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Allele-specific miRNA-binding analysis identifies candidate
target genes for breast cancer risk
Ana Jacinta-Fernandes 1,2,3, Joana M. Xavier 1,2,3, Ramiro Magno 2,3, Joel G. Lage 1,2,3 and Ana-Teresa Maia 1,2,3*

Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies
(GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk
may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction
algorithms—TargetScan and miRanda—to perform allele-specific queries, and integrated differential allelic expression (DAE) and
expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant (P � 5 ´ 10�8) raSNPs, plus proxies. We found
that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk.
Also, 11.5% (6 out of 52) raSNPs located in 3′-untranslated regions of putative miRNA target genes were predicted to alter miRNA::
mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a
strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We
believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression,
improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.
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INTRODUCTION
In the past 10 years, genome-wide association studies (GWAS)
identified hundreds of common low-penetrance variants to be
associated with breast cancer (BC) risk.1 Most of these risk-
associated single-nucleotide polymorphisms (raSNPs) are located
in non-coding regions,2 often with no established, or easily
perceived, biological function. Rather than altering protein
sequence, and consequently protein function or structure, it
seems that most raSNPs, or those in linkage disequilibrium (LD)
with them, may act in cis to regulate the expression levels of
target genes located distally and proximally.3–5 The biological
effect of raSNPs has so far been detected by expression
quantitative trait loci analysis (eQTL),3,6–8 but also, although less
frequently, through the analysis of differential allelic expression
(DAE).9,10 A few functional studies for BC raSNPs have confirmed
this cis-regulatory role, but have mainly focused on their potential
to alter transcription factor binding sites.3,6–8 Nevertheless, genetic
variation can modulate gene expression by several other
mechanisms, such as microRNA-mediated regulation.
MicroRNA (miRNAs) are small non-coding RNA (ncRNA)

molecules that bind messenger RNA (mRNA) complementary
sequences and generally direct post-transcriptional silencing in
the 3′-untranslated region (UTR) of target genes.11 There is strong,
albeit episodic, evidence of SNPs within miRNA genes and mRNA
binding sites affecting the susceptibility to some cancers,12,13

including BC.14–16 However, hitherto, the systematic analysis of BC
risk loci via miRNA regulation is still lacking.
Here, we set out to evaluate the effect of common genetic

variants associated with BC susceptibility on miRNA-regulatory
mechanisms. Our initial list of raSNPs was established by selecting
the 150 most significant (P � 5 ´ 10�8) BC raSNPs from published
GWAS (retrieved on 13 February 2017), along with their proxies in
high LD. Next, we filtered these by genomic location, keeping
those in or near miRNA genes and/or in protein-coding genes

(PCGs; potential miRNA target sequences). Finally, we modified
existing prediction tools to perform allele-specific miRNA target
prediction analysis. We used both miRNAs and putative mRNA
target genes, expressed in normal breast tissue, and also cis-
regulated genes as supported by DAE and eQTL data in normal
breast tissue.
Here we present a systematic miRNA pathway-based study from

published BC GWAS, using allele-differential prediction analysis,
further improved by integration of DAE and eQTL data from
normal breast tissue.

RESULTS
Some BC risk variants locate to the 3′-UTR of PCGs, but none to
miRNA genes
To evaluate the contribution to BC risk of genetic variation
modelling miRNA::mRNA binding, we first assessed how many
GWAS SNPs and their proxies were located in either miRNA genes
or 3′-UTRs of PCGs. We identified 2749 raSNPs, resulting from 150
BC GWAS SNPs (Supplementary Table S1) and their proxies, of
which almost one-third (805 raSNPs) were solely annotated to
“gene deserts” (585 raSNPs) or intergenic regions (220 raSNPs).
The remainder 1944 raSNPs were located in either ncRNA genes or
PCGs (see Supplementary Fig. S1), in a total of 161 unique
Ensembl gene IDs, correspondent to 129 HGNC (HUGO Gene
Nomenclature Committee) symbols.
Next, we assessed how many would change the miRNA gene

sequence, thus affecting their biogenesis or target genes.
Interestingly, none of the raSNPs mapped to miRNA genes, even
after the LD threshold was lowered to r2 � 0:2 when defining
proxy SNPs (results not shown). This suggests that altered miRNA
biogenesis or altered seed region sequence are unlikely mechan-
isms associated with BC risk. However, 13 SNPs were annotated as
downstream or upstream variants of miRNA genes
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(Supplementary Table S2), raising the possibility of them being
regulating the expression of the miRNA itself. However, we did not
pursue this hypothesis further due to unavailability of DAE or eQTL
data for these particular miRNA genes.
The vast majority of the raSNPs located within PCGs were in

non-coding regions (1881 out of 1915, 98%) (see Supplementary
Fig. S1), consistent with previous reports.17 SNPs located at the 3′-
UTR of the mRNA sequence of PCGs could potentially modify,
create or destroy miRNA-binding sites, and we found 52 raSNPs
(1.9% of total queried, 2.7% of total in PCGs), at 16 risk loci, with at
least one annotation at the 3′-UTR of PCGs.

Development and validation of allele-specific miRNA target
prediction analysis
raSNPs located at 3′-UTR of PCGs were then evaluated for their
potential to generate allelic-differential miRNA binding (Fig. 1). To
do so, we started by looking at existing miRNA target prediction
algorithms, but none could straightforwardly perform SNP allele
queries in an automatic way (see Supplementary Table S3 for a
systematic review). We, therefore, modified the input of two
prediction algorithms, TargetScan18 and miRanda,19 to account for
SNP alleles queries and indirectly implemented them in R.
To validate this approach of differential allelic miRNA-binding

querying, we ran the novel pipeline on seven SNPs that had
previous functional validation supporting allele-specific miRNA
binding. All seven SNPs were predicted to have allele-preferential
binding of the corresponding miRNAs in at least one of the
algorithms (Table 1), according to previous reports.13,16,20–24 One
of the SNPs previously published, and functionally validated, is
rs11540855 in the ABHD8 gene, which is in high LD (r2 ¼ 0:86)
with rs8170, a variant associated with risk to BC in BRCA1 mutation
carriers.25,26 Li et al.20 showed that the G allele of rs11540855 was
preferentially bound by the hsa-miR-4707-3p agomir in the BC cell
line MCF116, leading to both decreased luciferase activity and
ABHD8 protein levels. This is consistent with our prediction, using
TargetScan, of hsa-miR-4707-3p specifically binding to the G allele
of rs11540855 (context++ score=−0.225 for the G allele and no
predicted binding for the allele A). The miRanda algorithm only
predicted a minor difference in the maximum absolute minimum
free energy (MFE) (−25.95 kcal/mol for the G allele and
−23.93 kcal/mol for the A allele), although corroborating the
preferential binding to the G allele (Table 1).
Another previously published prediction was that of the

preferential binding of the hsa-miR-191-5p to the alternative
allele (C allele) of rs4245739, located in the 3′-UTR of the MDM4
gene, in ovarian cancer cell lines.21 This result was also concordant
with our differential allelic miRNA-binding predictions (context++
score of �0.309 for allele C vs. no binding for allele A; Table 1).
The results from the validation step, presented in Table 1,

suggest that functional allelic differences are easier to identify
using the TargetScan algorithm. Additionally, they provided a
guide to establish a biological significance threshold for the
prediction scores. We set this threshold at the weakest binding
prediction for any of the validated loci, corresponding to the
lowest TargetScan context++ score of −0.151 obtained for rs7930
in TOMM20.13 This was later used to set the list of variants with
stronger potential to affect miRNA binding.

Five per cent of the tested raSNPs are predicted to alter miRNA
binding
To assess how many of the 52 raSNPs located in the 3′-UTR of
PCGs (Supplementary Table S4) were likely to alter the miRNA::
mRNA pairing stability, the analysis pipeline was applied and the
difference of scores obtained for each pair of alleles was
calculated. Sixteen of these raSNPs could not be analysed by
TargetScan, as they were 3′-UTR variants of nonsense-mediated
decay transcripts, which are excluded by this tool (Supplementary

Fig. 1 Schematic overview of the bioinformatics pipeline used for
the prediction of allele-specific miRNA-binding sites in breast
cancer risk variants identified in GWAS. Genome-wide significant
(P � 5 ´ 10�8) SNPs associated with breast cancer risk in published
GWAS were retrieved from the GWAS Catalog and from a GWAS
meta-analysis.49 Proxies in high linkage disequilibrium (r2 � 0:8)
were obtained through SNAP v2.2, using data from the pilot release
of the 1000 Genomes Project for the CEU population. The biomaRt R
package (v2.34.2) was used to retrieve genomic annotations from
the Ensembl database v92. Risk-associated SNPs (raSNPs) were
filtered for their location either in the 3′-UTR of protein-coding
genes (PCGs) or in miRNA genes. Next, allele-specific miRNA-binding
predictions were performed by modifying the input of two
prediction algorithms—TargetScan and miRanda. First, each raSNP
allele (reference and alternative) located at the 3′-UTR of PCGs was
independently evaluated for putative miRNA binding through the
algorithms. Then, allele-specific miRNA-binding predictions for each
SNP were obtained by comparing each output file of corresponding
SNP alleles and extracting their differences in miRNA binding.
miRNA-binding predictions common to both algorithms were
filtered for: (i) context++ score absolute difference (jΔ context++
scorej) � 0:151; (ii) miRNA expression (RPM>1) in adjacent-normal
breast tissue from the miRmine database and PCG expression
(TPM>1) in normal breast from the GTEx Project; and (iii) evidence of
PCG cis-regulation in normal breast tissue from in-house differential
allelic expression analysis and eQTL data from the GTEx Project.

A. Jacinta-Fernandes et al.

2

npj Genomic Medicine (2020)     4 Published in partnership with CEGMR, King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;



Table S4). Of the 36 raSNPs analysed for differential miRNA
binding by TargetScan, allele-specific context++ scores were
generated, which revealed that a total of 311 unique miRNAs had
potential targets altered by raSNPs, with an average of nine
miRNAs per raSNP (Supplementary Dataset 1). As for miRanda
analysis, all 52 raSNPs generated maximum absolute MFE
differences for a total of 2227 unique miRNAs (average 43 miRNAs
per SNP; Supplementary Dataset 2). Together, both algorithms
commonly predicted a total of 160 combinations of
gene–SNP–allele–miRNA. These were then filtered for the
established TargetScan context++ score threshold, and evidence
of both putative target mRNA (GTEx Project) and miRNA
expression (miRmine database) in normal breast tissue, resulting
in ten common predictions for seven raSNPs at six PCGs.
To identify candidate regulatory SNPs (rSNPs), we further

filtered the resulting seven raSNPs based on previous evidence
of cis-regulation of the target gene in breast tissue. For this
purpose, we used the requirement of DAE of the target gene in
normal breast tissue.27,28 Furthermore, we used normal breast
tissue eQTL data29 as supporting evidence of cis-regulation.
Overall, six BC raSNPs located in the 3′-UTRs of five PCGs were
predicted to modify miRNA::mRNA pair binding stability in an
allele-specific manner, with supporting evidence of cis-regulation
of the putative target gene. These raSNPs correspond to five initial
GWAS-significant associations in four BC risk loci (5% of the initial
83 BC GWAS loci) (Table 2). These variants were rs17354678 (in
RNF115, at 1q21.1 locus), rs1019806 and rs6884232 (in ATG10, at
5q14.1-2 locus), rs3734805 (in CCDC170, at 6q25.1 locus),
rs4808616 (in ABHD8, at 19p13.11 locus) and rs2385088 (in
ISYNA1, at 19p13.11 locus).

RNF115 is a novel strong candidate target gene for BC risk
Following the canonical mechanism of action of miRNAs, we
based our next analysis on the premise that the allele with
preferential binding prediction would be the least expressed.
For CCDC170, the proposed rSNP rs3734805 is in very weak LD

(r2 � 0:2) with all the DAE variants analysed (see Supplementary
Fig. S2), and it is not an eQTL for the expression of any gene
according to GTEx. Therefore, we could not establish direct
association between the rSNP alleles and preferential allelic
expression.
As for the two candidate rSNPs in ATG10 (5q14.1-2 locus), both

are reported eQTLs for ATG10 expression using GTEx dataset (data
not shown), with the alternative alleles associated with lower
expression. This is concordant with the DAE data for rs1428940
(see Supplementary Fig. S2), in high LD with these variants (r2 ¼
0:92 and 0.93, respectively). However, the predictions for allelic-
preferential binding of miRNAs at rs6884232 is discordant with
this evidence, as it is the reference allele which is predicted to
have preferential binding. As for rs1019806, only the TargetScan
prediction points to a concordant allelic difference in binding,
while miRanda predicts almost no allelic difference.
For the pair hsa-miR-6842-5p::ISYNA1, the G allele of rs2385088

was predicted to bind preferentially, but this was also the
preferentially expressed allele in normal breast (see Supplemen-
tary Fig. S2). Moreover, the DAE data was concordant with the role
of ISYNA1 as a reported tumour suppressor gene,30–32 with
protective G allele of the GWAS-significant variant rs4808801
(odds ratio (OR) for G allele= 0.93, 95% confidence interval
(CI)= [0.91–0.95] P ¼ 5 ´ 10�15)33 in high LD with the preferen-
tially expressed G allele of rs2385088 (r2 ¼ 0:97, being G the
alternative allele for both variants).
Regarding locus 19p13.11, a novel variant in the 3′-UTR of

ABHD8’s only expressed transcript ENST00000247706.3 (see
Supplementary Fig. S3), rs4808616, was predicted to have allelic-
specific binding of hsa-miR-7705 to the reference C allele. The DAE
measured at this variant indicates this allele is the less expressedTa
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(Fig. 2a). rs4808616 is in complete LD with rs4808075, associated
with cancer pleiotropy (OR for alternative C allele = 1.1,
P ¼ 4 ´ 10�7),34 suggesting that risk may be caused via increasing
expression of ABHD8.
The last candidate rSNP, rs17354678, locates to the 3′-UTR of

RNF115 and was predicted to have more stable pair binding of
hsa-miR-486-5p::RNF115 in the presence of the alternative C allele,
for the only protein-coding transcript ENST00000369291.5 (see
Supplementary Fig. S3). rs17354678 is in high LD with variants for
which DAE was detected, namely rs12402867 (r2 ¼ 0:85) and
rs17352469 (r2 ¼ 0:9), both of which displayed preferential
expression of the reference alleles (G and A, respectively)
(Fig. 2b). This was congruent with the prediction of preferential
binding of the alternative C allele of rs17354678. This variant is
also in high LD (r2 ¼ 0:85) with the BC GWAS-significant SNP
rs12405132 (OR for reference C allele = 1.03, 95% CI = [1.01–1.05],
P ¼ 6 ´ 10�10).35 Therefore, these results suggest that risk may be
conferred by higher expression of RNF115.

DISCUSSION
GWASes have established the importance of normal non-coding
genetic variation in common diseases, including BC. Currently, the
challenges are to identify the true causal variant in risk-associated
loci, as well as to determine the mechanism by which they act and
the target genes they control. Our study focused on under-
standing the extent by which miRNA-mediated cis-regulation
contributes to BC risk.
We found that none of the tested raSNPs from BC GWAS

mapped to miRNA genes, suggesting that altered miRNA
biogenesis, or targeting, are unlikely mechanisms to be involved
in BC risk. However, this result could be due to the low
representation of miRNA SNPs in the commercial genotyping
arrays. On a biological perspective, however, miRNAs can bind
hundreds of different mRNA targets36 across the genome, and
variants in both the precursor elements, as well as the mature
miRNA sequence, may drive changes in transcription in a much
more widespread and significant manner, than those on target
sequences.37 Thus, we can hypothesise that SNPs in miRNA genes
would have larger effect sizes than those observed in GWAS,
explaining their under-representation in these studies.
Next, we found 13 BC raSNPs located upstream and down-

stream of miRNA genes, which could be regulating miRNA
transcription; however, most were also intronic variants of PCGs
with evidence of cis-regulation from DAE data in normal breast
tissue. This suggests that these raSNPs are more likely regulating
PCG expression instead. Also, since the DAE data was generated
using PCG exon-centric SNP microarrays, and as such did not
cover the great majority of miRNA genes, we cannot exclude the
possibility that our result is biased against miRNA gene cis-
regulation. Further studies will be needed to evaluate whether
raSNPs are located in regulatory regions affecting miRNA-gene
expression levels.
We also found 52 raSNPs located at the 3′-UTR of PCGs, where

miRNAs are generally known to bind,11 supporting a possible role
for miRNA-mediated cis-regulation in BC predisposition. However,
co-expression of both miRNAs and target sequences in the same
tissue is imperative to validate such findings. While no compre-
hensive datasets are currently available to quantify the impact of
miRNA expression on the putative target gene expression levels,
we performed a qualitative filter for miRNA expression in adjacent-
normal breast tissue,38 as well as for the target-gene expression in
breast mammary tissue.39

GWAS follow-up studies have mostly used eQTL mapping in
normal tissue, to identify cis-acting variants and prioritise
candidate cis-rSNPs for functional analysis.40–42 However, cis-
regulatory signals can be masked in eQTL studies by trans-acting
factors or environmental effects.43 Direct assessment of cis-Ta
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regulation requires allele-specific approaches, such as DAE studies,
where the effect of trans-regulation is eliminated when comparing
the relative expression of two alleles in an heterozygous
individual, within the same cellular context.44 Here we combined
both DAE and eQTL to filter our results, and we predict that six 3′-

UTR raSNPs have the potential to alter miRNA-binding stability in
five genes with evidence of cis-regulation in normal breast.
Our strongest result was obtained for raSNP rs17354678,

mapping to the 3′-UTR of the transcript ENST00000369291.5 of
the RNF115 gene, for which the reference allele was predicted to

Fig. 2 Breast cancer risk loci with strong predictions for allelic-differential binding of miRNA. a BC risk locus 19p13.11 with candidate
target gene ABHD8 and b BC risk locus 1q21.1 with candidate target gene RNF115. Both figures display a top panel with the genomic
organisation of RefSeq genes (NCBI Release 109), with the candidate target genes in red and displaying the transcript predicted to have
differential binding of miRNAs. The middle panel displays the genomic organisation of the tested raSNPs (GWAS-significant variants in green,
plus proxy SNPs in high LD in black) in each locus, identified and tested in this study. raSNPs located in the 3′-UTR of candidate target genes
with the strongest predictions for allelic-differential binding of miRNAs (rSNP candidates) are indicated in cyan. raSNPs in red have weaker
predictions for allelic-differential binding of miRNAs. The third panel shows the DAE data for heterozygous individuals tested for the SNP
indicated immediately below. The alleles are indicated for each SNP in the order of the AE ratio calculated (i.e. A/G corresponds to the ratio of
allele A by allele G). Dashed horizontal lines indicate the threshold for DAE set at 1.5-fold difference between alleles (jlog2 AE ratioj ¼ 0:58).
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decrease the binding of hsa-miR-6842-5p in normal breast tissue.
According to the DAE data, this allele is congruently associated
with higher expression of RNF115, and is in high LD with the risk
variant for BC, rs12405132,35 supporting that risk might be
conferred by upregulation of RNF115. RNF115 encodes for the
three ubiquitin ligase RING finger protein 115, which has been
reported as upregulated in BC, particularly in oestrogen receptor
α-positive tumours.45 RNF115 has also been proposed to promote
proliferation possibly through downregulation of the expression
of the tumour suppressor p21.46 Our data further support
RNF115’s role as an oncogene, as the predicted preferential
binding of hsa-miR-486-5p and consequent lower expression of
RNF115, is associated with protection against BC.
In addition, we also found a strong evidence that the reference

allele of rs4808616, located at the 3′-UTR of the transcript
ENST00000247706.3 of the ABHD8 gene could promote a binding
site for hsa-miR-7705 in normal breast tissue. Expression and LD
analysis with the BC risk variant support a role for miRNA-
mediated regulation and decreased expression of ABHD8 in BC
risk. This prediction is in accordance to what has been functionally
validated for other candidate rSNP rs1154085520 in ABHD8.
Previously, rs4808616 had been also functionally studied for
mechanisms underlying pleiotropic risk to breast and ovarian
cancer.47 The authors found evidence of allelic expression and
identified multiple risk alleles, which they associated with
increased ABHD8 promoter activity. For rs4808616, in particular,
the authors identified a link between the risk allele and higher
expression of ABHD8 through inclusion in a putative regulatory
elements, but did not test for miRNA-mediated mechanisms.
Nevertheless, all data, ours and from others, support that
increased expression of ABHD8, which encodes for a poorly
studied lipase,48 is linked to higher risk to BC. Furthermore, our
study adds evidence for altered miRNA-binding through cis-
regulatory variation as a mechanism of risk in this locus.
The remaining predictions for rs1019806 and rs6884232 (in

ATG10), rs3734805 (in CCDC170) and rs2385088 (in ISYNA1), albeit
supported by DAE evidence for the corresponding genes, were
not directly explained by the preferential allelic expression pattern
observed in normal breast tissue. Given that gene expression
regulation is a complex trait in itself, with multiple possible cis-
regulatory variants acting on the same gene, via different possible
mechanisms, and with different allelic effects, we should not rule
these candidates out. Particularly, ATG10 and CCDC170 are large
genes, with many potential cis-regulatory variants in LD with the
GWAS variants.
In this study, we proposed a systematic post-GWAS framework

focused on miRNA regulation, integrating DAE and eQTL data
from normal tissue, to prioritise candidate rSNPs in already known
risk loci. Although searching for altered transcription factor
binding has been a popular approach following GWASes, other
mechanisms, or even more than one at the same time, may be at
play at susceptibility loci. Thus, it is important to look at the whole
cis-regulation context when searching for the causal rSNP(s). Here,
we showed that five genes, at four BC risk loci, have putative
altered miRNA binding and that these genes have evidence of cis-
regulation in normal breast tissue, supporting a functional role. In
the future, it will be important to validate such findings through
in vitro and in vivo assays.
Finally, our study provides a quick, powerful and systematic way

of assessing the allelic-differential miRNA-mediated cis-regulation.
As other common cancer GWASes have similar genomic distribu-
tion of risk variants to BC, it will be interesting to determine
whether similar findings of putative altered miRNA regulation is
also present in other common cancers.

METHODS
BC risk loci dataset
GWAS-significant raSNPs for BC were retrieved from the NHGRI-EBI Catalog
of published GWAS,2 available at www.ebi.ac.uk/gwas (accessed on 13
February 2017), using P � 5 ´ 10�8 and the catalogue traits “Breast
cancer”, “Breast cancer (male)”, “Breast cancer (early onset)”, “Breast Cancer
in BRCA1 mutation carriers”, “Breast cancer in BRCA2 mutation carriers”,
“Breast cancer (oestrogen receptor negative, progesterone-receptor
negative, and human epidermal growth factor-receptor negative)”,
“Cancer” and “Cancer (pleiotropy)”. Furthermore, we retrieved the 15 SNPs
previously identified by Michailidou et al.49 in a BC GWAS meta-analysis, as
well as those mentioned in their Supplementary Table 3, with a
P � 5 ´ 10�8, which included variants found associated by previous
candidate gene association studies.

Proxy SNP query
Proxy SNPs were identified using the SNP Annotation and Proxy Search 50

online tool (version 2.2), available at archive.broadinstitute.org/mpg/snap/
ldsearch.php, using genotype data from the pilot release of the 1000
Genomes Project51 for the CEU population (Utah residents with Northern
and Western European ancestry), with a distance limit of 500 kb and an LD
threshold of r2 � 0:8.

Retrieval of SNP annotations
We used the getBM function from the biomaRt R package v2.34.252 to
retrieve the genomic annotations, alleles and variation consequence
(Ensembl release 9253) of each SNP, as well as its molecular position
(according to Ensembl release 75.54) SNPs flagged by Ensembl53,55 for
containing errors or inconsistencies in their annotation were automatically
excluded from further analysis.

Allele-specific miRNA-binding predictions
raSNPs were filtered for the Sequence Ontology term “3_prime_UTR_var-
iant” as a variant consequence.56 For each allele of 3′-UTR-located SNPs,
miRNA::mRNA interactions were searched using the default settings of the
predictive algorithm TargetScan (release 7.1)18 and custom settings for the
miRanda (v3.3a) algorithm,19,57 as described below. The R code used to
perform both analyses is available at https://github.com/maialab/
postgwas-miRNA.
TargetScan predicts biological targets of miRNAs by searching for the

presence of conserved canonical sites in 3′-UTRs that match the “seed”
region (2–7 nucleotides of the mature miRNA) of each miRNA.18 The
matches are made to human 3′-UTRs from Gencode v19 (Ensembl 75) and
their orthologues, as defined by UCSC whole-genome alignments (hg19).18

For each site, a context++ score is calculated; the lower the score, the
higher the probability of effective target repression.18 TargetScan source
code, and accompanying datasets, were downloaded from http://www.
targetscan.org/cgi-bin/targetscan/data_download.vert71.cgi, and run over
the two alleles of each raSNP. Briefly, for each SNP located within a specific
human 3′-UTR multiple sequence alignment (as provided by TargetScan),
independent text files containing either the reference or the alternative
allele were generated according to source code instructions for the
reference allele. We excluded from further analysis SNPs annotated as 3′-
UTR variants, but not located within the available 3′-UTR sequence
alignments (Supplementary Table S4). Default instructions available for
context++ score calculation were followed. For each miRNA-binding
prediction, context++ score differences between correspondent SNP
alleles were calculated.
miRanda detects potential miRNA target sites in genomic sequences by

carrying a dynamic programming local alignment between query miRNA
sequences and target mRNA sequences.19 For each detected complemen-
tary match between a miRNA and a potential target gene two measures
are calculated: (i) a score S based on sequence complementary and (ii) the
MFE of the optimal miRNA–mRNA interaction. High S and low MFE values
indicate potential target sites.19 We used the getBM function of the R
package biomaRt 52 to retrieve a target-sequence centred on each allele
and flanked by 25 nucleotides on either side, based on annotation in the
Ensembl release 92.53 miRNA mature sequences were retrieved from
miRbase database (release 21, ftp://mirbase.org/pub/mirbase/21/) and
filtered for Human.58 miRanda’s software (v3.3a) was obtained from
MicroRNA.org, a comprehensive resource of miRNA target predictions and
expression profiles,59 at www.microrna.org. A cut-off of S � 80 and an MFE
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≤−16 kcal/mol was used as previously described14 to select for miRNA
binding. Maximum absolute MFE differences between matching SNP
alleles for each SNP::miRNA pair were calculated.

miRNA and miRNA target gene expression
miRNA expression data, previously generated by miRNA-sequencing from
pooled adjacent-normal breast tissue samples from eight BC patients,60

was obtained from the miRmine Database,38 available under the Sequence
Read Archive ID SRX513286 (http://guanlab.ccmb.med.umich.edu/mirmine,
accessed on 22 January 2017). miRNAs with expression values >1 read per
million were considered as expressed.61

Gene and transcript expression levels for 290 breast mammary tissue
samples were obtained from the GTEx Portal (v7) at www.gtexportal.org
(accessed on 12 December 2017).39 Genes with median expression levels
>1 transcript per million were considered as expressed.62,63

Defining cis-regulation of gene expression
Cis-rSNPs act on regulatory elements, including promoters, enhancers and
miRNA-binding sites, by modifying the binding affinity of trans-acting
factors and thus specifically affecting gene expression in an allelic manner.
This gives rise to unequal expression of transcribed alleles of the gene, a
common feature in the human genome.64,65 Comparison of the relative
expression of the two alleles in a heterozygous individual by DAE analysis
is therefore a direct indicator of rSNPs acting in cis. Furthermore, measure
of mRNA transcripts and association of their expression levels with genetic
variants in eQTL studies can also indicate the presence of cis-rSNPs.
DAE analysis was performed with data from 64 normal breast tissue

samples from healthy controls, collected from women submitted to
reduction mastectomy, for reasons not related to cancer, at Addenbrooke’s
Hospital in Cambridge, United Kingdom (under Addenbrooke’s Hospital
Local Research Ethics Committee approval, REC reference 06/Q0108/221).
DNA and total RNA were extracted as previously described.66 Briefly, DNA
and cDNA samples derived from total RNA from a given individual were
run on Illumina Infinium Exon510S-Duo arrays, data were filtered and
normalised as described previously.28 The raw data is deposited in the
Gene Expression Omnibus under accession number GSE35023.
After normalisation, quality control (QC) was carried for allelic expression

and genotyping as follows: (1) SNPs with average log 2 RNA signal intensity
values lower than 9.5 were excluded, to avoid low-intensity-related false
positives; (2) to verify allelic discrimination at RNA level a two-samples
Student’s t test was applied to compare RNA log ratios between
heterozygous (AB) and homozygous groups (AA and BB), and only SNPs
with p values � 0:05 for all comparisons were further analysed; (3) QC for
the genotyping analysis was carried by excluding SNPs with call rate
< 90%, Hardy–Weinberg equilibrium p value � ´ 10�5 and less than five
heterozygotes; finally, (5) SNPs with multiple genomic mapping entries,
flagged as suspected in dbSNP149 GRCh38p7 and located in sexual
chromosomes were also excluded.
The following equation was used for normalisation of allelic expression,

to cancel DNA dosage effects:

AEnorm ¼ log2
RNAalleleA=RNAalleleB
DNAalleleA=DNAalleleB

: (1)

DAE was inferred when jAEnormj � 0:58 (1.5-fold or greater allelic
difference) for at least 10% of the heterozygotes and a minimum of three
samples for a given SNP. Genes with at least one SNP with DAE were
considered to show evidence of being cis-regulated.
cis-eQTL data (evaluated for ±1 Mb around the transcriptional start site

of each gene) for 251 breast mammary tissue samples from GTEx’s v7
release was obtained from the GTEx Portal on 12 December 2017.29 Genes
whose expression levels were associated with at least one significant cis-
eQTL, at a false discovery rate of � 0.05, were selected.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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