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Adaptive finite differencing in high accuracy electronic
structure calculations
E. L. Briggs 1✉, Wenchang Lu 1,2✉ and J. Bernholc 1,2✉

A multi-order Adaptive Finite Differencing (AFD) method is developed for the kinetic energy operator in real-space, grid-based
electronic structure codes. It uses atomic pseudo orbitals produced by the corresponding pseudopotential codes to optimize the
standard finite difference (SFD) operators for improved precision. Results are presented for a variety of test systems and Bravais
lattice types, including the well-known Δ test for 71 elements in the periodic table, the Mott insulator NiO, and borax decahydrate,
which contains covalent, ionic, and hydrogen bonds. The tests show that an 8th-order AFD operator leads to the same average Δ
value as that achieved by plane-wave codes and is typically far more accurate and has a much lower computational cost than a
12th-order SFD operator. The scalability of real-space electronic calculations is demonstrated for a 2016-atom NiO cell, for which the
computational time decreases nearly linearly when scaled from 18 to 144 CPU-GPU nodes.

npj Computational Materials           (2024) 10:17 ; https://doi.org/10.1038/s41524-024-01203-y

INTRODUCTION
Density functional theory (DFT)1–3 has enabled accurate, ab initio
predictions of materials properties and explanations of a wide
range of experimental data. Tens of thousands of DFT calculations
are performed each year. The reliability of DFT predictions has led
to materials-genome-type projects4–7, in which a large set of
possible material compositions and structures are screened by
DFT calculations in order to identify those with promising
properties. Those with the most potential are then suggested or
selected for experimental synthesis and evaluation.
Reliability of predictions is critical to any evaluation of potential

predictions, and the accuracy of practical DFT calculations is thus a
factor when choosing a suitable computational method. However,
full-precision DFT calculations can be computationally expensive,
especially if complex structures or multi-component systems are
involved, and the choice of approach and code often involves a
tradeoff between computational accuracy and practicality. For-
tunately, the methodology has advanced to the point where the
results of several widely-used DFT codes agree well with each
other and a set of benchmark high-precision calculations for a
large set of elements across the periodic table8. However, the
tradeoffs remain for more complex systems or large survey
studies, requiring practical compromises between the computa-
tional expense, accuracy, and even the choice of the computa-
tional method. This paper describes a significant advance in the
class of methods that use real-space grids to solve DFT equations.
By using adaptive finite differencing to discretize the kinetic
energy operator, the real-space results agree with those of plane-
wave-based codes using much lower grid densities than those
previously required and reproducing the benchmark DFT results8

at the same accuracy level as those of plane-wave-based and all-
electron codes. The improved discretization enables high-
precision real-space calculations at a substantially reduced cost
while leveraging the well-known advantages of real-space
methods of easy parallelization across many nodes, including
multi-CPU and multi-GPU configurations, and avoiding the use of

Fast Fourier Transform algorithms, which require global commu-
nication across nodes.
Briefly, in density functional theory, the ground state electronic

structure of many-electron systems is solved numerically, typically
after introducing the Kohn-Sham equation2, which is derived
variationally from the total energy functional after approximating
the kinetic energy by that of non-interacting electrons. The
electrons are described as single particles in the presence of an
external potential stemming from nuclei and externally applied
fields and an effective potential, introduced by interactions with
other electrons and the effects of the Pauli exclusion principle and
spin:

�∇2 þ Vext rð Þ þ Veff rð Þ� �
ψi rð Þ ¼ εiψi rð Þ i ¼ 1; ¼N (1)

for the N electrons in the system. Rydberg atomic units are used
throughout. The effective potential is further split into the classical
electron-electron repulsion part and the exchange-correlation part
that accounts for all effects left out by the classical non-interacting
electrons picture. While it has been proven that the exact
exchange-correlation potential is only a functional of the total
electron density1, its functional form is unknown. Nevertheless,
excellent approximations exist, starting with the local density
approximation, which pointwise approximates this potential with
that of the uniform-density electron gas through a “Jacobs ladder”
of functionals with increasing complexity and a better description
of the exchange-correlation energy9. Non-local approximations to
exchange-correlation functionals have also been devised, includ-
ing various forms of hybrid functionals10–12.
Depending on the treatment of the external potential from the

nuclei, the methods to solve the Kohn-Sham equation can be
categorized into two groups, the first being the all-electron
method that includes both core and valence electrons in the
calculations13–15. The other group replaces the nuclei and inert
core electrons with atom-derived pseudopotentials16–19 or effec-
tive core potentials20–22 that are constructed to accurately
describe the interactions of valence electrons with the ionic
cores. Pseudopotentials dramatically reduce the numbers of
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electrons and plane waves or grid points included in the
calculations23. Furthermore, because the valence electrons experi-
ence a softer pseudopotential instead of the real potential, the
wave functions are smoother, and the basis set required to
describe them is much smaller. Another advantage is the implicit
inclusion of relativistic effects in the pseudopotential so that
relativistic effects do not need to be explicitly addressed in the
numerical solution of the Kohn-Sham equations24. For these
reasons, most large DFT calculations use pseudopotentials. When
pseudopotentials are carefully constructed from atomic all-
electron calculations, they are transferable to different atomic
environments and provide results that agree well with those of all-
electron calculations8,25.
The norm-conserving pseudopotentials16,19 use angular

momentum projectors to force pseudo wavefunctions to agree
exactly with atomic all-electron wavefunctions beyond a matching
radius, typically chosen slightly beyond the core radius. A
Kleinman-Bylander form of pseudopotentials26 converts the
angular projectors to limited-range 3D projectors, significantly
simplifying their applications in calculations that use plane-wave
basis sets. Ultrasoft pseudopotentials17 relax the norm-
conservation criteria and further reduce the basis set size but
introduce sharp augmented charge densities near the atomic
cores that require careful numerical treatment. Recently,
Hamann19 incorporated the main aspects of ultrasoft pseudopo-
tentials into a norm-conserving form and generated pseudopo-
tentials with multiple projectors for each angular momentum. As a
result, these pseudopotentials are nearly as soft as the ultrasoft
ones while avoiding the complexity of the augmented charge
density.
In the last few decades, considerable work has been devoted to

developing methods for solving the Kohn-Sham equations using
pseudopotentials. The wave functions are usually expanded in a
basis set, and the resulting secular equations are solved using
matrix methods, which provide wave function information used to
analyze physical phenomena. Many physics-, chemistry- or
mathematics-motivated bases exist, including plane waves27–33,
atomic or atomic-like orbitals34–37, Gaussians38–45, real-space
grids46–61, wavelets62–65, and finite elements66–68.
The most widely used approaches use plane waves as a basis,

taking advantage of the fact that the kinetic energy operator is
diagonal in Fourier space, while the potential is diagonal in real
space (except for the non-local projectors and non-local
exchange). The transformations between the two spaces use Fast
Fourier Transforms (FFTs), which have the well-known MlogM
scaling with the number of plane waves or grid points. Another
advantage of plane-wave calculations is using a single, easy-to-
understand parameter determining the basis set size and thus the
computational precision: the highest kinetic energy of plane
waves included in the calculations – the plane-wave cutoff.
Since real space is the dual to Fourier space, methods using

uniformly-spaced grids46–50,53–61 should offer similar advantages
to plane waves and avoid extensive use of FFTs, the price being an
inexact treatment of the kinetic energy operator. As shown in the
sections below, adaptive discretization of this operator leads to
dramatically improved accuracy, facilitating grid-based calcula-
tions with modest grid sizes and enabling highly accurate large-
scale calculations on modern parallel computers.
The rest of the paper is organized as follows. We first present an

analysis of the finite difference operator in the context of
electronic structure calculations, followed by a procedure to
generate standard finite difference operators for non-orthogonal
lattices. Next, we introduce an adaptive finite difference operator
optimized for electronic structure calculations and present the
results of the Δ test, a well-known test8 evaluating the accuracy of
electronic structure codes, comparing grid-based results to highly
accurate all-electron benchmarks for 71 elements. The following
subsections examine energy convergence with grid spacing, and

show an example of a highly accurate, large-scale DFT calculation
obtained using the adaptive operator, parallelized over the
hundreds of CPU-GPU nodes of an exascale supercomputer. All
the grid-based calculations use the Real-space MultiGrid (RMG)
code48,49,69.

RESULTS
Analysis of the finite difference operator
Real-space, grid-based methods for solving the Kohn-Sham
equations typically use finite differences (FD) to implement the
kinetic energy operator -∇2 appearing in the Kohn-Sham
equation. The space locality inherent to FD operators is
computationally efficient and suitable for parallelization via
domain decomposition, which partitions the computational
volume into subvolumes assigned to different nodes. In plane-
wave methods, the Laplacian operator is trivial, while the charge
density calculations and applications of the potential need
transferring of all the wave functions from the plane wave
representation to real space using Fast Fourier Transforms (FFTs),
which require communications across the entire computational
domain. However, the plane-wave treatment of the Laplacian is
exact within the basis set defined by the G-space cutoff, while the
FD approximation introduces errors. Minimizing the FD error is
thus necessary to exploit the computational advantages possible
in real space. The various approaches have included non-uniform
grids46, higher-order central finite difference operators47,70, the
Mehrstellen discretization in our previous version of the RMG
package48,49, and adaptive coordinates and grids51,71.
We begin the analysis by considering the standard central finite

difference approximation for the second derivative of a function
f xð Þ on a uniform grid of spacing h; using 2nþ 1 grid points, as
given by Eq. (2).
The coefficients ai are chosen to make the expression exact for

polynomials of degree less than or equal to 2n

f
0 0
n x0ð Þ ¼ a0f x0ð Þ þ

Xn
i¼1

ai f x0 þ ihð Þ þ f x0 � ihð Þð Þ þ Rn h2n
� �

; (2)

where the truncation error is

Rn ¼ bnh
2nf 2nþ2 x0ð Þ þ O h2nþ2� �

(3)

and the bn arise from the Taylor series expansions used to derive
Eq. (2), with b1 ¼ 1

12 ; b2 ¼ 1
24 etc. There are alternate representa-

tions of the Laplacian where the coefficients are optimized for a
different set of properties. For example, controlling dispersion is
required for stable finite difference solutions to the wave
equation, and there is a large body of work on this specific
topic72–74. The goal is to find coefficients for use in Eq. (2) that are
optimized for electronic structure calculations. Let f xð Þ be
represented by a plane wave expansion of the form below

f xð Þ ¼
X
j¼1;N

Cj exp iGjx
� �

: (4)

The first term of the truncation error in Fourier space can be
written as

Rn ¼ bnh
2n

X
j¼1;N

iGj
� �2nþ2

Cj exp iGjx0
� �

: (5)

For each frequency, the truncation errors of different orders are
proportional to the C0

j s; which are determined by the Fourier
transform of the original function. Therefore, a linear combination
of finite difference operators of different orders can be
constructed to reduce the truncation error. The adaptive operator
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can be written as

f
0 0
newf g x0ð Þ ¼ 1þMð Þf 0 0n x0ð Þ �Mf

0 0
n�1 x0ð Þ: (6)

The composite operator is guaranteed to be exact for
polynomials up to degree 2 n� 1ð Þ; while a further variation of
M may be used to minimize the truncation error for a target class
of functions. This method of optimizing finite difference operators
by mixing stencils of a different order is not necessarily
appropriate for arbitrary functions but has been used successfully
for specific purposes74. In our RMG implementation and tests, we
found that M is always positive. This is supported by the error
analysis below.
Analyzing the error in more detail is useful when the adaptive

operator is applied to plane waves. For a given reciprocal vector G,
the truncation errors for a standard nth order operator can be
expressed as a power series

Rsn Gð Þ ¼ 1

h2
X

m¼1;2¼

bn;m ihGð Þ2nþ2m
(7)

Here we ignore the phase term eiGx0 . For a periodic system, the
values of hG are always in the range of [-π,π]. The bn;m decrease
with increasing m, and the signs of the errors alternate for m =
even or odd, but the errors for hG≫1 are still large compared to
the small hG range.
The truncation error for the adaptive nth order operator is

Ran G;Mð Þ ¼ 1þMð ÞRsn Gð Þ �MRsn�1ðGÞ (8)

For a given n, the constants bn,m may be evaluated using a
symbolic math package (e.g., SymPy75). For the 8th order adaptive
operator (n= 4) we obtain the truncation error

Ra4ðG; MÞ ¼ 1

h2
� M
560

hGð Þ8 þ 1
3156

þ M
1680

� �
hGð Þ10 � 1

13860
þ 19M
201600

� �
hGð Þ12 þ ¼

� �

(9)

Figure 1 is a graph of the truncation error vs. G from Eq. 9 for
M= 0.33 as well as graphs of the errors for the 6th and 8th order
standard operators used to construct the adaptive. It’s clear from
the graph and Eq. 7 that the error increases rapidly as hG ! 1.
Therefore, a necessary condition for using finite differences in
electronic structure calculations is for the wavefunction compo-
nents to be small when |hG|>1 and approach zero as |hG| is
close to its maximum π. Fig. 1a shows that for G>X ffi 0:29 the
adaptive operator is more accurate than the standard 8th while
the zoomed view in Fig. 1b shows that for G<X the standard 8th
order is slightly more accurate. The absolute magnitude of the
errors is very different in the two regions, with the adaptive
operator having a significantly flatter error curve over a broader
range than the standard operators. The total truncation error
depends on both RnaðG;MÞ and the profile of ψ Gð Þ; with the
adaptive process optimizing M to minimize the total error.
However, the calculations presented later show that even a fixed

value of M= 0.33 leads to more accurate results for a wide range
of atomic species and grid spacings. While the reason for this is
not immediately obvious, it can be understood by focusing on
the differential absolute errors in the regions to the left and
right of G ¼ X in Fig. 1. The absolute errors for plane waves with
G<X are small for both adaptive and standard operators. In a
high-cutoff calculation, where the wavefunctions have little
weight for G>X , the overall error and the differences between
the operators are small. For a less converged calculation, where
the wavefunctions have significant components for G>X , the
adaptive operator has a significantly lower total error because
the errors for the standard operators increase rapidly in this
region. As noted earlier, the 8th-order adaptive operator with
M= 0.33 performs well over a wide range of atomic species and
grid spacings, but as the grid density becomes very high, there
is a point where the standard operators are more accurate
because the wavefunctions have vanishing components for G>X .
The fully adaptive operator overcomes this issue by optimizing
M for specific calculations, decreasing M as the convergence
level increases.

Finite difference operator by Taylor Series expansion
For cubic or orthorhombic lattice systems, the lattice vectors are
orthogonal to each other, and the FD operators can be obtained
separately for each direction. For a general lattice type, where
the lattice vectors are not orthogonal, such as monoclinic or
triclinic systems, the following process is used to generate the
initial coefficients for a specific order. Then, the procedure
discussed in the next subsection is used to optimize the FD
operator further to reach high precision without increasing the
computational cost.
First, a few special axes in the real-space grid are chosen

appropriately for the lattice type; axes that coincide with the
lattice vectors are always included. 2n grid points along each axis
are used for the following minimization. For each point, the
function f(x,y,z) can be expressed as the Taylor series expansion

f xi; yj; zk
� 	

¼ f x0; y0; z0ð Þ þ
X
lmp

f ðlmpÞ

l!m! p!
hlxh

m
y h

p
z þ δðijkÞ (10)

Where f lmn are the derivatives to be determined and l+m+ p
< 2n+ 1 for the 2n-order FD operator. We define an error norm R
by

R ¼
X
ijk

δ ijkð Þj j2
h3ijk

(11)

where δðijkÞ is defined in Eq. (10) and hijk is the distance from the
point ðxi; yj; zkÞ to the point x0; y0; z0ð Þ:The summation is over the
set {ijk} of points included in the FD operator. For monoclinic or
triclinic systems, the sampling grid points are on axes along the
lattice vectors and also additional axes. The FD coefficients can be

Fig. 1 Truncation errors in finite difference operators. a, b Absolute value of the finite difference truncation error of plane waves with
different G vectors, up to half of the Nyquist frequency Gmax. The 8th-order AFD operator uses a mixing value of M= 0.33. Part b is an
enlargement of the low-G part of a. The vertical axes units are 1/h2 (see Eq. 7).
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obtained by minimizing the norm in Eq. 11, and we have

∂R

∂f ðlmpÞ ¼ 0 (12)

This will generate a set of linear equations and the derivatives
fðlmpÞ can be obtained by solving these linear equations76. One can
always avoid the singularity of the linear equations by including
more grid points and axes.
For orthogonal lattices, the resulting FD kinetic energy operator

is separable. For non-orthogonal lattices, cross terms occur, but
both the kinetic energy operator and the first derivatives are
obtained from the same sampling points with predetermined
coefficients. Recently, a Kronecker product formulation of the
kinetic energy operator for non-orthogonal lattices has been
developed77. All of the derivatives are applied separately on the
lattice vectors, but the cross terms ∂2=∂ζ∂η need to be applied
sequentially on each lattice vector. We have not explored this
formulation.

Adaptive finite difference operator
A generalization from the one-dimensional mixed operator case
discussed above to three dimensions is trivial, i.e., the truncation
error in one lattice frequency is always proportional to the
component of the target function at that frequency. This is true for
all lattice types in solid-state physics, and the operators along the
different axes are determined by the method described above.
For electronic structure applications in which the Kohn-Sham

equation is solved numerically, the target functions are the Kohn-
Sham wave functions. To a first-order approximation, these may
be written as a linear combination of the pseudo atomic orbitals
ψatomic . In a non-atomic environment, the ψatomic should still
provide a good representation of the Kohn-Sham wave functions
in the regions near the ionic cores, as is implicitly assumed in the
linear combination of atomic orbitals (LCAO) methods for
calculating the electronic structure of molecules and solids78. In
the interstitial regions, their deviation from the pseudo atomic
orbitals may be larger, but as they are much less rapidly varying
than in the core regions, an operator of the above form, which is
exact for polynomials of degree 2 n� 1ð Þ; is highly accurate for a
sufficiently large n. For these reasons, the pseudo atomic orbitals
were chosen as the optimization functions for the finite difference
operators. In analogy with pseudopotentials, operators con-
structed using this procedure are highly accurate for isolated
atoms and should also be transferrable to solids or molecules.
The optimization procedure requires a reference standard. For a

function discretized on a uniform real space grid, the most
accurate Laplacian operator is the FFT method. Unfortunately, this
would require transforming all the real-space wave functions to
the reciprocal space via FFTs. For very large calculations in which
the wave functions are distributed across many computing nodes,
the FFTs are too slow because they require global communica-
tions. Nevertheless, the FFT Laplacian is well-suited as a reference
standard because it only needs to be computed once for each
atomic orbital. The overall computational cost is negligible. We
choose the objective function to be minimized as the norm of the
difference between the kinetic energies of the real-space atomic
orbitals computed via FFT versus their values computed by finite
differences. Weighting factors are applied based on the atomic
orbital occupations and the number of atoms of each kind in the
anticipated large calculation. The final formula is

F Mð Þ ¼
X
i¼1;N

wij<ψiðrÞ LFD Mð Þ � LFFTj jψi > j2; (13)

where ψi is one of the distinct atomic orbitals, and wi is the weight
factor equal to the total occupancy for this orbital. LFD is the finite
differential Laplacian operator and LFFT is the FFT Laplacian
operator. The minimization process for F Mð Þ can be performed by

using a least-squares fit of the resulting data to determine the
minima. If the deviation is too large for any orbital of a specie
included in the calculations than a given tolerance, which we set
at 10-4, the grid spacing is decreased. If desired, this procedure can
be automated.
Figure 2a, b show the Ni 3dxz orbital in real and G spaces,

respectively. Although the truncation errors for the high-
frequency plane waves are large, the orbitals have very small
components in this range, which can be clearly seen in Fig. 2b.
Figures 2c and d show the truncation errors in real and G spaces
for this orbital with different finite-difference operators. As was
noted before, the truncation error at a specific G vector is
proportional to the orbital’s component at this frequency. This can
be clearly seen in Fig. 2d, where the errors have the same trends
for both 6th- and 8th-order standard FD operators, independent
of the grid spacings or the effective cutoff energies. In real space,
the errors also have the same trends for both 6th- and 8th-order
SFDs. Therefore, the errors are dramatically reduced with the
adaptive 8th-order FD operator. In fact, it has better accuracy than
the standard 12th-order FD operator (see below). The optimization
uses the atomic orbitals as the target functions, and the resulting
AFD is transferable to the wavefunctions in the real applications.
Figure 2e and f shows the finite-difference errors (compared to the
FFT results) for the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) of NiO in a
64-atom cell. In the interstitial regions, the wavefunctions are
smooth, and the errors from both SFD and AFD are small. In the
regions near atoms, the errors from AFD are significantly smaller
than those from SFD. This indicates that AFD is more accurate than
SFD not only for the atomic orbitals but also for the extended-
state wave functions. The more accurate total energy in the next
section also proves that. Since a high-order FD operator requires
more computational resources than the lower-order one, not only
because of the size of the FD tensor but also the communication
cost of reaching adjacent domains when domain decomposition is
used in massively parallel calculations, the adaptive finite
difference (AFD) operator leads to more accurate results at a
significantly lower computational cost. We discuss the computa-
tional advantages of AFD below.

Accuracy across the periodic table
The DFT Δ test8,79 was selected to test the adaptive operators in
the RMG code80 across a wide range of atomic species and lattice
types. The Δ test evaluates the average variance between the
equations of state calculated by different codes and has become a
standard way of comparing the computational accuracy and
reproducibility of DFT codes using different all-electron or
pseudopotential methods, basis sets, and algorithms for 71
different atomic species. Published results listing the average Δ
are available81 for a large selection of DFT codes, using highly-
converged all-electron results obtained by the WIEN2k code82 as
the reference standard. For comparisons with other codes, we
used a mixture of ONCV, GBRV, and pslibrary pseudopotentials
that tracked closely with the SSSP accuracy library83, for which
exhaustive tests of transferability and accuracy have been carried
out83. The correspondence was not exact, as RMG does not
support PAW-based pseudopotentials used for some atomic
species in the SSSP library. Instead of PAW-based potentials, we
used those from the SG1584 or the GBRV85 libraries. The
developers of these and other libraries chose to include semi-
core orbitals for many elements for reliability, transferability, and
precision, see Supplementary Table 1. The authors are not
pseudopotential developers and had no role in choosing the
semi-core configurations. In general, the pseudopotential devel-
opers include semicore electrons in the calculations if they have
significant spatial overlap with valence electrons and thus affect
interatomic interactions, as uncovered by extensive testing. As an
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example, consider the 5th column atoms As, Sb, and Bi. For the
4th row As, the pseudopotential only includes 4 s and 4p
electrons. For the 5th row Sb, the pseudopotential includes the
semicore 4d electrons in addition to 5 s and 5p. For the large-core
6th row Bi, the SSSP accuracy pseudopotential includes the
semicore 5 s, 5p, and 5d electrons, in addition to 6 s and 6p. One
should note that the Δ-test grid spacings for As, Sb, and Bi are
similar, 0.236–0.281 bohr.
Figure 3 provides an element-by-element comparison of the

individual Δ values for the 8th-order adaptive and the 12th-order
standard finite difference operators at the same grid spacings. The
3 largest Δ values for the standard 12th-order operator are for Fe,
Co, and Lu. They represent elements with extremely hard
pseudopotentials and highly localized orbitals. Removing all of
them from averaging produces an average value of 0.503 meV,
which is 69% worse than the value of 0.298 meV for the adaptive
8th-order operator. Table 1 lists the average Δ values for the 8th,
10th and 12th- order standard operators as well as the 8th-order
adaptive and 8th-, 10th-and 12th-order operators with fixed
mixing. The latter are generated using the same mixing value for
all species, making them easy to implement. They produce lower
Δ values than the standard operators of the same order, although
not as low as the fully adaptive 8th. One should note that the total
energy must converge to the same value when the grid spacing is
small enough for both standard and adaptive operators. This can
be seen in Fig. 4 described in the next subsection. In all the cases
shown there, the total energy converges to the same value at an
extremely high cutoff energy (corresponding to a very small grid
spacing), but the 8th-order AFD converges much faster than the

higher-order SFDs, and reaches plane-wave precision at a similar
effective cutoff as plane waves.

Energy convergence with the grid spacing
In this subsection, we examine the convergence of the total
energy versus grid resolution, represented by the corresponding
plane-wave kinetic energy cutoff, of various forms of finite-
differencing of the kinetic energy, compared to a reference value
obtained by a plane-wave code that treats the kinetic energy
exactly at that cutoff. For a given grid (N1,N2,N3) in real space,

Fig. 2 Orbital and discretization errors in real space and reciprocal G space. Ni 3dxz orbital in (a) real space and (b) G space, along the xz
direction. Finite difference errors of Ni 3dxz orbital in c real space and d G space, along the xz direction. Finite difference errors for e HOMO
and f LUMO wave functions of NiO along the [111] direction. Ni-O distance is 3.61 Å. The atomic orbitals in both real and G spaces and the
wavefunctions (in real space) are all normalized to unity.

Fig. 3 Δ value comparison for the 8th order adaptive and 12th
order standard operators. The results were obtained using RMG
version 5.3.
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where N1,2,3 are the numbers of grid points along the three lattice
vectors, the corresponding grid in the reciprocal space (FFT grid)
has the same dimensions along the three reciprocal lattice vectors.
All the grid points in the reciprocal space can be written as Gijk ¼
ib1 þ jb2 þ kb3 where b1,2,3 are the reciprocal lattice vectors and
� 1

2N1;2;3 � i; j; k � 1
2N1;2;3. These G vectors form a hexahedron,

and we compute the kinetic energy cutoff as the radius squared of
the inscribed sphere of this hexahedron, which is consistent with
the procedures used by plane wave codes. For cubic or
orthorhombic lattices with a single grid spacing, the conversion
factor between the grid spacing h and the kinetic energy cutoff
becomes (π/h)2 (Ry). While the Δ test consists of calculations for
elemental solids, we use supercells with more than one type of
atom here, employing norm-conserving pseudopotentials
(NCPP)16,19. While the AFD method is equally applicable to
ultrasoft pseudopotentials (USPP)17, the wavefunctions from NCPP
are typically more rapidly varying than those from USPP and
therefore provide a more rigorous test of the quality of the
operator. The reported results were generated using the SG15
potentials developed by Schlipf and Gygi84 using Hamann’s ONCV
code19,86. The first system is the Mott insulator NiO, represented
by a 64-atom supercell of NiO in an antiferromagnetic configura-
tion, with Ni 3s23p6 semi-core states included in valence. Figure 4a
shows the difference in total energy ΔE between a reference value
and RMG v.5.3 using various forms of the kinetic energy operator.
The reference values were generated using the open-source
plane-wave code Quantum Espresso (QE)31,87 that has an exact
representation of the operator within its basis set. While all of the
finite-difference-based operators achieve good agreement with
QE at high energy cutoffs, the adaptive operators are considerably
more accurate at lower cutoffs. Indeed, the 8th-order AFD
operator is more accurate than the 12th-order standard operator
up to a 205 Rydberg cutoff, with the difference at 124 Rydbergs
being a factor of 11.

The second test case is borax decahydrate,
Na2[B4O5(OH)4]·8H2O, which has a complex monoclinic structure
with 86 atoms in the primitive cell and a mixture of covalent, ionic,
and hydrogen bonds88. As shown in Fig. 4b, the adaptive finite
differencing is more accurate than the standard 10th- and 12th-
order finite-difference formulas at all tested cutoffs, with the
difference exceeding a factor of 200 at 117 Rydbergs, and
converges more quickly to the reference value.
Figure 4c shows the time per SCF step at a prescribed precision

for borax decahydrate, compared to the reference Quantum
Espresso plane wave calculation. For the same precision, the
standard finite difference operators require significantly denser
grids than the adaptive operator, and thus their times per SCF step
are substantially greater.

Large-scale DFT calculations using the adaptive operator
The adaptive finite-difference operator enables high-accuracy
calculations for large systems at significantly reduced cost. As an
example, we consider a 2,016-atom NiO cell in an antiferromag-
netic configuration, also with Ni 3s23p6 semi-core states included
in valence. The calculation was spin-polarized and used 14,128
Kohn-Sham wavefunctions for each spin channel. Based on the
convergence versus grid spacing results in the left panel of Fig. 2,
a grid spacing corresponding to an energy cutoff of 167 Ry was
selected for the adaptive operator. For the standard finite
difference operator, similar accuracy in this cell requires the
substantially larger cutoff of 254 Ry. The results were obtained
using the exascale Frontier supercomputer at ORNL. Each node
contains a 64-core AMD Epyc 7453 CPU and four AMD MI250X
GPUs. The RMG calculations used all CPU cores and all GPUs in
each node. The scaling results for 18 to 144 nodes are presented
in Fig. 5. For the AFD calculations, a minimum of 18 nodes is
required due to their memory footprint. The SFD calculations
require a significantly higher grid density for comparable precision
and do not fit into 18 nodes. The SFD results are thus presented
for 36 to 144 nodes.
Figure 5 clearly demonstrates the advantages of AFD, both in

terms of computational time and the required memory. On 36
nodes, AFD calculations are more than twice as fast as the SFD
ones. This ratio decreases somewhat for larger numbers of nodes
because the grid operations count per node becomes smaller and
does not fully saturate the computational capacity of each node. It
should be noted that AFD calculations are practical already on 18
nodes, as the time per SCF step, 230 seconds, makes high-
accuracy calculations of this size feasible even when the problem
requires extensive geometry optimizations, transition path studies,
or ab initio molecular dynamics.

Fig. 4 Differences in total energies between the reference energy obtained using Quantum Espresso and RMG, and timings. a a 64-atom
NiO cell in an antiferromagnetic configuration, and b an 86-atom borax decahydrate Na2[B4O5(OH)4]·8H2O cell, as functions of plane-wave
kinetic energy cutoff; c time per SCF step for grid densities required to reach prescribed accuracies in comparison to the reference energy.

Table 1. Average delta values for various finite difference methods.

Finite difference method Δ value (meV)

8th order standard 3.753

10th order standard 1.540

12th order standard 0.802

8th order fixed (M= 0.33) 1.241

10th order fixed (M= 0.416) 0.553

12th order fixed (M= 0.5) 0.486

8th order adaptive 0.298
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DISCUSSION
The promise of real-space electronic structure calculations has
always centered on their easy parallelizability on massively parallel
computer architectures through domain decomposition, because
real-space operations are inherently local and thus amenable to
parallel execution without extensive communication. However, for
grid-based calculations, it is well-established that high-order
discretization of the kinetic energy operator is required, which
makes the calculations more costly and less local by increasing the
communications beyond the local domain. In contrast, plane-wave
calculations represent the kinetic energy operator exactly for a
given cutoff but require global fast Fourier transform operations.
The adaptive finite-differencing scheme developed in this paper
relies on optimizing the kinetic energy expression near atomic
cores for each atomic specie separately, resulting in finite-
difference coefficients that are transferable to different atomic
environments in analogy with pseudopotentials, which both grid-
and plane-wave-based methods use. The resulting adaptive
kinetic energy operator is far more accurate than standard high-
order discretizations and lower-order, decreasing the costs of both
calculations and communications. We have tested the accuracy of
this operator in electronic structure calculations using the well-
known Δ test for 71 elemental solids, and the average error of the
calculations was the same as those of the well-established plane-
wave codes VASP and Quantum Espresso. The accuracy of the
adaptive operator was further established with multi-specie tests
on NiO and borax decahydrate, which exhibit a range of complex
bonding arrangements. The scalability of real-space grid metho-
dology was then confirmed in highly accurate calculations for a
2,016-atom NiO supercell.

METHODS
Density functional theory calculations
The adaptive finite difference operator for the kinetic energy was
implemented in version 5 of the open-source RMG code for all
crystallographic space groups. The calculations for the Mott
insulator NiO used the DFT+ U formalism89 with PBE exchange-
correlation functional90 and U= 6.5 eV. Due to supercell sizes, only
Γ point sampling was used. The calculations for borax decahydrate
used the PBE functional and were also at Γ. The Δ test calculations
used structures provided at https://molmod.ugent.be/sites/
default/files/Delta_v3-1_0.zip with varying k-point meshes
depending on the specific element. All input and output data
are available from the depository listed below.

DATA AVAILABILITY
All input and output files used to report the results and create the graphics are
available at https://doi.org/10.17605/OSF.IO/3S4VK.

CODE AVAILABILITY
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