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Density functional theory is theworkhorse ofmaterials simulations.Unfortunately, thequality of results
often varies depending on the specific choice of the exchange-correlation functional, which
significantly limits the predictive power of this approach. Coupled cluster theory, including single,
double, and perturbative triple particle-hole excitation operators, is widely considered the ‘gold
standard' of quantum chemistry as it can achieve chemical accuracy for non-strongly correlated
applications. Because of the high computational cost, the application of coupled cluster theory in
materials simulations is rare, and this is particularly true if finite-temperature properties are of interest
for which molecular dynamics simulations have to be performed. By combining recent progress in
machine learningmodels with low data requirements for energy surfaces and in the implementation of
coupled cluster theory for periodic materials, we show that chemically accurate simulations of
materials are practical and could soon become significantly widespread. As an example of this
numerical approach, we consider the calculation of the enthalpy of adsorption of CO2 in a porous
material.

In the past few decades, density functional theory (DFT) has become the
workhorse of materials simulations and owes its impressive success to its
good compromise between accuracy and numerical efficiency1. The
achievements of DFT come, of course, at a cost: The unknown exchange-
correlation function has to be approximated. Very simple approximations
derived from the uniform electron gas, such as the local density
approximation1,2, already provide satisfactory accuracy in describing the
properties of periodic materials. However, standard DFT functionals are
known to fail for certain classes of systems, particularly where weak inter-
actions are important or where the electronic correlation is strong3,4;
importantly, chemical accuracy is not systematically achieved, and this often
limits the predictive power of DFT-based materials simulations. Because of
thenon-systematic control on the accuracy, it is oftendifficult to understand
if the failure to accurately reproduce or predict experimental results is due to
the inadequacy of the particular model under consideration or of the
approximations involved in the DFT functional.

Correlated quantum chemical methods based on post-Hartree-Fock
(post-HF) approximations are instead systematically improvable and could

potentially overcome some of the limitations of DFT for materials simula-
tions. Among those, second-order Møller-Plesset perturbation theory
(MP2)5 and coupled cluster theory6 have been recently implemented for
periodic materials7–11. However, their computational cost is significant for
most practical applications inmaterials science and this issue becomes even
more dramatic when finite-temperature effects have to be included by
performing molecular dynamics (MD) simulations or Monte Carlo sam-
pling. For example, a brute-force computation of the enthalpy of adsorption
considered in this work would require billions of CPU hours and hundreds
of real-time years to be completed.

In the context ofMD simulations,machine learning (ML) is nowadays
a well-established tool to achieve larger system sizes and longer time
scales12–15. This is achieved by decomposing the total energy in atomic
contributions and using ML regression models to “fit” the interatomic
potential. Still, the ML-accelerated MD typically requires large amounts of
data and becomes rapidly challenging for the more expensive approxima-
tions. In thiswork,we showhowfinite-temperature observables for periodic
materials can be evaluated using the ‘gold standard’ coupled cluster ansatz,
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including single, double, and perturbative triple particle-hole excitation
operators (CCSD(T)) in combination with machine learning techniques
coupled with thermodynamic perturbation theory and Monte Carlo sam-
pling. Within this approach, the computational cost is limited to a small
number (a few tens) of single-point energy calculations that are then used to
train a data-efficient ML model.

For molecular systems, the application of ML techniques has already
been proven to be effective in enhancing the efficiency of CCSD(T) MD
simulations13,16–19. Very recently, applications tomolecular condensedphase
systems, specifically to liquid water, have also been considered. In ref. 20, the
MLmodel for periodicwaterwas trainedwith data produced forfinitewater
clusters using near-linear scaling coupled cluster theory. In ref. 21, CCSD(T)
calculations were restricted to very small periodic models based on a box of
16 H2O molecules, and the ML model was then used to compute radial
distribution functions, diffusion coefficients, and vibrational densities of
states. To the best of our knowledge, the application of CCSD(T) to finite-
temperature simulations of periodic solid materials has not been previously
reported in the literature. Our study was challenging for several reasons.
First, we dealt with a system containing more than 200 electrons, far more
thanused in anyprevious report onML-assistedMDCCSD(T) simulations.
Second, we focused on ameasurable thermodynamic quantity, the enthalpy
of adsorption, whose prediction imposes high demands on the quality of the
MLmodel. This is because any error in the energy of a configuration affects
not only the underlying phase space function used in ensemble averaging
but also the statistical weight of that contribution (see Eq. (2)).

This work is based on the combination of two ingredients. The first is
an efficient periodic coupled cluster theory implementation. This imple-
mentation is based on a plane-wave basis set and finite size and basis set
correction techniques that accelerate the convergence to the complete basis
set limit and thermodynamic limit significantly22,23. Using these techniques,
it is possible to obtain well-converged correlation energies at the CCSD(T)-
level of theory for periodic solids and surfaces containing more than 100
electrons on modern supercomputers24–27.

The second fundamental ingredient is an approach that couples
machine learning and thermodynamic perturbation theory (TPT)28, which
will be denoted as MLPT29–32. Within this approach, an ab initio molecular
dynamics simulation isfirst performedat anaffordable levelof theory (semi-
local DFT), and the statistical distribution is subsequently reweighted to
obtain observables at a higher level of theory (e.g. coupled cluster). While
this TPT procedure requires, in principle, a large number of single-point
calculations at the expensive level of theory, in practice, those can be
replaced to a large extent by inexpensive machine-learning predictions. By
using efficientmachine learning algorithms based on the smooth overlap of
atomic positions (SOAP) kernel33,34 andΔ−ML35,MLPT requires a limited
amountofdata tobe trainedon. For example, the calculationof enthalpies of
adsorption at the random phase approximation (RPA) level of theory
achieved convergencewith as few as 10 single configuration energies29. This
is particularly important when employing expensive approximations in a
finite-temperature context since otherwise, the amount of single-point
calculations and the associated computational cost would be too large.

As a specific application of our approach, we consider the calculation of
the enthalpy of adsorption of carbon dioxide in protonated chabazite
(HChab). The adsorption of molecules in zeolites is fundamental for many
applications, includingdepollution, separationof chemicals, and catalysis36–38.
In this field, more quantitative and systematically improvable theoretical
predictions are instrumental in interpreting experimental findings and pre-
dicting new materials. Although the calculations presented in this work are
still significantly more expensive than those based on standard density
functional theory, our proof-of-principle work paves the way to a more
systematic use of highly accurate post-HFmethods in materials simulations.

Results
Enthalpy of adsorption from first principles
In this work, we consider the calculation of the enthalpy of adsorption of
carbon dioxide in a porous zeolitic material, chabazite. In practice, this

quantity is computed as

ΔadsHðM@Z Þ ¼ ΔadsUðM@Z Þ þ ΔadsðpVÞðM@Z Þ
¼ hEðM@Z Þi � ðhEðM Þi þ hEðZ ÞiÞ � kBT;

ð1Þ

where ΔadsU is the internal energy of adsorption, 〈E(i)〉 denotes the
ensemble average of the total energy of the system i corresponding to a gas
phasemolecule (M), clean zeolite (Z), and the adsorbed system (M@Z), and
the identity Δads(pV)(M@Z) =−kBT is obtained by assuming an ideal gas
behavior ofMand a negligible change of pV of the zeolite due to adsorption.
The value of T is fixed at 300 K in all our simulations. The canonical
ensemble energy can be evaluated by directly performing an ab initio
molecular dynamics (AIMD) simulation but because of the high compu-
tational cost of CCSD(T) and MP2, this approach is impractical at these
levels of theory. Based on the plane-wave basis set coupled cluster
calculations are performed in several steps involving Hartree–Fock and
MP2 theory to obtain corresponding energies and optimized approximate
natural orbitals39. Once the natural orbitals have been computed, the Cc4s40

interface to VASP41,42 is used to compute intermediate quantities43 that are
needed for the subsequent coupled cluster energy calculations, including the
corresponding finite size22 and basis set corrections23. In the present
calculation, 10 unoccupied approximate natural orbitals per occupied
orbital are used for the CCSD calculations, whereas only 5 unoccupied
approximate natural orbitals per occupied orbital are employed to evaluate
the (T) contribution. A single CCSD(T) calculation for the given structures
containing up to 40 atoms took about 10,000 core hours.

Machine learning approach
The large number of high-level calculations required to estimate the
enthalpy (or other finite-temperature quantities) can be significantly
decreased using machine learning techniques. Specifically, starting from an
AIMD trajectory obtained using numerically affordable semi-local DFT
with empirical van der Waals corrections (PBE+D2)44,45, the post-HF
ensemble energies are estimated using the MLPT approach trained on a
small number of single-point calculations. This approach is described in
detail in ref. 29–32, and the two main steps are summarized here:
1. Given a set of configurations fRigMi¼1 from an AIMD trajectory in an

NVT ensemble with the PBE+D2 reference Hamiltonian H0 and
potential energy E0, the ensemble average energy generated by the
target HamiltonianH1 with potential energy E1 (MP2 or CC level) can
be obtained from thermodynamic perturbation theory by reweighting:

hE1i1 ¼
PM

i¼1 E1ðRiÞ expð�βΔEðRiÞÞ
PM

i¼1 expð�βΔEðRiÞÞ
; ð2Þ

where ΔE(R) denotes the energy difference E1(R)− E0(R) for a
specific atomic configuration R. In this work, E1 denotes either the
MP2 or the CCSD(T) target method potential energy. The trajectory
obtained with the reference Hamiltonian is called the production
trajectory.

2. While the application of Eq. (2) requires a large number of high-level
calculations, in practice, those can be largely replaced by inexpensive
predictions of a machine learning model. MLPT limits the amount of
data required for the training by using efficient algorithms based on the
kernel ridge regression with the SOAP kernel33,34 and Δ−ML35. E0(R)
is known, and the evaluation of Eq. (2) requires only the energy
difference ΔE(R).

SinceMLPT is based on thermodynamic perturbation theory, a limited
overlap between the production and target configurational spaces can lead
to inaccurate results. If a suboptimal overlap is suspected, a Monte Carlo
(MC) resampling can be performed. This procedure, described in detail in
ref. 32, uses Metropolis MC46 to resample the canonical ensemble at the
CCSD(T) and MP2 levels of theory. At each MC step, configurational
energies are computedwith the production approximation (PBE+D2) and
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subsequently evaluated at the post-HF level using the same ML model of
MLPT. The Metropolis acceptance criterion is applied at the target level of
theory, and accordingly, the correct target configurational space is sampled
without bias from the starting point.

Calculation of molecular adsorption enthalpies in zeolites
Let us now present and discuss the adsorption enthalpies of CO2 in pro-
tonated chabazite as computed at the MP2 and CCSD(T) levels of theory.
The latter approximation is commonly described as the ‘gold standard` of
quantum chemical simulations and is routinely used to produce reference
test sets to benchmark the accuracy of other methods47,48. The primitive cell
of the model considered here is shown in Fig. 1.

The experimental value of the enthalpy of adsorption of CO2 in
HChab, −8.41 kcal mol−1 49, is used as a reference for the computational
results. This experimental estimate is obtained by extrapolating measure-
ments to the zero coverage limit. The errors possibly arising from this
procedure are not discussed in ref. 49 and we cannot exactly quantify the
uncertainty in the experimental reference.

The computed results are presented in Table 1, where the error bars
related to the finite sampling and the ML model are also indicated29. The
molecular dynamics at the PBE+D2 level leads to an estimate for the
adsorption energy, which is more than 1 kcal mol−1 below the experimental
value, corresponding to a deviation well beyond chemical accuracy. This
MD trajectory is used as a starting point for MLPT to obtain post-HF
enthalpies. Similarly, the MP2 approximation obtained from MLPT also
tends to overbind and leads to results that do not qualitatively differ from
PBE+D2. This is not surprising and we believe that this overestimation is
caused by the lack of screening of long-ranged correlation effects in MP2
theory. The computational estimate of the enthalpy significantly improves
at theCCSD(T) level,whichprovides a value in excellent agreementwith the
experiment. This result demonstrates the high accuracy and predictive
power of the CCSD(T) approximation also for finite-temperature simula-
tions of materials.

In a previous work, we demonstrated that the RPA also provides
accurate enthalpies of adsorption of molecules in zeolites29. Specifically, the
value for CO2 in protonated chabazite is −8.01 kcal mol−1. Although the
RPA has a diagrammatic structure it is not as straightforward to system-
atically improve its accuracy as for post-HF methods50–57. In practice, the
RPA often provides more realistic results starting from a DFT approx-
imation rather than from HF52, and this starting point dependence makes
this approximation less reliable as a general predictive method.

Discussion
To fully prove the accuracyof theMLPTapproach forMP2 andCCSD(T), a
crucial point concerns the reliability of the PBE+D2 trajectory used as a
starting point for thermodynamic perturbation theory. Specifically, if the
target (MP2orCCSD(T)) configurational space has a small overlapwith the
production (PBE+D2) configurational space, the results of TPT may be
affected by a strong systematic error. As discussed thoroughly in ref. 32 for
systems similar to the one considered here, the occurrence of this issue can
be identified even if the exact target trajectory is unknown. Thermodynamic
perturbation theory is based on the reweighting of the statistics sampled by
the production trajectory to obtain the target level statistics (see Eq. (2)); in
case of a poor overlap, only a few configurations contribute to the total
weight, leading to poor ensemble estimates. In practice, this effect can be
measured by the Iw index, as defined in ref.

32. This index assumes the value
of 0.5 in the optimal configuration overlap case and tends to 0 for decreasing
overlaps. For the adsorption of molecules in zeolites, it has been shown that
even relatively small values of Iw around 0.03–0.05 still allow for reliable
MLPT estimates32. The reweighting of the trajectories at the MP2 level
provides large values for Iw (>0.15), and the corresponding enthalpies in
Table 1 should be considered fully reliable. For theCCSD level, a very low Iw
value for the adsorbed system (0.008) precludes making any reliable pre-
dictions of adsorption enthalpy; for this reason, this level of theory is not
discussed here. For the CCSD(T) level of theory, the Iw coefficient is one
order of magnitude higher: 0.07 for HChab and 0.05 for the adsorbed
system, indicating a better match between the PBE+D2 equilibrium
structure as compared to the CCSD level. While these Iw values are likely to
be sufficient to confirm the reliability of our results32, considering the pio-
neering nature of our work and the lack of any previous finite-temperature
benchmark results for periodic CCSD(T), we further investigated the
robustness of the MLPT estimate by resampling the CCSD(T) trajectory.
This is achieved byperforming aMetropolisMonteCarlo (MC) sampling of
the canonical ensemble at the CCSD(T) level by replacing the expensive
coupled-cluster calculations with the predictions of the same machine
learning model previously trained for MLPT. Differently from most
machine learning-based MD approaches12–15, this MLMC approach avoids
training on atomic forces, which are not readily available in the current
periodic CCSD(T) implementation and would require a significant over-
head cost. Since thermodynamic perturbation theory is not used and a new
trajectory is instead sampled from scratch,MLMC avoids the starting point
bias. The corresponding result for the enthalpy of adsorption, shown in
Table 1, differs by only 0.2 kcal mol−1 from theMLPT value. In theMLMC
case, the error bar is, however, sizeably larger because of the long auto-
correlation lengthof this trajectory (about a factor 10 longer than for theMD
trajectory), but this is sufficient to support our conclusion that the PBE+
D2 trajectory provides a reliable starting point to compute CCSD(T)
ensemble energies. This is also qualitatively confirmed by visualizing the
(high-dimensional) geometries sampled by the MD andMCmethods with
the t-distributed stochastic neighbor embedding (t-SNE) algorithm58. As
shown in Fig. 2, the PBE+D2 molecular dynamics and the CCSD(T)
Monte Carlo trajectories span configurational spaces that overlap well. This
figure also demonstrates that the training set provides a rather uniform
sampling of the data, as required for a balanced training of the ML model.

Fig. 1 | Adsorbed system. The unit cell of the system studied in this work is CO2 in
protonated chabazite.

Table 1 | Enthalpy of adsorption of CO2 in protonated chaba-
zite (kcal mol−1) computed using different target and sampling
methods

Target method Sampling method Enthalpy (kcal mol−1)

PBE+D2 MD −9.72 ± 0.27

MP2 MLPT −9.50 ± 0.24

CCSD(T) MLPT −8.32 ± 0.28

CCSD(T) MLMC −8.09 ± 0.71

Experiment49 Adsorption isotherms −8.41
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To further analyze the overlap between the configurational space of the
PBE+D2 functional and of the post-HFmethods we consider the structure
of the protonated chabazite cage. For this purpose, the radial distribution
function of the Si–O pairs has been computed for the PBE+D2 molecular
dynamics trajectory and forMP2andCCSD(T) approaches usingMLPTand
MLMC.As previously shown in ref. 32, themost spectacular failures ofMLPT
are encountered when the production approximation predicts equilibrium
distances of covalent bonds that differ from the target theory; this translates to
very different configurational spaces and fully unreliable perturbative esti-
mates. For protonated chabazite, Fig. 3 clearly shows that the radial dis-
tribution functions computed for the Si-O pairs are similar at different levels
of theory, and problematic behaviors of MLPT should not be expected.

Finally, it is important to notice that the effects included by MLPT do
not correspond to a trivial energy correction.Within a simplified approach,
the coupled cluster and MP2 enthalpies could be approximated as

ΔadsHCCSDðTÞ=MP2 ≈ΔadsHPBEþD2 þ ðΔadsECCSDðTÞ=MP2 � ΔadsEPBEþD2Þ: ð3Þ

In this case ΔadsECCSD(T)/MP2 = ECCSD(T)/MP2(M@Z)− ECCSD(T)/MP2(M)−
ECCSD(T)/MP2(Z) corresponds to the CCSD(T) or MP2 adsorption energies
computed using the structures corresponding to potential energy minima
determined at the PBE+D2 level; ΔadsEPBE+D2 is analogously defined for
PBE+D2.This approximation is efficient since a singlepost-HFcalculation
is required for eachoneof the three systems.However, this “static” approach
is basedona strong andnot generally valid assumption that thepost-HFand
DFT approaches produce energy surfaces that are shifted by a constant but
otherwise parallel. MLPT instead requires only a reasonable overlap
between the configurational spaces of production and target approxima-
tions, which can be tested using the Iw index, and “deformation” effects of
the energy surface are kept into account by the reweighting in Eq. (2). By
applying Eq. (3) we obtain ΔadsHCCSD(T) =− 8.69 kcal mol−1 and
ΔadsHMP2 =− 9.03 kcal mol−1. The CCSD(T) enthalpy obtained in this
way agrees fairly well with the MLPT value. However, within this static
correction approach, CCSD(T) andMP2 provide very similar results, while
MLPT showed that these results should differ by about 1.2 kcal mol−1 (see
Table 1). This observation shows that the static correction approach of Eq.
(3), while providing reasonable estimates in some caseswith fortuitous error
cancellations, is not reliable in general and can lead to misconceptions.

In conclusion, we have presented an application of CCSD(T) to
compute the enthalpy of adsorptionof carbondioxide in a periodicmodel of
zeolite. Due to the high computational cost, applications of CCSD(T) to
periodic materials are so far limited, and direct calculations of finite-
temperature observables are unpractical in terms of required computational
resources and execution time. Here we showed that these challenges can be
overcome by coupling machine learning models requiring small training
setswith an efficient implementation of periodic coupled cluster theory. The
computed enthalpy of adsorption of carbon dioxide in protonated chabazite
was found to be in excellent agreement with the experiment. While still
significantly more expensive than approaches based on density functional
theory, our pioneering work opens the door to more reliable and predictive
simulations of materials in finite-temperature conditions. Future work will
be aimed at demonstrating the accuracy of ML-based CCSD(T) in broader
classes of problems, including, for example, the computation of free energies
of activation, which play a fundamental role in the modeling of catalytic
reactions.

Methods
Coupled cluster calculations
The coupled cluster theory calculations are performed using the Cc4s
code40, which is interfaced with the Vienna ab initio simulation package

Fig. 2 | Visualization of the configurational spaces. t-SNE representation of the
configurational spaces spanned by the PBE+D2 molecular dynamics (MD) tra-
jectory and the CCSD(T) machine learning Monte Carlo (MLMC) trajectory. The
configurations included in the training set are also shown to demonstrate that they
cover essentially the whole relevant part of the configurational space sampled at the
CCSD(T) target level. The axes represent the two components of the t-SNE
projection.

Fig. 3 | Radial distribution functions. First (a) and second (b) series of peaks of the partial radial distribution function for the Si–O pairs determined at different levels of
theory.
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(VASP)41,42. In ref. 24, all individual steps are described when combined
with an embedding approach, which was not necessary for the present
system due to its relatively small unit cell containing up to 40 atoms
only. The convergence of the CCSD and (T) correlation energy con-
tributions to the molecular adsorption energy was tested on a single
configuration, and the details are reported in the Supplementary
Information.

Ab initio molecular dynamics
ab initio molecular dynamics simulations based on the PBE+D244,45 were
performed in the NVT ensemble, and the simulation temperature of 300 K
was controlled using the Andersen thermostat59 with a collision probability
of 0.05. Two hundred thousand configurations were sampled with a time-
step of 0.5 fs for a total of 100 ps. The first 10 ps of each trajectory were
discarded as the equilibration period. The cell parameters were fixed to the
values obtained, optimizing the chabazite cell at the PBE level60. The VASP
electronic structure programwas used for all AIMD simulations and single-
point calculationswithin theΓpoint approximation.Hydrogenatomicmass
was set to 3.0 au.

MLmethods
In this work, the training set is based on 100 uncorrelated configurations
evenly spaced along the PBE+D2 trajectories and 10 randomly chosen
configurations for the test set. The MP2 and CCSD(T) calculations are
performedonly for those selected geometries. Kernel ridge regression, using
the rematch kernel34 and the smooth overlap of atomic positions (SOAP)
descriptor, was used as implemented in the DScribe library61. The model is
trained to predict the differences between the post-HF and the PBE+D2
energies35. Details of the hyperparameter tuning and model accuracy are
provided in Supplementary Information.

In the machine learning Monte Carlo resampling, new configurations
xnew are proposed by sampling velocities v from a Maxwell–Boltzmann
distribution and integrating them for a timestep Δt chosen to be 0.5 fs:
xnew = xold+ vΔt. For the adsorbed system, the molecule is additionally
subject to a random translation (up to 0.5Å) and rotation (up to 35°). The
new proposed configuration is then accepted or rejected according to the
Metropolis criterion based on the energy predicted by the machine
learning model.

Data availability
The geometries of the configurations used to train and test the MLmodels,
the corresponding energies, and the input files for the coupled cluster cal-
culations are available at https://github.com/bslhrzg/mlpt-mlmc.

Code availability
TheVASP code is copyrighted software and can be obtained from its official
website. The CC4S code is available for download at https://gitlab.cc4s.org/
cc4s/cc4s. The codes used to perform MLPT and MLMC calculations are
available at https://github.com/bslhrzg/mlpt-mlmc.
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