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Physics guided heat source for quantitative prediction of IN718
laser additive manufacturing processes
Abdullah Al Amin 1,2✉, Yangfan Li1, Ye Lu3, Xiaoyu Xie1, Zhengtao Gan4, Satyajit Mojumder5, Gregory J. Wagner 1 and
Wing Kam Liu 1✉

Challenge 3 of the 2022 NIST additive manufacturing benchmark (AM Bench) experiments asked modelers to submit predictions for
solid cooling rate, liquid cooling rate, time above melt, and melt pool geometry for single and multiple track laser powder bed
fusion process using moving lasers. An in-house developed Additive Manufacturing Computational Fluid Dynamics code (AM-CFD)
combined with a cylindrical heat source is implemented to accurately predict these experiments. Heuristic heat source calibration is
proposed relating volumetric energy density (ψ) based on experiments available in the literature. The parameters of the heat source
of the computational model are initially calibrated based on a Higher Order Proper Generalized Decomposition- (HOPGD) based
surrogate model. The prediction using the calibrated heat source agrees quantitatively with NIST measurements for different
process conditions (laser spot diameter, laser power, and scan speed). A scaling law based on keyhole formation is also utilized in
calibrating the parameters of the cylindrical heat source and predicting the challenge experiments. In addition, an improvement on
the heat source model is proposed to relate the Volumetric Energy Density (VEDσ) to the melt pool aspect ratio. The model shows
further improvement in the prediction of the experimental measurements for the melt pool, including cases at higher VEDσ. Overall,
it is concluded that the appropriate selection of laser heat source parameterization scheme along with the heat source model is
crucial in the accurate prediction of melt pool geometry and thermal measurements while bypassing the expensive computational
simulations that consider increased physics equations.
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INTRODUCTION
Additive manufacturing (AM) processes such as laser powder bed
fusion (LPBF), selective laser melting (SLM), and directed energy
deposition (DED) for metal alloys enable the production of
complex, lightweight parts at reduced manufacturing costs1–5.
Though AM is a promising manufacturing technology, it is facing
numerous challenges in printed part qualification and certification
in aerospace, automotive, and biomedical engineering applica-
tions. Inherent process variabilities and uncertainties in processing
parameters (e.g., laser scan speed, power, and spot diameter) lead
to numerous manufacturing defects such as cracking6, porosity7,8,
roughness9,10, balling11, inclusion12, and bead-up13. Combined
efforts from academia, industry, and government organizations
sought to fully realize the potential of AM technology through a
better understanding of the process-structure-performance of the
AM materials systems. On this aspect, the National Institute of
Standards and Technology (NIST) and Air Force Research
Laboratory (AFRL) led the efforts from government organizations
by arranging several benchmark challenges in 201814, 202015, and
202216, respectively. Through these efforts, they developed state-
of-the-art experimental facilities for AM technologies and orga-
nized several benchmark challenges for modelers to develop
predictive simulations of experimental measurements. These
predictive modeling and simulation tools are critical considering
the experimental cost and efforts required for the AM-built part
qualification and certification. Hence, this article focuses on the
NIST AM Bench 2022 Challenge 3 experiments organized by NIST
and demonstrates methods to quantitatively model and predict

different measurements. These experiments were performed for
the LPBF AM process, where processing conditions such as laser
power, scan speed, and spot diameter settings are varied for
stationary and moving lasers in single and multi-track setups.
AM Bench 2022 Challenge 3 was designed to explore the effect

of a wide range of laser parameters (power, scan speed, and spot
diameter) for single and multi-track (pad) printing of the IN718
base plate. The melt pool behaviors for the variation of the
processing conditions were reported using an in-situ process
monitoring system17–19 developed by NIST for location-specific
liquid and solid cooling rates and the time above the melting
temperature. Ex-situ measurements were performed to determine
the after-printed geometry and microstructures. All these chal-
lenge experiments were blind predictions for the modelers, where
the experimental results were revealed after the submission of the
modeling results.
In recent years, numerous approaches for the AM process

modeling have been proposed, varying the model’s complexity
from simple heat conduction to a complicated thermal-fluid
model. The usual physics-based model requires extensive
computational effort to reasonably solve the problem considering
the AM process’s inherent length and time scale20,21. The simplest
of these modeling approaches was to consider the heat
conduction equation22,23. However, the limitations of only using
the heat conduction equations are that they cannot capture the
interactions happening within the melt pool. Researchers have
introduced equivalent heat conduction coefficients24 to account
for such discrepancy arising from missing physical interactions
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within the melt pool as modeled by Marangoni Convection and
thermal-fluid vaporization model. Compared to this simplified
model, consideration of thermal-fluid interaction improves the
melt pool prediction, as demonstrated by Robichaud et al.25. It is
understood that the primary driving force for convection was
Marangoni flow which results in both inward and outward26 flow
at the surface of the melt pool. Neglecting this Marangoni flow
leads to an overestimation of the melt pool depth. Therefore, it is
necessary to consider Marangoni flow to obtain a reasonable
estimation of melt pool depth and width. In addition to melt pool
geometry, the solid and liquid cooling rates are important
elements in carrying out the grain simulations. In addition to
Marangoni flow, it is found that the consideration of thermal-fluid
vaporization model is key in accurate prediction of the cooling
rates27. Ignoring vaporization in the model also results in an
overestimation of width. For cases of higher volumetric energy
density, the phenomena are driven mostly by keyhole28 formation,
where other physical interactions, including surface evolution,
dynamic change of heat input from the laser, and vaporization-
driven recoil pressure, were important. The dynamic change in the
heat input to the system was the most significant factor that
dramatically affected the size and shape of the melt pool. In
addition, the intensity of the laser attenuates as the laser travels
through the keyhole plume, which can be captured through Beer-
Lambert law29,30. Ignoring these physical interactions results in a
non-physical rise in melt pool temperature, eventually affecting
the solidification and cooling rate predictions for the high energy
density cases.
Accurately predicting the cooling rates in the melt pool

required capturing the necessary heat transfer phenomena,
including convective and radiative heat transfer, in combination
with the appropriate laser heat source. Furthermore, when the
formation of the keyhole was not considered, the lack of
vaporization physics in the model can lead to severe over-
prediction of the cooling (both liquid and solid) rates. In addition
to considering these crucial phenomena, the appropriate
temperature-dependent material property also played a vital role
in accurately predicting the experiment. It was expected that
considering all these physics in a general sense should increase
the fidelity of the prediction; however, at part-scale simulations,
the analysis became expensive and difficult to manage within
reasonable computational resources and time. This opened a new
avenue to investigate different model reduction techniques and
calibration schemes to approximate multiple physical field
interactions into a simple form.
In an LPBF process, continuous melting, and remelting,

including keyhole formation, were the underlying mechanism
for part manufacturing. The quality of the printed parts mainly
depended on the variation of this process. High-fidelity prediction
of the quantification and qualification of AM parts mostly relied on
accurately predicting the dimensions and dynamics of the melt
pool. However, high accuracy prediction of the melt pool
dynamics was challenging either because of the limitation of
computational hardware required for the consideration of the
increased number of physics fields or the process uncertainties
involved in the AM process. Thus, relying mostly on the increased
number of physics fields to improve the prediction accuracy of the
melt pool dynamics was generally unsuccessful. Calibration of the
heat source was one way to address this challenge, where a
representative heating model was introduced in place of detailed
laser heating models involving multiple reflections and ray tracing.
Even in these scenarios, because of the highly variable processing
conditions and uncertain non-linear material properties, these
methods showed limited success in predicting melt pool
dynamics. Recently, Lu et al. used a reduced order modeling
technique31 for efficient thermal-fluid coupled predictions and
used a data-driven Higher-Order Proper Generalized Decomposi-
tion (HOPGD)32,33, to calibrate the process parameters for heat

source models. In the present work, two different heat source
models are proposed based on experimental observation. The first
heat source is established based on a recent study of keyhole
scaling law34 during a laser powder bed fusion process and is
titled scaling law-based heat source. The second heat source
developed based on melt pool measurements correlating volu-
metric energy density (VEDσ) is titled physics-guided heat source
model. Furthermore, using a finite volume-based thermal CFD (the
AM-CFD)27 model, the effort was extended to accurately capture
the laser and melt-pool interaction for various NIST processing
conditions.
The paper is organized as follows. In section 2, a summary of the

NIST experiment is provided. The modeling methodology is
introduced in Section 3 with the calibration methodology and
materials properties. Section 4 compares predicted results for the
different challenges of the AM Bench problem and discusses the
limitation of the current modeling approach to accurately predict
the experiment. Finally, Section 5 concludes by summarizing the
current findings and referring to possible future extensions to the
present model.

RESULTS AND DISCUSSION
The NIST single-track experiment is conducted on seven different
laser processing conditions. The laser processing conditions are
varied by laser power, scan speed, and spot diameter, as given in
Table 1.

Model calibration with melt pool
Simplifying the heat source with a cylindrical model significantly
reduces the computational effort as the problem Degrees of
Freedom (DOF) is reduced by not considering multiphase field
equations to capture interface change. When a cylindrical heat
source is being used, it obviates the need to implement ray
tracing in addition to surface evolution. Thus, the DOF is reduced
by limiting the number of equations solved. However, one
essential step of this cylindrical heat source method is calibrating
the heat source for the given laser process conditions. The initial
heat source calibration used available literature data for
IN71813,35–39. The initial parameter space was generated from a
preliminary simulation using the AM-CFD code. Based on the
available simulation data, a HOPGD-based surrogate model was
built to predict and optimize the heat source parameters for melt
pool geometry prediction31,40. By comparing the surrogate model
with the literature data, we calibrated the heat source parameters.
Figure 1 compares the HOPGD prediction based on the “heuristic
heat source parameterization” for the melt pool width and depth
against the literature data. The calibration was made against the
Balbaa et al.35 measurements. Melt pool width and depth from
other literature are presented as a comparison. Therefore, it is
expected that the HOPGD prediction will have large difference

Table 1. Summary of the laser process conditions.

Case
number

Laser
power
(W)

Scan speed
(mm s–1)

Spot
size
(μm)

VEDσ (J
mm–3)

VED/
VEDbase

Baseline 0 285 960 67 1058 1

Change
spot

1.1 285 960 49 1978 1.87

1.2 285 960 82 706 0.67

Change
speed

2.1 285 1200 67 847 0.8

2.2 285 800 67 1270 1.2

Change
power

3.1 325 960 67 1207 1.14

3.2 245 960 67 910 0.86
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when compared with other datasets. At lower volumetric energy
density (VED) (below 70 J mm-3), the melt pool width and depth
both seem to agree well with the available literature data. One
critical observation is that the depth prediction deviates from the
experiment at a relatively lower VED compared to the width
prediction. This was attributed to the fact that it was challenging
to get the depth of the melt pool at higher VEDσ without the
appropriate heat source model and interacting physics consider-
ing the surface evolution and multiple laser ray reflection. The
reason for such a significant difference was that at higher VEDσ,
the vapor depression layer or the keyhole layer depth starts to
increase41, and the heating of the base alloy becomes more
complex, which was difficult to approximate with a simple
cylindrical heat source model. As a result, the prediction at higher
VED started to underestimate the system’s heat input, resulting in
smaller melt pool dimensions.

Prediction of solid cooling rates
The steps and process for experimental measurements of the solid
cooling rates are summarized in supplementary method 6, details
of which are available in16. Although experiments were performed
on a plate of 1” ´ 1” dimension and the scan track length was
10mm long, the computational prediction can be carried out on a
much smaller domain (Supplementary Methods 3). This was
because the steady state for melt pool evolution was reached
much earlier (~3ms) for all the processing conditions summarized
in Table 1. Therefore, a preliminary computational analysis was
carried out on the smallest and largest VED corresponding to cases
1.2 and 1.1, respectively (Table 1). This study was carried out to
determine the minimum scan track length required to run the
simulation to save computational time and computational
resources. The original NIST experiments for single track were
carried out on a track length of 10mm. However, all the individual
simulation cases were run in a reduced computational domain as
determined by the length and time required to reach a steady state
melt pool geometry. This is important for the accurate measure-
ment of the temperature evolution and subsequently the cooling
rates as well as melt pool depth and width measurements. Thus,
the melt pool length was plotted for all the process conditions to
confirm the attainment of a steady state for the measurements.
Figure 2 demonstrates the process to estimate the time required to
reach a steady state for the highest VEDσ case (case 1.1) was within
~3ms and ~1ms for the lowest VEDσ (case 1.2) cases. At this time,

the laser travels ~2.9 mm and ~1.0mm from the start location for
case 1.1 and case 1.2, respectively. For both of these cases, 1.1 and
1.2, the scan speed was 960mm s-1. For all the other cases, the
steady-state melt pool dimension was reached between these two
times (~3ms and ~1ms). Thus, it was clear that the distance
traveled was significantly smaller than the 10mm domain length
and facilitated reduced domain computation. Reducing the domain
size significantly helped accelerate the computational simulation
resulting in faster iteration and estimation of all the required
measurements. The solid cooling rate was estimated from the slope
of a linear fit over a temperature range starting from solidus
temperature (1260 °C) and ending at 1150 °C. The same methodol-
ogies are followed to estimate the solid cooling rate from the
simulation temperature data. Based on the first calibration scheme,
the measurements of the solid cooling rates were plotted in Fig. 3
against changing VEDσ. It was observed from the results that the
case at higher VEDσ overestimates the solid cooling rate. This was
because the calibration scheme deposited much higher energy to
the system to maintain the desired melt pool dimensions. This
difference stemmed from the fact that there was heat loss from the
vaporization and changing interface due to the formation of the
keyhole. In the cylindrical heuristic heat source parameterization,
no formation of a keyhole was considered, and thus the scheme
resulted in a higher estimate of the peak temperature, increasing
the estimate for solid cooling rate significantly. In comparison, the
scaling law-based calibration has some form of keyhole generation
and comes close to the solid cooling rate estimation, although
slightly underestimating. However, in the physics-guided scheme,
the heat source depth had a different correlation and resulted in a
much more comparable estimate of the liquid cooling rate along
with the solid cooling rate.

Prediction of liquid cooling rate
The liquid cooling rate was estimated at a temperature range from
1400 °C to a liquidus temperature of 1336 °C. The equation and
methods used are similar to the solid cooling rate estimation and
also use the slope of a linear fit to identify the liquid cooling rate,
details of which were discussed by NIST in the challenge
description16. A similar trend was also observed in the prediction
of liquid cooling rate. The prediction of liquid cooling rate at lower
VED was relatively in better agreement than at higher VED. The
underlying cause was similar to what was explained before. The
overestimation of the cooling rate comes from the non-physical

101 102 103

VED  (J mm-3)

0

100

200

300

400

500

600

E
xp

er
im

en
ta

l M
el

t P
oo

l W
id

th
 (

m
)

a

Balbaa et. al.
Khorosani et. al.
romano et. al.
sadowski et. al.
scime et. al.
HOPGD Prediction

10 20 30 40 50 60 70 80 90 100

VED  (J mm-3)

0

100

200

300

400

500

600

E
xp

er
im

en
ta

l M
el

t P
oo

l D
ep

th
 (

m
)

b

Balbaa et. al.
HOPGD Prediction

Fig. 1 Calibrating the parameters of heat source based on literature data for IN718. The parameters are calibrated against Balbaa et al.35

Other literature data ((a) melt pool width, (b) melt pool depth) are presented for comparison.
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peak temperature, which was higher compared to the ambient, as
the amount of heat input to the system was considerably higher
than the actual scenario. The scaling law-based calibration
scheme, as expected, overestimated the liquid cooling rate as
the formation of the keyhole was absent at lower VED. Compared
to the heuristic heat source parameterization, the updated
physics-guided scheme showed improvement in predicting the
liquid cooling rate, as shown in Fig. 4.

However, the scheme has its own limitation, which is more
evident in case 2.2.

Prediction of time above melting
The time above melting was experimentally measured from in situ
thermography data as the time spent above the midpoint
between the liquidus and solidus temperature (1298 °C). Details
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Fig. 3 Prediction of solid cooling rate against the volumetric energy density for IN718.
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Fig. 4 Prediction of liquid cooling rate for the NIST AMB2022 challenge 03 experiment.
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of how this time is measured are also elaborated in the NIST AM
Bench challenge description16. Computationally, the measure-
ment was performed on the same single-track analysis after the
melt pool reached a steady state. During the steady state, the
temperature distribution at the mid-point of the geometry was
plotted against the track length. The track distance can then be
mapped against time for a corresponding laser scan speed, and
subsequently, the temperature vs. time plot was generated, as
shown in Fig. 5. From the figure, the main characteristics of the
plots for all the process conditions were observed to be similar.
The total time above 1298 °C was measured from this plot and
reported as track time above melt (TTAM). The comparison of
simulated and experimental TTAM values is shown in Fig. 6. Unlike
the solid and liquid cooling rates, the difference in TTAM between

prediction and experiment was minor. This is because the heat
source was calibrated against the melt pool dimension, and the
time above melting correlates with the melt pool dimensions.
However, with the physics-guided heat source parameterization,
the predictions improve, and the difference falls below 20%
compared to the experiment.

Prediction of melt pool geometry
The prediction of melt pool geometry has the most accurate
comparison with the experiment as the calibration was made
against the melt pool dimensions. The physics-guided calibration
further improves upon the prediction, bringing the prediction
within 5% of the experimentally reported values (Figs. 7, 8). Not
surprisingly, the melt pool dimensions for the higher VED cases
also agree well with the experiments for both calibration schemes.
The trend for melt pool dimension with respect to the VED was
monotonically increasing as a result of increasing energy input
going into the system. It is also interesting to compare the melt
pool aspect ratio with the VED. It appears that the heuristic and
scaling law-based calibration has limitations in predicting the
aspect ratio. In this sense, the physics-guided calibration scheme
that is developed based on the relationship to the aspect ratio
rather than the melt pool width yields improved prediction, as
evidenced in Fig. 9. The comparison of individual melt pool
geometry for the seven different process conditions were
compared in Fig. 10. It is also important and insightful to look at
the relative errors of all the measurements for all the process
conditions. Thus, a comparison table (Table 2) is provided
comparing all the measurements for the three different heat
source calibration schemes used in this study. From the table of
relative error, it is observed that the physics-guided heat source
performs well in most of the measurements, particularly the melt
pool dimensions, specifically when compared with the heuristic
and scaling law-based heat source. The heuristic calibration
approach has noticeable disagreements with experimental
measurements for the highest VED cases. This can be attributed
to the inefficiency of the heat source model calibration in
approximating the energy input to the system. In comparison,
other heat source calibration schemes more accurately approx-
imate the heat distribution to the system as the VED changes. As a
result, the improvement in prediction of cooling rates and melt
pool geometries are observed.

Prediction of Pad cooling rate, time above melt, and melt pool
geometry
The steps to measure the cross-section was explained in the NIST
challenge 3 result description document16. The location for which
the measurements were made is shown in Fig. 11. The trend is
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Fig. 6 Comparison of track time above melting for different laser process conditions.
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similar for both calibration schemes. Following a similar trend, the
calibration schemes successfully predicted the melt pool measure-
ments for the multi-track (pad) laser scanning, as shown in Fig. 12.
Figure 11 presents the locations P2 and P3 from the build plates
BP2 and BP3. NIST Challenge 3 asked modelers to predict the
overlap height and width along with the melt pool depth and
width. The solid cooling rate and time above melting were also

asked by NIST to be reported for the multi-track cases and thus
shown in Fig. 13.
Interestingly, although the numerical measurements of these

quantities mainly agreed within 10% of the experiment, the
qualitative comparison of the melt pool shape was different. This
is partially attributed to the lack of surface evolution physics and
its space-time evolution statistics that were not considered in this
computational model. The physical laser heat source, which
depends strongly on surface evolution, was simplified with the
cylindrical heat source assumption, which in turn primarily defines
the geometric shape of the melt pool cross-section. Another
interesting observation was the alternating depth of the melt pool
cross section for the Y-direction scan. There are two competing
explanations as to why this was happening. The first explanation
was that the melt pool evolution takes some time to get to a
steady state, as explained in section “Results and Discussion”, and
thus the melt pool depth was smaller than the odd tracks, where
the melt pool depth was significantly larger than its even track
counterpart. The other understanding was the presence of gas
flow along the negative -Y direction during the process, which
significantly affected the heating from the laser resulting in the
difference in the melted track depth. Since the effect of gas flow
rate was not considered in the model and the simulation results
cannot capture the change in the melt pool depth even after the
steady state melt pool evolution was considered in the model, it
was hypothesized that the variation in melt pool depth stems
from neglecting the effect of gas flow.
In summary, three different calibration schemes for cylindrical

heat sources were used to predict the 2022 NIST AM Bench
Challenge 3 problems for various measurements. It was observed
that the initial calibration scheme (heuristic heat source para-
meterization) was limited in terms of prediction at higher VED.
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Fig. 7 Melt pool geometry measurements for the seven different process conditions.
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Fig. 8 Melt pool geometry comparison with VED. Although a linear correlation is apparent between melt pool depth and volumetric energy
density, the relationship breaks apart when compared with melt pool width.
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Fig. 9 The experimental measurements of the melt pool
geometry has a linear trend with changing volumetric energy
density. The heuristic calibration scheme failed to pick up the
relationship whereas the physics informed calibration scheme
shows improvement in the prediction.
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Fig. 10 Visual comparison of the melt pool geometry for the single-track scan laser experiment. a–f Correspond to cases detailed in Table
1 Case 0 to Case 3.2. The corresponding case ID is on the bottom left corner of the micrograph images.

Table 2. Summary of the relative error (in %) for simulations with experimental measurements.

Case 0 Case 1.1 Case 1.2 Case 2.1 Case 2.2 Case 3.1 Case 3.2

Track time above melt Heuristic 31.61 93.93 38.88 15.53 58.23 36.68 33.04

Scaling 76.27 1.86 58.73 44.16 77.71 64.73 84.49

Physics guided 15.80 2.88 29.79 24.11 46.06 12.00 22.32

Track solid cooling rate Heuristic 33.16 169.81 42.16 6.63 9.16 40.74 11.19

Scaling 19.62 34.91 8.19 36.75 194.32 99.48 35.77

Physics guided 33.19 37.29 14.54 7.76 36.90 40.97 17.92

Track liquid cooling rate Heuristic 17.86 29.22 100.90 42.54 0.22 2.46 45.62

Scaling 5.30 48.08 62.43 0.78 59.40 6.29 10.08

Physics guided 18.31 39.83 64.72 46.11 1.75 15.98 42.67

Track melt pool depth Heuristic 9.81 0.97 9.47 7.02 15.01 14.51 8.47

Scaling 18.11 5.81 23.05 30.36 1.42 10.78 18.05

Physics guided 0.50 8.01 1.56 2.46 0.28 4.27 4.19

Track melt pool width Heuristic 17.39 127.87 5.86 13.48 23.00 36.26 7.42

Scaling 28.39 6.78 5.86 35.64 25.56 37.01 29.83

Physics guided 2.42 0.75 1.62 1.06 2.50 2.76 3.40
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Fig. 11 Location of the multi-track scan where melted track measurements are made. Images are taken from the NIST 2022 AM Bench
Challenge 3 experimental results16.
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Fig. 12 Prediction of melt pool dimensions for the multi-track analysis for AMB2022-718-SH1-BP2 P2, and AMB2022-718-SH1-BP3 P3.
a Represents the melted track when laser scan direction is across the gas flow and (b) represents the melted track when laser scan direction is
along/against the gas flow direction.
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To improve the prediction accuracy, the heat source calibration
scheme for melt pool width can be related to the melt pool
geometries in a non-linear fashion to the VEDσ, improving the
prediction significantly. It is understood that ignoring some
essential physical interaction between the laser reflection,
absorption, and diffusion through the vaporized metal/alloy gas
can overestimate approximately 100% the cooling rates and time
above melting. Thus, the refined approximate model (physics-
guided heat source parameterization) based on experimental
observation was established. Although the melt pool dimension
(width and depth) predictions for multi-track simulation agreed
well for such a calibration scheme, the melt pool’s morphology
was different where the melt pool overlap (depth and width)
differed by approximately 55% due to the exclusion of the
detailed surface evolution physics which is computationally time-
consuming. However, the proposed prediction schemes that aim
to approach part scale (multi-track and multi-layer) LPBF simula-
tions approximating the laser heat source with the consideration
of limited but fundamental physics equations yield reasonable
accuracy in predicting the NIST AM Bench experiments.

METHODS
NIST experimental methods
Challenge 3 of the NIST AM Bench experiment involved IN718, and
the objective of the test was the exploration of melt pool
behaviors for individual single tracks and an overlapping 2D array
of multi-tracks for different laser process conditions. The laser
parameters (power, speed, and spot diameter) were varied for
single-track experiments and kept at the base setting for the
multi-track experiments. Two types of measurements, in-situ and
ex-situ were carried out. In-situ measurements included time-
resolved laser coupling, liquid and solid cooling rate, and location-
specific time above melting; prediction of the last two was part of
the challenge. Ex-situ measurements included 3D topography of
the solidified laser track’s cross-sectional geometry and micro-
structural measurements. Only the melt pool measurements from
the cross-section geometry were part of the challenge. The sample
substrate of IN718 was cut from a rolled and annealed sheet and
polished and processed based on the steps detailed in challenge
description16. The experiments were carried out on bare plates
without any powder using the NIST Additive Manufacturing
Metrology Test Bed (AMMT). AMMT has been developed at NIST,
and numerous high-quality experiments have been carried out for
additive manufacturing process experiments42–48. The base laser
used for the experiment had a power of 285W, a scan speed of
960mm s^-1, and a Gaussian laser spot diameter of 67 μm. In situ
and ex situ measurements were recorded using numerous
experimental setups that include but is not limited to co-axial
melt pool monitoring camera, integrating sphere, and microscopy.
These procedures and steps are explained in detail in a report by
NIST16. In this work, the modeling and prediction of challenge 3,
titled AMB2022-03 problems, are discussed in detail.

Computational methods
A finite volume method- (FVM) based C++ code called AM-CFD
developed internally at Northwestern University, was used to
predict the experimental measurements. The code solved a
thermal-fluid model considering liquid flow inside the melt pool
driven by the Marangoni effect, as detailed in an earlier work27, in
conjunction with a cylindrical heat source calibration scheme.
First, a cylindrical heat source49 representing the laser heating is
implemented in combination with a calibration scheme40 that
initially relies on a reduced-order HOPGD32,33 model for faster
iteration of the calibration data. Then, using an optimized
calibration scheme based on initial test runs, the parameters of
the cylindrical heat source are calculated. Once the heat source

was calibrated, it was capable of estimating heat input to the
system for all the laser processing conditions. Based on this
calibrated heat source, all the challenge 3 cases were simulated,
and the measurements and predictions were made.

Thermal-fluid process model
A transient three-dimensional thermal-fluid model was used to
predict the temperature and velocity of the melt pool region. The
governing equations include the Navier-Stokes equation in
addition to the energy equation, for which the governing
equations were as follows:

∂ρ

∂t
þ ∇ � ρvð Þ ¼ 0 (1)

∂ðρvÞ
∂t

þ ∇ � ρvvð Þ ¼ �∇P þ μ∇2vþ ρg� ρgβ T � Trefð Þ þ Sm

(2)

∂ðρHÞ
∂t

þ ∇ � ρvHð Þ ¼ ∇ � k∇Tð Þ þ Sh (3)

In the equations above, t is the time, ρ is the density, v is the
velocity, P is the pressure, μ is the viscosity, g is the acceleration of
the gravity, β is the thermal expansion coefficient, T is the
temperature, k is the thermal conductivity, H is the specific
enthalpy, Sm is the momentum due to mushy zone resistance, Sh is
the total volumetric heat generation or sink of the system. The
boundary condition for momentum equation (Eq. (2)) at the top
surface is provided as

μ ∂v1
∂z ¼ f l

dγ
dT

∂T
∂x

μ ∂v2
∂z ¼ f l

dγ
dT

∂T
∂y

v3 ¼ 0

(4)

Here γ is the surface tension, dγ
dT is the Marangoni coefficient,

and vi is the ith component of the velocity.
The surface heat loss or generation included heat loss due to

radiation, convection, and evaporation and was employed as a
free surface for boundary conditions which in equation form can
be related as

k∇Tð Þ � nþ Sh;radiation þ Sh;convection þ Sh;evaporation ¼ 0 (5)

Sh;radiation is the heat loss due to radiation, Sh;convection is the heat
loss due to convection, and Sh;evaporation is the heat loss due to
evaporation. The equation relating the enthalpy with temperature
is

H ¼ hþ ΔH ¼
Z T

0
CpdT þ ρLff l (6)

In the equation, h is sensible heat that is estimated as
R T
0CpdT

where Cp is the temperature-dependent specific heat capacity. ΔH
is the total enthalpy change due to temperature and phase
change. The amount of enthalpy change due to phase change is
estimated as ρLf f l where Lf is the latent enthalpy of fusion, and f l
is the volume fraction of the liquid phase.
The momentum due to mushy zone resistance Sm is estimated

as

Sm ¼ � 180μ

δ2c

1� f lð Þ2
f 3l þ B

" #
v (7)

In the equation, δc is the approximate primary dendritic spacing
and set to 1 μm. B is a small parameter to avoid division by zero
and is subsequently set to 10-3. The heat loss due to radiation,
convection, and evaporation is estimated with the following
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equation sets as

Sh;radiation ¼ σε T4 � T4/
� �

(8)

Where σ is the Stephan-Boltzman constant, ε is the emissivity, and
T/ is the ambient temperature.

Sh;convection ¼ hc T � T/ð Þ (9)

hc is the heat convection coefficient,

Sh;evaporation ¼ φLv Tð ÞPatm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mA

2πkBT

r
e
Lv 0ð ÞmA T�Tbð Þ

kBTTb (10)

In this equation, Lv is the latent heat of vaporization, mA is the
atomic mass, kB is the Boltzmann constant, Tb is the boiling
temperature, Patm is the atmospheric pressure, and φ is the
evaporation coefficient. For laser heating, φ depends on the vapor
Mach number M at the edge of the Knudsen zone, which varies
approximately as 0:82

ffiffiffiffi
M

p
. For a vacuum process like Electron

Beam Melting (EBM), the value of φ is 0.8250.
The melt pool region is defined from the temperature contour

based on the solidus (T s) and liquidus temperature (T l). The liquid
volume fraction is estimated based on the following equation

f l ¼ θ T� Tsð Þ � 1� θ
T � T s

TL � T s

� �� �
þ θ T � T lð Þ (11)

In the equation above, θ is the Heaviside step function. Thus,
from the equation above, the region of the melt pool is defined as
the region where f l>0.

Adaptive meshing
The developed AM-CFD program has adaptive control of the
mesh, which follows a power law as described below:

xiþ1 ¼ xi þ Δx � ri�1

whereΔx ¼ LPn
i¼1

rn�1

(12)

In the equation, L and n are the length of the sub-domain and
the number of control volumes along the x-coordinate. r is the
bias ratio that defines how the next control volume dimension is
changing. xiþ1 is the coordinate of the next control volume for a
given initial coordinate of a control volume xi for sub-domain of
length L. Given a bias ratio value greater than 1, the meshes are
biased towards the lower coordinate location, and for bias ratio
values smaller than 1, the meshes are biased towards the higher
coordinate locations. The control volume sizes are uniformly
distributed for a bias ratio value of 1. In the AM-CFD program, a
subdomain of higher resolution is assigned to capture the details
of the melt pool information. This higher resolution zone shifts its
spatial location along with the laser movement.
As the mesh change also affects the discretization of the

volume from one time step to the next, the zones need to have a
means of passing their state variables as the time changes. At this
point, the state variable changes are accounted for with a linear
interpolation that is defined as

αnþ1
i ¼ αni þ

αniþ1 � αni
� �

xnþ1
i � xni

� �
xniþ1 � xni

(13)

The equation uses state variables of the zone from the current
time steps (n) to transfer them to the next time step (n+ 1). The
properties are updated before the next step of iteration starts.

Thermo-physical properties of the materials
The NIST AM Bench Challenge 3 used IN718 for the experiment.
NIST does not provide thermo-physical properties of any materials
for the competition; hence, data were collected from the available

literature. The properties of the IN71851 are primarily compiled
from available literature and are summarized in Table 3.

Calibration of the heat source model
Appropriate modeling of the laser heating source was the key to
achieving an accurate prediction for the laser powder bed fusion
process. There were different approaches to simplifying the heat
source to estimate the heat input to the system arising from the
laser source. Most of the literature commonly uses a moving heat
flux where the heat source’s location changes with time as a
representation of the laser scan speed52,53. An alternate approach
to model the laser heating is the use of a volumetric heat
source27,40,54,55 that can be successfully calibrated to match the
melt pool dimensions. A further improved volumetric heat source
that considers optical penetration depth can also be consid-
ered56,57. Ray-tracing-based58–60 laser heat sources were the most
physics-based heat source models where the reflection of the
laser from the surface was considered through Fresnel absorption.
A comprehensive analysis of different heat source models was
carried out by Zhang et al.49. However, in this article, a cylindrical
heat source was considered for the case of simplicity. The depth of
the heat source model is a representation of the optical
penetration depth (OPD). Based on literature study, it is concluded
that the OPD is defined as the depth where the intensity of the
laser energy reduces to 1

e � 37%
� �

23,61: However, in our analysis,
we have adjusted the depth to approximate the heat input at
larger depth for cases operating in keyhole mode. Thus, the model
is capable of approximating the melt pool depth at higher
accuracy even when surface evolution required for keyhole
modeling is not introduced in the computational model. Improv-
ing the model prediction with such a heat source requires
calibration to accurately represent the heating from the laser
source where identification of the calibration parameter was
required. Identification of unknown parameters in the laser heat
source model employed the HOPGD-based surrogate modeling
approach with significantly low computational cost compared to
conventional identification approaches such as genetic algo-
rithm23. The process was utilized to parameterize the cylindrical
heat source for a similar problem50, with details elaborated in31,33

and a summary in Supplementary Methods 5. The advantage of
using this method was the reduced computational cost with
minimal sacrifice in accuracy. The spot radius (rb), scan speed (V),
and power (P) were given as process conditions when modeling
the laser heat source. However, due to the evolving surface of the

Table 3. Summary of the material property52.

Property IN718

Solid density (kg m–3) 7734

Liquid density (kg m–3) 7578

Solidus temperature (K) 1533

Liquidus temperature (K) 1609

Solid specific heat capacity (J Kg–1K–1) 435

Liquid specific heat capacity (J Kg–1K–1) 755

Solid thermal conductivity (W m–1K–1) 11.4

Liquid thermal conductivity (W m–1K–1) 31.3

Latent heat of fusion (kJ kg–1K–1) 290

Dynamic viscosity (Pa s) 5.30 × 10–3

Thermal expansion (K–1) 1.3 × 10–5

Surface tension (N m–1) 1.8

Marangoni coefficient (N m–1K–1) –3.7 × 10–4
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melt pool and keyhole, along with the vaporized metal in the
environment, not all the laser power was absorbed by the
materials. Hence, an absorptivity parameter η was introduced to
account for the fraction of energy going into the system.
Moreover, the variation in laser power, scan speed, and spot
diameter affects the vapor-induced depression (keyhole) zone.
NIST considered the Gaussian distribution of laser intensity for a
given spot diameter of the laser and had chosen the second-
moment width for the beam diameter definition, which results in
σ ¼ D

4. The beam diameter was estimated to be four times the
standard deviation of the marginal distribution. The current
approach assumes a simplified relationship between the volu-
metric energy density P

Vσ2
� �

and the characteristic cylindrical
domain of the heat source using unknown parameters that must
be calibrated.

VEDσ ¼ ψ ¼ P
Vσ2

(14)

In this article, we introduced three source term parameteriza-
tion schemes for the optimal calibration of experimental data.
Details of these three different parameterization schemes were
titled heuristic heat source parameterization, Scaling Law-Based
Heat Source Parameterization, and Physics Guided Heat Source
parameterization subsequently and is discussed in details in
Supplementary Method 1 and 2.

Heuristic heat source parameterization
The heat source model parameters considered for this scheme
were

d ¼ p1
P

Vσ2
RHF2 (15)

η ¼ max p2
P

Vσ2
RHF2; 0:28

� �
(16)

rb ¼ p3
P

Vσ2
RHF2 (17)

In the above equations, d, η, and rb are the depth of the heat
source, laser absorptivity, and laser beam radius. P; V , and RHF are
the laser power, scan speed, and residual heat factor. The
volumetric laser heat source term utilizing these parameters is

Sh;laser ¼
2Pη
πr2bd

e
�2 x2þy2ð Þ

r2
b ztop � z � d

0 ztop � z>d

8<
: (18)

In this equation, x and y give the spatial location of the center of
the cylindrical source region. The source term has a Gaussian
distribution in the radial direction. The residual heat factor was
first ever demonstrated by Yeung et al.46 and defined at a specific
point as

RHFi ¼
X
k2Si

R� dik
R

� �2 T � tik
T

� �
Lk (19)

The equation defines the RHF by the preheating on point i by a
previously scanned point k given by the distance between as dik ,
elapsed time tik , and threshold values R and T ; which are
0.2 × 10–3m and 2 × 10–3 s, respectively, in this analysis for the
multi-track or pad cases. For single-track laser scan cases, the RHF
takes a value of unity. The coefficients p1, p2, and p3 appearing in
Eqs. (15), (16), and (17) are the independent unknowns calibrated
using the HOPGD method or PGD for short. The initial guess of
these unknowns is chosen at random in a n-D space. The goal of
the optimization problem is to minimize an error function defined
by the selected criteria. In this case, the objective is to minimize

the difference between the melt pool width and depth. Assuming
the parameter space p ¼ ½p1; p2; p3� (Fig. 14) belonging to a
predefined domain Ω ¼ Ω1 ´Ω2 ´ ¼ ´Ωn, the objective is to
minimize the error as defined in the equation

p� ¼arg min
pΩ J WPGD;We; p

� �þJ DPGD;De; p
� �� �

(20)

where We and De are the experimental width and depth of the
melt pool, and J is the objective function that measures the
distance between the experimental measurements and reduced
order modeling predictions using HOPGD method. The objective
function J is defined as

J ¼
Xn
i¼1

wijjWPGD
i p1; p2; p3ð Þ �We

i jj þ
Xn
i¼1

ewijjDPGD
i p1; p2; p3ð Þ � De

i jj

(21)

In the equation, the weight coefficient wi has the property ofP
i wi ¼ 1; meaning the weight coefficients go down as the

deviation increases between experimental and HOPGD prediction
measurements.
This calibrated heat source scheme was then used inside the

FVM solver to predict the melt pool width, height, cooling rate,
and time above melting. However, when the energy density of the
laser starts to increase, the deviation from the melt pool
measurements starts to increase, which necessitates the improve-
ment of the parameterization scheme.

Scaling law-based heat source parameterization
Based on a recent study34 proposing that the keyhole aspect ratio
depends on a newly discovered dimensionless parameter, the
keyhole number (Ke), a parameterization scheme was proposed to
predict experiment cases when there was an active formation of
keyhole.
The keyhole number Ke is defined as

Ke ¼ ηP

Tl � T0ð ÞπρCp

ffiffiffiffiffiffiffiffiffi
αVr30

p (22)

In this equation, Cp is the heat capacity, T l is the liquidus
temperature, T0 is the ambient temperature. This calibration
scheme improves the prediction when the keyhole is present;
however, at low energy density, the calibration scheme related to
the volumetric energy density performs better than this scaling
law-based scheme. The parameterization of the heat source is

Fig. 14 Representative parameter calibration for the heat source
based on literature data for IN718.
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established by the following equations that are described in34.

d ¼ p1 Ke p2ð Þ � 1:4ð Þ (23)

η ¼ maxf0:7 1� e�0:6Ke p2ð ÞL�d
h i

; p2g (24)

rb ¼ p3L
�
dr0 (25)

In the equations above, the parameters to be calibrated are
(p1; p2 and p3), L�d is the normalized diffusion length and is
quantified as L�d ¼ δz

r0
where δz is the thermal diffusion length and

is related by δz ¼
ffiffiffiffiffi
αr0
V

p
. In the thermal diffusion length estimate, α

is the thermal diffusivity and r0 is the given laser spot radius. This
parameterization scheme was limited in its ability to predict
scenarios where there is no keyhole, or the formation of a keyhole
is in transition. From the experimental observations, it was found
that there is a strong correlation between VEDσð Þ and melt pool
geometric shapes irrespective of keyhole formation, and this was
the basis for the physics-guided heat source parameterization.

Physics guided heat source parameterization
In this parameterization scheme, the volumetric energy density
was related to the cylindrical heat source’s depth, aspect ratio and
the volumetric heat generation (Supplementary Methods 4).
Considering the NIST choice of volumetric energy density that
established a more accurate scaling relationship between the
VEDσ and laser parameters, a new relationship is defined as
follows

d ¼ p1
P

Vσ2 RHF
2 (26)

η ¼ max p2
P

Vσ2
; 1

� �
(27)

rb ¼ p3
P

Vσ2

� �2

RHF2 (28)

This new modification improved the prediction of the melt pool
geometry at higher VED.
The different heat source calibration schemes are summarized

in Table 4.
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