guidelines in terms of which
tools, resources and methods to use, even other systematic
approaches may yield differing clinical significance classifications
for the same variant. Overall, our pipeline to re-evaluate clinical
sequence data for unsolved exomes contributes to the growing
number of reports4,8,10–14 demonstrating that such reassessment
can improve the diagnosis of rare diseases.
Although the initial focus in this partnership was to reassess

unsolved cases, our research aim was to build a robust but flexible
pipeline that would provide a framework for future iterative
computational development. While the pipeline ranks genes most
relevant to a patient’s clinical phenotype, the patient report
provides information on all putative deleterious variants which the
researcher and/or clinical team can sort and re-rank based on all
classifiers. As also found by others23–26, the use of HPO terms
provides important input to our pipeline. The HPO was developed
to provide a consistent and standardized vocabulary of pheno-
typic abnormalities that result from genetic disorders and is
currently the most complete vocabulary used in the rare disease
field. The Clinical Genetics Service partner in this study has now
implemented the tool PatientArchive27 (https://mme.
australiangenomics.org.au/#/home), a clinical grade phenotype-
oriented patient data management platform that allows clinicians
to use free text clinical notes for structured patient phenotyping
that are automatically translated into HPO terms. The platform
enables patient data management, collaborative diagnosis and
knowledge exchange within Australia, and is also part of the
global GA4GH MatchMaker Exchange Initiative27 (http://www.
matchmakerexchange.org/). Automated input of HPO and disease
term data from PatientArchive into our computational pipeline
has streamlined the transfer of data from the clinical to the
research diagnostic setting. However, the fact that not all
candidates identified in the research setting, where the research
team only had access to HPO terms as phenotypic indicators, were
immediately obvious as candidates following clinical review
indicates that the translation of clinical information to standar-
dized HPO terminology is not yet perfect. Iterative improvements
in clinical reporting and the ability of PatientArchive to identify the
best set of HPO terms to describe the patient’s clinical phenotype
will be important in improving the accuracy of our pipeline in
ranking variants for clinical review. Others have also recently
published on how to choose an optimal set of HPO terms and
enter them using PatientArchive26. Incorporating a step in the
pipeline which allows us to classify all variants according to ACMG
criteria for pathogenic/likely pathogenic status also provides an
important aid for feedback of research candidate variants to the
clinical diagnostic team. At present we have not used ACMG
criteria in the prioritization of variants since we don’t wish to
compromise the potential for identification of novel candidate
variants based on phenotype. However, in developing their X-rare
machine-learning method for rare disease diagnosis, we note that
Li et al.14 recently devised a weighted sum ACMG score based on
the 14 implemented evidences proposed by ACMG to represent
the overall pathogenic/benign strength. This Xrare_ACMG score
performed better than other computational genotype-only
scores. Others have also reported28 on semi-automated methods
for implementing ACMG criteria within the tool InterVar. Such
tools could be further evaluated and implemented within our
flexible pipeline. Implementation of a greater range of variant
prioritization tools within the pipeline, taking account of
phenotype-specific differences in performance, could also
enhance our ability to rank variants compared to our current
use of scaled CADD scores alone. For example, we recently carried
out a phenotype centric benchmarking of a range of variant

Table 3. Rankings obtained for 29 previously diagnosed cases using
our SeqNextGen pipeline compared to Exomiser18 and AMELIE19.

Patient ID Sequencing
platform

SeqNextGen AMELIE Exomiser

SNG038 Illumina 1 3 1

SNG081 Illumina 1 1 1

SNG114 Illumina 1 1 1

SNG161 Illumina 4 4 1

SNG024 Illumina 1 13 0

SNG172 Illumina 1 0a 0a

SNG130 Illumina 1 1 1

SNG175 Illumina 1 25 9

SNG173 Illumina 1 2 1

SNG022 Illumina 1 9 1

SNG064 Illumina 1 1 1

SNG035 Illumina 1 3 1

SNG200 Illumina 27 31 45

SNG199 Illumina 13 4 3

SNG095 Illumina 1 4 1

SNG005 Ion Torrent 1 8 2

SNG019 Ion Torrent 1 1 2

SNG021 Ion Torrent 1 1 4

SNG027 Ion Torrent 3 17 15

SNG028 Ion Torrent 1 1 1

SNG062 Ion Torrent 2 0 0

SNG105 Ion Torrent 1 13 3

SNG106 Ion Torrent 1 1 1

SNG066 Ion Torrent 1 2 0

SNG012 Ion Torrent 1 19 10

SNG017 Ion Torrent 4 3 205

SNG018 Ion Torrent 7 5 120

SNG008 Solid 1 1 1

SNG045 Solid 19 14 84

Better rank (%) 4 (14%) 2 (7%)

Same rank (%) 10 (34%) 12 (41%)

Worse rank (%) 15 (52%) 15 (52%)

Total 29 29

aAMELIE and Exomiser were unable to give a ranking for this subject as no
HPO terms were available. The SeqNextGen pipeline used OMIM terms.
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prioritization tools (including best performers FATHMM, M-CAP,
MetaLR, MetaSVM and VEST3), demonstrating that the perfor-
mance of these tools varies according to disease context29.
Current research in the laboratory also focuses on the incorpora-
tion of public domain data30–33 on tissue- and cell-specific gene
expression to improve predictive algorithms. Additional routines
could be implemented to address copy number variation and
chromosomal anomalies, although all patients included in this
study had prior chromosomal microarray analysis. Finally, our
research partnership with clinical genetic services is now under-
taking analysis of genome sequencing (GS) which is driving
further development of the pipeline. Lionel et al.34 recently
demonstrated improved diagnostic yield using GS compared to
targeted gene sequencing panels and ES, due both to improved
exonic coverage as well as to structural and non-exonic sequence
variants not detectable with ES.
In summary, an accurate diagnosis informs prognosis and can

positively impact on management for individuals living with a rare
disease and their families. We have developed a robust computa-
tional pipeline that is automated, is built in a framework that can
incorporate novel tools and public domain data as they become
available, improving the accuracy of molecular diagnoses for
rare diseases. Our pipeline supports the principle10 that systematic
transfer of molecularly “unsolved” exomes from a clinical
to a research setting will accelerate human genetic disease
discovery.

METHODS
Study design and participants
Ethical approval for the study (known as SeqNextGen) was obtained from
the Human Research Ethics Committee at Princess Margaret Hospital for
Children, Perth, Australia (#2105034EP) and the Department of Health
Research Governance Service (#RGS2494). Participants were recruited
through a genetic counsellor at Genetic Services of Western Australia
(GSWA), King Edward Memorial Hospital, Perth, Australia. All individuals
were engaged through the RUDDS9. Participants, or their carers (for
participants aged <18 years of age or >18 years with reduced capacity to
consent), gave written consent to share their de-identified ES or targeted
NGS-sequenced exome data and relevant clinical phenotypic information
with the SeqNextGen study. Only a clinical geneticist at Genetic Services of
Western Australia had the authority to re‐identify a participant to provide
feedback of genetic results as they pertained to the rare disease diagnosis.
Feedback is only provided for fully validated variants. Secondary findings
(i.e. information on genetic variants not related to the individual’s primary
rare disease phenotype) were not gathered or reported. Participants were
eligible to take part in the SeqNextGen study if they had given prior clinical
consent for genetic diagnosis of their rare disease using ES/targeted
exome NGS. All phenotypes, except for neuromuscular disease phenotypes
(which in RUDDs are channelled through an alternative diagnostic
pathway), were eligible for inclusion in the study; there were no exclusion
criteria.

Sequencing data and variant detection
ES/targeted exome NGS was carried out by a diagnostic genomics
laboratory. Our cohort was sequenced under different protocols and
sequencing platforms due to technological advances and changes in the
diagnostic service through time. The TargetSeq Exome V2 kit was used for
exome enrichment for sequencing on the SOLiD system. SOLiD ES data
were analysed under LifeScope 2.5, with default parameters for exome
analysis. The Ion AmpliSeq Exome RDY kit was used for exome enrichment
for sequencing on the Ion Proton System. Ion Torrent ES data were
analysed under Torrent Suite 4.2, using Thermo Fisher’s default exome-
customized analysis parameters. Illumina ES analysis was carried out using
TruSight™ One (~4800 genes) or TruSight™ One Expanded (~6700 genes)
panels (Illumina Inc., Victoria, Australia) sequenced on the MiSeq or
NextSeq 550 systems and analysed using MiSeq Reporter. Human genome
version 19 (hg19) was used as the reference genome in all cases.

Storage and processing of variants in GEMINI
Variant call format (VCF) files for Ion Torrent and SOLiD sequencing data
were as provided by the service laboratory. For Illumina data, BAM files
were processed with GATK 4.0.2.0 35,36 and SAMtools 1.7 37 using an
‘intersect-then-combine’ approach. Variant calling was performed with
GATK following best practices38 using 99.7 as the truth sensitivity threshold
at the ApplyVQSR stage of the pipeline (https://software.broadinstitute.
org/gatk/best-practices/workflow?id=11145) and with SAMtools37 using
the mpileup function. Only variants identified by both methods were
retained.
Patient data were grouped and processed based on sequencing

technology used. Variants were decomposed and normalized using vt39

(version v0.57721) to ensure all variants were represented in a unified
manner regardless of variant calling software. Variants were annotated
using the Ensembl Variant Effect Predictor (VEP) version 8440. This includes
predicted deleteriousness scores from SIFT41, PolyPhen242, and CADD43,
allele frequencies from ExAC44, the 1000 Genomes Project (1KGP)45, and
NHLBI GO Exome Sequencing Project (ESP)46. The annotation also provides
HUGO Gene Nomenclature Committee gene symbols, variant information
with respect to transcripts and proteins including Human Genome
Variation Society (HGVS) expressions, and functional consequences using
Sequence Ontology (SO) terms. The resulting annotated variants were
imported into GEMINI47 (version 0.30.1), a flexible system for storing and
querying genetic variants, along with metadata from the VCF file, such as
coverage depth and zygosity of a variant. The only categories of variants
analysed here were insertion/deletion (indels) and single nucleotide
variants (SNVs). Impact severity for variants was classified based on SO
terms HIGH, MEDIUM or LOW as used within GEMINI.

Parameters for variant filtering
Variants with a call quality (CallQ) ˂ 10 were discarded as were synonymous
variants and intron variants, identified by the GEMINI SO terms
“synonymous_variant” and “intron_variant”, respectively. Two thresholds
were used to further filter variants with call quality of ≥10: (1) maximum
allele frequency in any population (ExAC_all, 1KGP, and ESP databases) of
0.01; and (2) minimum scaled CADD score 15 OR impact severity HIGH.

Using the OMIM API to match disease terms with genes
OMIM disease terms related to potential diagnoses were available for 95/
179 (53%) of the patients. We developed a tool, Phenoparser, which uses
the OMIM API to match a given term to OMIM phenotypes and return any
associated genes and their synonyms/aliases. The search capability within
the OMIM API is powered by an open-source enterprise search platform
called Apache Lucene Solr, which provides essential search features, such
as spellcheck and thesaurus matching48. Specifically, a “text search” is
performed to match the available OMIM terms to all fields of an OMIM
entry except external data fields. Within the results, only those where a
gene map is available (gm_phenotype_exists is true) are returned along
with gene-to-disease associations from OMIM. Phenoparser also retrieves
similar data for any available Phenotypic Series records—a collection of
entries with overlapping clinical manifestations. Phenoparser queries the
online database and thereby always retrieves the most up-to-date
information at the time of running. However, the results obtained from
the specific incidence of the OMIM API interrogated on any given date is
stored within an SQLite database as a cross-reference for any future
reanalysis of an individual patient’s exome data.

Using Phenolyzer to match HPO terms with genes
Patient clinical phenotypes were converted into HPO terms49,50 using the
tool Patient Archive27 (https://mme.australiangenomics.org.au/#/home), a
clinical grade phenotype-oriented patient data management platform that
allows clinicians to use free text clinical notes for structured patient
phenotyping that are automatically translated into HPO terms. HPO terms
for 176/179 (98%) patients were combined with available OMIM terms and
the phenotype-based gene analyser tool, Phenolyzer22 (version 1.0.5;
default settings), was used to determine Phenolyzer scores for all genes
relevant to clinical phenotype based on disease and/or on HPO terms.
Phenolyzer uses a range of gene−disease databases (OMIM, Orphanet,
ClinVar, Gene Reviews, and GWAS catalogue) in combination with HPO
terms to map clinical phenotypes to related diseases and genes.
Phenolyzer first identifies a list of diseases that are associated with the
input terms and uses the gene−disease databases to link diseases to
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genes. Each gene receives a weighted sum score (ranging from 0 to 1)
corresponding to all reported gene−disease relationships. If a set of HPO
terms is associated with the same disease, the genes associated to that
disease receive a higher score. A ranked in silico gene list is built using a
patient’s disease and HPO terms. Phenoparser was again used to process
and store this output in an SQLite database to preserve the results for any
future reanalysis.

Incorporation of an ACMG classifier
To assist in the interpretation of sequence variants, the ACMG and the
Association for Molecular Pathology (AMP) developed a set of standards
and guidelines15 to classify variants as “pathogenic”, “likely pathogenic”,
“likely benign”, “benign” or “uncertain significance” based on adherence to
a set of evidence-based criteria. Here we focused on assignment to the
“pathogenic” or “likely pathogenic” categories with variants not reaching
the required evidence being classified as “undefined”. Supplementary
Table 1 details the criteria we were able to address and the method by
which we did so. To accompany some of the methods (pvs1, pp2), we
created a gene:impact:disease database (GIDdb) compiled using data from
Ensembl and OMIM that links HGNC gene symbols to OMIM diseases via
the sequence ontology impact of the known causal variant.

Generating web-based clinical reports for ranked variants
The pipeline ranks genes most relevant to a patient’s clinical phenotype
and generates a comprehensive, intuitive web-based report (html file) that
facilitates viewing and sorting of the ranked list of putative deleterious
variants. Variants are ranked according to their presence in genes
associated with the patient’s phenotype as determined using the OMIM
API and/or by Phenolyzer scores, and then by descending scaled CADD
score. That is, a variant that aligns perfectly with a known OMIM disease, or
a gene in a phenotypic series, will be ranked highest. Such a variant may
also have a perfect Phenolyzer score. Where a match is not obtained by
accessing the OMIM API, the variants are ranked by Phenolyzer score
alone. Variants are annotated with ACMG pathogenicity criteria and
pathogenicity status in ClinVar. ACMG pathogenicity scores are not used in
the ranking but are provided to aid the clinical geneticist in reviewing the
ranked variants. Specific variants occurring in ≥5 individuals (i.e. numbers
of heterozygous individuals plus number of homozygous individuals)
across the cohort are highlighted (see below). Of these, those observed ≥6
times are relegated towards the bottom of the ranked list of variants. A
column is also included that gives the number of HIGH impact variants
seen in the same gene across the cohort dataset. This follows the logic of
MacArthur et al.21 who found that most genes with three or more
independent HIGH impact variants represent systematic sequencing errors.
These latter parameters enable the clinician or researcher to evaluate
whether a putative causative variant might be due to a common
sequencing or alignment error.

Implementing the bioinformatics pipeline
The pipeline relies on several bioinformatics tools and a configuration file
is provided to inform the pipeline where each are installed. The tools and
versions used to generate the data presented here are given in Table 5.
The entire pipeline, including documentation, is bundled with the
distribution of Phenoparser, which is available at https://github.com/
TimoLassmann/Phenoparser. A simple shell script is provided to run each
step of the pipeline, which can be modified for use within workflow
management software such as Bpipe51 to further maintain reproducibility.

Other pipelines
We compared rankings that were achieved in our pipeline for previously
diagnosed cases with those obtained using Exomiser18 and AMELIE19,
performed according to author guidelines. Exomiser input consisted of
patient VCF files, whereas rankings were obtained from the AMELIE gene
list API using the same genes contained in each SeqNextGen html report
as input.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The primary purpose of this paper is to share the computational pipeline developed
to analyse patient sequence data. Ethical approval for the study allowed for time-
limited sharing of de-identified exome sequencing data from the diagnostic
laboratory to the research team. Consent did not include making individual de-
identified clinical sequence data available for public access. The clinical sequence
data are held under patient confidentiality by the diagnostic laboratory. Downstream
patient reports that can be viewed in a web browser are available at https://
richardwfrancis.github.io/sng_reports/.

CODE AVAILABILITY
Full open access code is available at https://github.com/TimoLassmann/Phenoparser.
All details of software and versions used are provided in Table 5. Any updates to this
will be posted on the github site, where queries can also be posted.
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