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Physics-informed neural networks for solving time-dependent
mode-resolved phonon Boltzmann transport equation
Jiahang Zhou 1, Ruiyang Li1 and Tengfei Luo 1,2,3✉

The phonon Boltzmann transport equation (BTE) is a powerful tool for modeling and understanding micro-/nanoscale thermal
transport in solids, where Fourier’s law can fail due to non-diffusive effect when the characteristic length/time is comparable to the
phonon mean free path/relaxation time. However, numerically solving phonon BTE can be computationally costly due to its high
dimensionality, especially when considering mode-resolved phonon properties and time dependency. In this work, we demonstrate
the effectiveness of physics-informed neural networks (PINNs) in solving time-dependent mode-resolved phonon BTE. The PINNs
are trained by minimizing the residual of the governing equations, and boundary/initial conditions to predict phonon energy
distributions, without the need for any labeled training data. The results obtained using the PINN framework demonstrate excellent
agreement with analytical and numerical solutions. Moreover, after offline training, the PINNs can be utilized for online evaluation
of transient heat conduction, providing instantaneous results, such as temperature distribution. It is worth noting that the training
can be carried out in a parametric setting, allowing the trained model to predict phonon transport in arbitrary values in the
parameter space, such as the characteristic length. This efficient and accurate method makes it a promising tool for practical
applications such as the thermal management design of microelectronics.
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INTRODUCTION
Thermal management of microelectronics is unprecedentedly
crucial due to the rapid miniaturization in semiconductor
technology, as it is essential to achieving high compactness along
with high performance and reliability1–4. With the application of
electronic devices with higher power consumption in smaller
packages, micro-/nanoscale thermal analysis is necessary to
understand and predict the Joule-heating effect for the design
and improvement of thermal packaging. In addition, the rapid
advancement in the field of micro-/nanotechnology has led to the
development of devices that exhibit characteristic dimensions
comparable to or even smaller than the mean free path of
phonons5–7, which are the primary heat carriers in semiconduc-
tors. In such cases, phonon transport is not purely diffusive, but
rather can be ballistic depending on the mean free path of specific
phonon modes. Fourier’s law has been widely employed to
analyze thermal conduction in the diffusive limit on the
macroscale. However, this law is not suitable for accurately
describing heat transfer in situations where the length scale is
smaller than the phonon mean free path or when the time scale is
shorter than the average phonon relaxation time. Instead, the
phonon Boltzmann transport equation (BTE) is a more accurate
method to describe phonon transport from the nanoscale to the
macroscale and has been shown to model heat conduction in the
mesoscale precisely8–12. Although other techniques, such as
molecular dynamics (MD) simulations13,14 and first-principles15

calculations, can model phonon transport, they are impractical for
mesoscale thermal analysis due to the high computation cost.
Despite the effectiveness in modeling micro-/nanoscale thermal

transport, numerically solving the phonon BTE, a highly nonlinear
integro-differential equation, can be very computationally
demanding, particularly when considering mode-resolved phonon

information and time evolution. Nevertheless, researchers can
take advantage of some mature numerical schemes that are
effective in solving various partial differential equations (PDEs),
such as the finite difference method (FDM), finite volume method,
finite element analysis (FEA), and their variants. By utilizing these
numerical schemes, researchers can obtain precise and efficient
solutions to the phonon BTE. The discrete ordinate method (DOM)
has been used to solve BTE directly using FEA or FDM, but it often
requires a large amount of computational memory and can be
difficult to converge fast, especially in the diffusive limit16,17. An
implicit kinetic scheme has been developed to solve steady-state
1D and 2D phonon BTEs accurately within a few minutes18.
However, with the use of large-scale parallel numerical solvers
with even 400 processors, it still takes over an hour to run 3D
steady-state phonon BTE calculations19. It is noted that the
aforementioned numerical solvers only handle steady-state
phonon BTE without considering the transient nature of thermal
transport processes, which can be proven important in localized
hotspots due to instantaneous spikes of power in electronic
devices. Fortunately, researchers have developed methods to
tackle the transient phonon BTE. For example, a combined FEA
and DOM scheme has been utilized to investigate transient
ballistic-diffusive phonon heat transport in a two-dimensional
domain, as reported by Hamian et al.20. But for Knudsen numbers
exceeding 5, it has been noted that the standard DOM may not be
appropriate, and modified methods should be applied to reduce
the ray effect. Recently, a discrete unified gas kinetic scheme
(DUGKS) has been developed to numerically predict transient heat
transfer by solving 1D and 2D phonon BTEs with varying acoustic
thicknesses. The DUGKS possesses asymptotic preserving proper-
ties for both the diffusive and ballistic regimes and can provide
accurate solutions throughout the transition regime21.
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Additionally, the DUGKS has been extended to solve nongray
(frequency-dependent) phonon BTE and is demonstrated to
accurately capture the ballistic-diffusive transport phenomenon
across a wide range of Knudsen number22. Later on, a semi-
Lagrangian method is proposed to solve the nongray phonon BTE
efficiently23. However, it should be noted that while this method
preserves asymptotic behavior in the ballistic limit, it may not
preserve it in the diffusive limit. In general, the numerical solvers
for phonon BTE discussed above can be resource-intensive to
some extent, especially in the context of design and optimization.
Additionally, the curse of dimensionality, which states that
computational cost and complexity of nonlinear regression
models increase exponentially with increasing dimensionality24,
may impede their practical applications in complicated phonon
transport problems. Therefore, there is a pressing need to develop
a new scheme that is computationally friendly for efficient
analyses of the dynamic thermal behavior of multiscale devices.
Deep neural networks (DNNs) have been shown capable of

approximating smooth functions25, and they can overcome the
curse of dimensionality in approximating the solutions to
nonlinear PDEs26. Deep learning can learn the solution to a PDE
by minimizing the PDE residual while leveraging the automatic
differentiation feature of the DNNs27. Compared to mesh-based
numerical solvers, the deep learning method eliminates the need
for mesh generation and numerical differentiation between
neighboring mesh points. For the deep learning method, the
neural networks are trained to satisfy the governing laws of
physics described by the PDEs, along with boundary/initial
conditions, and/or labeled data. This is known as physics-
informed machine learning, wherein the PDE constraints are
integrated into the loss function during training. The idea of using
physics-informed training to obtain solutions to differential
equations was brought up by Meade and Fernandez28, Dis-
sanayake and Phan-Thien29, and Lagaris et al.30. The concept of
physics-informed neural networks (PINNs) was introduced in 2019
when it was leveraged to solve forward and inverse fluid dynamics
problems27. PINNs are a type of deep neural network that can be
trained to satisfy physical laws described by PDEs without
significant reliance on labeled data, depending on the extent of
prior knowledge of the underlying physics. In fact, if complete
knowledge of the physics laws is available, labeled training data
will not be required, and the training process becomes purely
focused on satisfying the laws of physics by minimizing the
residual of the governing equations. The success of PINNs in fields
such as fluid dynamics and heat transfer31–34 suggests their
potential for application in broader research areas, including the
anticipated utilization in solving phonon BTE. However, employing
PINNs to study phonon transport can be quite challenging. Unlike
the heat equation or Navier–Stokes equations, which typically
involve two dimensions (spatial coordinates x and time t) in one-
dimensional problems and three dimensions (x, y, and t) in two-
dimensional problems33–36, solving phonon BTE requires a five-
dimensional input in one-dimensional problems and a seven-
dimensional input in two-dimensional problems (to be discussed
later). Furthermore, solving the phonon BTE entails highly
nonlinear integro-differential processes characterized by intricate
relationships between the independent and dependent variables,
particularly when accounting for phonon dispersion and polariza-
tion. These inherent complexities pose additional challenges for
DNNs to effectively approximate and capture such intricate
relationships. We have recently extended PINNs to solve mode-
resolved steady-state phonon BTE and demonstrated their great
efficiency and extensibility in modeling problems with high-
dimension geometries and large temperature gradients37–39.
In this work, we show the capability of PINNs to solve time-

dependent phonon BTE by demonstrating their efficiency and
accuracy in modeling several thermal transport cases with
different dimensions and boundary conditions. To be specific,

PINNs are successfully applied to solving 1D and 2D micro-/
nanoscale heat conduction problems, with periodic boundary
conditions applied in the 1D problems and fixed temperature
boundary conditions applied in the 2D problems. In contrast to
the steady-state phonon BTE, the time-dependent phonon BTE
exhibits a different equation form, incorporating a time derivative
term on the left side. Furthermore, the dynamic behavior
associated with the unsteady phonon BTE makes it difficult to
effectively approximate the time-evolving solution using PINNs.
Additionally, in order to establish a well-defined problem, both
boundary and initial conditions should be applied, resulting in a
more complex loss function compared to steady-state problems
that only require boundary conditions. Moreover, the complexity
of the loss function further increases due to the inclusion of the
time derivative term in the governing equation. These complex-
ities result in difficulties in accurately and efficiently predicting
temperature distribution using the PINN model. While specific
techniques, such as enforcing energy self-conservation and fine-
tuning hyperparameters, have been applied in some testing cases,
they are not the primary focus of the current work, and some
details are beyond the scope of the paper. However, readers are
encouraged to refer to the provided code for further insights.
Both gray and nongray models are investigated in this work,

and the results are validated by either analytical or numerical
solutions. By minimizing the residual of the phonon BTE, the law
of energy conservation, and boundary/initial conditions, the PINNs
are trained to accurately predict the spatio-temporal temperature
distribution in a few seconds. The PINN method can be a
promising tool for understanding mesoscale phonon transport
physics and practical applications such as the thermal manage-
ment design of microelectronics.

RESULTS
Phonon Boltzmann transport equation
In this paper, we use single crystalline silicon, the most representa-
tive semiconductor in electronics, as the model material. In
crystalline silicon (as well as in other crystalline solids), the atomic
vibrations from equilibrium positions can set off waves traveling
through the crystal at different frequencies and in different
directions. These waves can be quantized as quasi-particles known
as phonons, and the model system can be treated as a domain filled
with a chaotic mix of phonons. The relationship between the
angular frequency ω of a phonon and the wavevector k is described
by the phonon dispersion relation. The phonon transport behavior
can be captured by phonon BTE in the regime where wave effects
and phase coherence effects can be neglected10,40,41. To solve the
phonon BTE, isotropic wave vector space and the single-mode
relaxation time (SMRT) approximation are usually adopted to
simplify the computation10,42. Under the SMRT approximation, the
energy-based phonon BTE can be written as,

∂e
∂t

þ v � ∇e ¼ eeq � e
τ

(1)

where e x; s; k; p; tð Þ ¼ _ωD ω; pð Þ½f � f eqðTref Þ� is the phonon
energy deviational distribution function, eeq k; p; Tð Þ ¼
_ωD ω; pð Þ½f eq Tð Þ � f eqðTref Þ� is the associated equilibrium phonon
energy deviational distribution function, v is the phonon group
velocity, and τ is the effective relaxation time. By using the SMRT
approximation, a specific relaxation time is assigned to each
phonon mode, reflecting the overall effect of various phonon
scattering processes. The equilibrium phonon distribution func-
tion f eq ω; Tð Þ conforms to the Bose-Einstein distribution,

f eq ω; Tð Þ ¼ 1

e
_ω
kBT � 1

(2)

where ℏ is the reduced Planck’s constant, kB is the Boltzmann
constant, ω is the angular frequency, and T is the temperature. The
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phonon distribution function f ¼ f x; s; k; p; tð Þ (or f x; s;ω; p; tð Þ) is
determined by the spatial vector x, directional unit vector
s ¼ ðcosθ; sinθcosφ; sinθsinφÞ (θ is the polar angle and φ is the
azimuthal angle), time t, wave number k (or angular frequency
ω ¼ ωðk; pÞ) and polarization p. If the temperature difference
across the entire domain is much smaller than the reference
temperature (i.e., ΔTj j � Tref ), the equilibrium energy term can be
linearized and we can use the following approximation43,

eeq k; p; Tð Þ ¼ _ωD ω; pð Þ f eq ω; Tð Þ � f eq ω; Trefð Þ½ � � C ω; pð Þ T � Trefð Þ (3)

where Cðω; pÞ ¼ _ωD ω; pð Þ ∂f eq
∂T represents the modal heat capacity,

and D ω; pð Þ ¼ k2

2π2 vj j is the phonon density of states. By assuming
the small temperature difference, the problem can be significantly
simplified. Additionally, the group velocity v ¼ ∇kω can be
obtained by utilizing the phonon dispersion relation, and
relaxation time τðω; p; TÞ can be derived from the Holland
model44,45. In order to ensure energy conservation of the scattering
term, Eq. (4) must be satisfied.X

p

Z ωmax;p

0

Z
4π

eeq � e
τ

dΩdω ¼ 0 (4)

where ωmax,p is the maximum frequency. The local temperature
can be obtained by substituting Eq. (3) into Eq. (4),

T ¼ Tref þ 1
4π

X
p

Z ωmax;p

0

Z
4π

e
τ
dΩdω

 !
´
X
p

Z ωmax;p

0

C
τ
dω

 !�1

(5)

This demonstrates that temperature can be determined once
the phonon energy distribution is known, which can be obtained
by solving the phonon BTE. Therefore, the spatio-temporal
temperature distribution of micro-/nanoscale thermal transport
problems can be obtained by solving the time-dependent phonon
BTE (Eq. (1)). It is important to note that the aforementioned
procedure is for the nongray model of phonon BTE, which is often
used for greater accuracy in predicting the behavior of phonons.
However, in practice, it is common to make assumptions such as
the gray model, in which all phonon modes are assumed to have
the same properties. In the gray model, average phonon group
velocity and relaxation time are adopted in the phonon BTE, and
they are treated as constants for all phonon modes to simplify the
calculation.

Physics-informed neural networks
To solve the phonon BTE, a PINN scheme is constructed in
accordance with the laws of physics, as shown in Fig. 1. The input
variables to the neural networks are position vector x (including x,
y, and z), solid angle s ¼ ðcosθ; sinθcosφ; sinθsinφÞ (including polar
angle θ and azimuthal angle φ), wave number k, polarization p,
and time t. Two neural networks are employed to approximate the
equilibrium phonon energy distribution function eeq and non-
equilibrium phonon energy distribution function eneq separately to
enhance the training efficiency, due to the large difference
between the magnitudes of eeq and eneq. The total phonon energy
e ¼ eeq þ eneq is then formulated to satisfy various physical
constraints, including the PDE (i.e., phonon BTE), energy
conservation, and boundary/initial conditions. For energy con-
servation, the integration of the scattering term vanishes, which is
already demonstrated in Eq. (4). The loss function, which is
composed of the mean squared error from each physical
constraint, can be expressed as shown in Eq. (6),

L ¼
��� ∂e
∂t

þ v � ∇e� eeq � e
τ

���2 þ ���X
p

Z ωmax;p

0

Z
4π

eeq � e
τ

dΩdω
���2 þX

i

���Bi

���2
(6)

where Bi is the inconsistency between the given boundary/initial
values and the corresponding values predicted by the PINNs. The
training process aims to minimize Eq. (6) by adjusting the weights
and biases of the neural networks.
It is noted that the partial derivatives of x, y, z, and t, can be

calculated by taking advantage of the auto differentiation of
neural networks, which uses the chain rule to compute
derivatives analytically and efficiently during the back-
propagation process. Thus, PINNs can compute the derivatives
at any point in the domain without needing information from
neighboring grid points, as is necessary in numerical methods.
This is a significant advantage of PINNs compared to traditional
numerical methods.

Gray model
To begin with, we use the gray model of phonon BTE to evaluate
our PINN scheme and gain preliminary insight into our model
performance. In contrast to the nongray model where mode-
resolved properties are considered, all phonon modes are treated
as having the same properties in the gray model. To some extent,

Fig. 1 Schematic of the PINN framework for solving transient phonon BTE. Net 1 and Net 2 are used to approximate the equilibrium part
(eeq) and non-equilibrium part (eneq) of the phonon energy distribution, respectively. The inputs are position vector x (x, y, and z), solid angle s
(including polar angle θ and azimuthal angle φ), wave number k, polarization p, and time t. The Swish activation function, denoted as σ, is
employed in this work.
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the gray model can provide useful insights into phonon transport,
such as ballistic transport and boundary scattering effects46. In this
section, we conduct numerical experiments to analyze the
performance of our PINN scheme by solving the phonon BTE
gray model for both 1D and 2D transient heat conduction
problems.
First, we model a 1D transient thermal grating (TTG) process to

test the PINN scheme. The laser-induced TTG technique allows
non-contact measurements of thermal conductivity on nanos-
tructured samples, without the use of metal heaters or other
extraneous structures47–49. We simulate the thermal relaxation
process of a 1D TTG system, where a spatially sinusoidal
temperature variation across a silicon thin film is induced by a
laser interference47, and the initial condition and boundary
condition for the heat transport problem are described in Eq. (7),

T x; 0ð Þ ¼ Tb þ A0 cos 2πx
L

� �
T 0; tð Þ ¼ T L; tð Þ

(
(7)

where Tb is the background temperature, A0 is the amplitude at
the initial state, and L is the thickness of the silicon thin film
(characteristic length). The periodic boundary condition is applied
to the left and right boundaries. Therefore, the temperature
deviation from the background temperature, ΔT ¼ T � Tb, can be
approximated as ΔT ¼ A tð Þ cos 2πx

L

� �
, where A(t) is the amplitude of

the temperature variation, and it can be obtained analytically47,

Â t�ð Þ ¼ sinc ξt�ð Þe�t� þ
Z t�

0
Â t0ð Þsinc ξ t0 � t�ð Þ½ �e t0�t�ð Þdt0 (8)

where Â ¼ A=A0; t� ¼ t=τ, and the rarefaction parameter
ξ ¼ 2πKn. Knudsen number Kn is a dimensionless number defined
as the ratio of phonon mean free path Λ and characteristic length
L of the modeled structure.
The previously derived PINN framework is applied to predict the

thermal relaxation process of this 1D TTG case. A uniform grid of
Nx points in the spatial domain and Nt points in the time domain is
utilized to produce the training points for the DNNs. Moreover, the
solid angle space s is discretized by using the Gauss–Legendre
quadrature rule, with the number of sample points denoted as Ns.
The values of Nx, Nt, and Ns are summarized in Table 1 for
reference. After training, the temperature can be evaluated at new
positions and times other than the trained points, given the
interpolation ability of DNNs. The extrapolation study is also
conducted, and the details are provided in the Supplementary
Information. The rarefaction parameter ξ is chosen to be 0.6, 4,
and 36, indicating the characteristic length of the modeled
structure can span from the regime where diffusive phonon
transport dominates to the regime where ballistic phonon
transport dominates. It is worth noting that parametric learning
is achieved by incorporating the rarefaction parameter as a new
input parameter to the DNNs. Parametric learning enables
temperature prediction for new thermal relaxation processes that
feature different thicknesses, even if such thicknesses were not
encountered during the training phase of the DNNs. To be
specific, we train the DNNs under ξ = 0.45, 0.55, 0.65, and 0.75 to
study thermal transport at the length scale exceeding the phonon
mean free path and evaluate the model at ξ = 0.6. Similarly, for

length scales comparable to the phonon mean free path, the
DNNs are trained under ξ = 3, 5, 7, and 9, followed by testing the
model at ξ = 4. Likewise, to examine thermal transport at length
scales smaller than the phonon mean free path, the DNNs are
trained at ξ values of 34, 38, 42, and 46, and tested at ξ = 36.
Figure 2a shows the schematic of the 1D silicon thin film, where

a sinusoidal initial temperature and periodic boundary condition
are applied. The obtained results are compared with the analytical
solutions, as depicted in Fig. 2b–d, with PINN results in dashed
lines, parametric-learning PINN results in triangular symbols and
analytical solutions in solid lines. Both the PINN results and the
parametric-learning PINN results show great agreement with the
analytical solutions, which validates the capability of the PINN to
accurately capture micro-/nanoscale phonon transport using a
gray model. The results demonstrate that as the value of ξ
increases, thermal relaxation becomes faster. It is important to
note that, for the case where ξ = 36, we use a denser set of
training points in both the spatial and time domains to ensure the
accuracy of the model at this length scale. Moreover, in this
particular case, the characteristic length of the silicon film L is
smaller than the phonon mean free path Λ, which results in more
ballistic and less diffusive phonon transport. To precisely capture
the highly non-equilibrium phonon energy distribution near the
ballistic limit, a finer spatial and temporal discretization is required.
The training and testing information is summarized in Table 1. The
training can be finished within several minutes, depending on the
number of collocation points used. However, it should be noted
that in the case of ξ = 36, the training time significantly increases
due to the adoption of additional layers and a higher number of
neurons per layer, which are necessary in order to capture such
drastic phonon energy gradients within this thin film. Once fully
trained, the PINNs can produce accurate predictions within 1 ms. It
is noted that all computational times presented in this study are
based on an NVIDIA GeForce TITAN Xp GPU. However, with newer
GPUs, these times may be significantly reduced.
In the second test case, phonon transport in a 2D square

domain is considered, as depicted in Fig. 3a. The temperature at
the top boundary is maintained at Th, while the other boundaries
are held at Tc (Tc < Th). The fixed temperature boundary conditions
are imposed on all the boundaries. At the initial state, the whole
domain temperature is held at T0= Tc. Thermal transport is
studied at different Kn numbers (i.e., Kn = 0.1 and Kn = 1) in order
to evaluate the performance of our model at different length
scales. When Kn is 0.1, diffusive phonon transport dominates,
whereas when Kn is 1, ballistic phonon transport dominates. For
the Kn values under consideration, the system takes 10τ/Kn to
reach the steady states, where τ/Kn represent the time scale for
thermal information to propagate from one boundary to
another20. As a result, we select a time range of [0, 100τ] for
training the Kn = 0.1 case, and [0, 10τ] for the Kn = 1 case. Given
the boundary conditions and the initial condition, the temperature
distribution at any time within the aforementioned range can be
predicted by the PINN framework. To improve the accuracy on the
top boundary, non-uniform spatial training points are sampled,
with denser points placed at the top corners. This is done in
response to the abrupt temperature change at the corners, which
is caused by the boundary conditions. The solid angles (polar

Table 1. Training and testing information for the 1D TTG case with the gray model.

Case Training Testing Range of t

Nx Nt Ns Walltime (min) Nx Nt Ns Walltime (s)

ξ= 0.6 60 60 16 4.6 81 81 16 0.0009 [0, 3τ]

ξ= 4 60 60 16 4.7 81 81 16 0.0010 [0, 0.35τ]

ξ= 36 120 120 16 466.0 81 81 16 0.0010 [0, 0.05τ]
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angle θ and azimuthal angle φ) are discretized using the
Gauss–Legendre quadrature rule with the number of sample
points Nθ= 12 and Nφ= 12.
Although there is no analytical result available for direct

validation of the PINN results, the temperature profiles along
the vertical centerline at x= 0.5 L can be extracted and compared
with the numerical results obtained by an FEA-DOM scheme20, as
shown in Fig. 3b, c. For both the Kn = 0.1 and Kn = 1 cases, the
BTE solutions exhibit obvious ballistic phonon transport behavior.
Specifically, it is observed that the dimensionless temperature
(T� ¼ ðT � TcÞ=ðTh � TcÞ) at the center of the top boundary
(x= 0.5 L) slips down to 0.61 in Fig. 3b and 0.51 in Fig. 3c right
after thermal transport occurs, and it gradually recovers to 0.89
and 0.62, respectively, as approaching the steady state. The
presence of the temperature slip indicates a difference in the
energy levels between the phonons emitted from the top
boundary and those traveling towards it. As thermal information
propagates through the domain, the energy level discrepancy
between phonons and the top boundary decreases, resulting in
smaller temperature slips, as depicted in Fig. 3b, c. Additionally, a
comparison of Fig. 3b and Fig. 3c reveals a positive correlation
between the Knudsen number and the magnitude of the
temperature slip phenomenon. This observation can be attributed
to the predominance of ballistic transport in the system with a
smaller length scale. Overall, the PINN-predicted results agree well
with the numerical results. It is noted that the ray effect, a

common numerical artifact encountered in traditional numerical
schemes, especially in DOM50,51, is not observed in the PINN
solution. In contrast, in the reference numerical solution, the
presence of the ray effect in the Kn = 1 case, where the phonon
energy distribution tends to be highly non-equilibrium, is obvious.
This can be attributed to the lack of sufficient resolution in the
numerical method to accurately capture the solution, resulting in
errors that manifest as jagged features in the simulation output.
Nonetheless, such anomalies are not found in the PINN solution.
The associated training and testing details are succinctly
presented in Table 2. While the training procedure typically takes
approximately 20 h, the testing phase can be executed expedi-
tiously within a few seconds. This implies that once the PINN
framework is trained, it possesses the capability to predict
temperature distribution at any time point within the training
domain accurately.

Nongray model
The gray model is widely used owing to its simplicity. Never-
theless, this approach assumes that all phonons share identical
properties with constant group velocity and relaxation time, which
can lead to considerable inaccuracies in some scenarios52. To
address this issue, the nongray model is explored in this section.
Specifically, we utilize a PINN framework to predict temperature
evolution for the same geometry subjected to TTG (as shown in
Fig. 2a), with Tb = 300 K. We investigate thermal transport at

Fig. 2 Results of the 1D TTG case with the gray model. a Schematic of the 1D silicon thin film, where the sinusoidal initial temperature and
periodic boundary condition are applied. b–d Amplitude of the temperature variation Â predicted by the PINN framework is validated by the
analytical solutions at ξ ¼ 0:6, ξ ¼ 4, and ξ ¼ 36, respectively. The comparison between the PINN results (dashed lines), parametric-learning
PINN results (triangular symbols), and analytical solutions (solid lines) is presented at three time points in each case. X is the normalized
coordinate.
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different characteristic lengths, namely L= 1 μm and L= 10 μm. In
particular, for the L= 1 μm case, we train the model using a time
range of [0, 2000 ps], while for the L= 10 μm case, we use a larger
time interval of [0, 80 ns]. The predicted temperature distributions
for the two cases are presented in Fig. 4a, b, respectively. To verify
the accuracy of our predictions, we compare our results with
numerical solutions obtained from the DUGKS, as described in
reference22. A summary of the pertinent training and testing
information is provided in Table 3. Notably, the L= 1 μm case
requires a longer training duration due to the larger number of
training epochs required to achieve convergence. This outcome
can be attributed to the non-equilibrium nature of the phonon
energy distribution, which tends to become increasingly signifi-
cant as the system length scale is reduced. Typically, the training
period spans around 20 to 40 h, while testing can be completed
within a few seconds.
In order to investigate transient mode-resolved phonon trans-

port in 2D geometries, we extend the PINN scheme to solve the
time-dependent 2D nongray phonon BTE in a square domain with
fixed temperature boundary conditions. Specifically, a Gaussian
temperature profile, mimicking a laser hot spot, is applied to the
top surface of the square domain with a standard deviation of L/6,
as illustrated in Fig. 5a. The temperature at the center of the hot
spot is Th= 300.5 K and gradually decreases to Tc= 299.5 K as
approaches the corners, while the other three boundaries are
maintained at Tc= 299.5 K. The initial temperature of the interior
domain is T0= Tc= 299.5 K. By integrating these boundary and
initial conditions into the PINN loss function during the training

process, the trained model can accurately predict the temperature
evolution within the simulation domain. The temperature contours
predicted at different times are depicted in Fig. 5b–e. However, it is
worth noting that there is a lack of a reference solution for direct
comparison with the PINN results. In order to validate the accuracy
of the PINN predictions, temperature profiles at the vertical center
line (as indicated by the dashed line in Fig. 5a) are extracted at 10,
50, and 100 ns. These profiles are then compared with the
corresponding COMSOL simulation results, which are based on
Fourier’s law. In the current 2D nongray case, it is noted that the
domain characteristic length is 10 μm. It already far exceeds the
average phonon mean free path in silicon, which is approximately
300 nm. Consequently, phonon transport in this scenario occurs at
the diffusive limit, where Fourier’s law is applicable. Figure 5f
demonstrates that the temperature profiles extracted from the
PINN predictions converge to the solutions obtained via Fourier’s
law, which validates the accuracy of our PINN-predicted results.
The training and testing information is summarized in Table 3. It is
important to note that the training process can be executed in a
parametric setting to improve computation efficiency, which we
have previously demonstrated in the 1D TTG case. And we believe
with newer GPUs, a significant reduction in computation time
could be achieved.

DISCUSSION
In this work, transient phonon BTE is successfully solved based on
our PINN framework and validated by comparing to either

Table 2. Training and testing information for the 2D square case with the gray model.

Case Training Testing Range of t

Nx Nt Ns Walltime (h) Nx Nt Ns Walltime (s)

Kn = 0.1 600 100 144 20.6 10,201 101 144 4.3 [0, 100τ]

Kn = 1 600 100 144 21.6 10,201 101 144 4.4 [0, 10τ]

Fig. 3 Results of the 2D square case with the gray model. a Schematic of the 2D square phonon transport domain. The higher temperature
Th is applied on the top boundary, and the lower temperature Tc is applied on the other boundaries. b Dimensionless temperature profiles T*
at the vertical centerline (see dashed line in (a)) is validated by the numerical results when Kn is 0.1. Results are compared at t= 1τ, t= 10τ,
and t= 100τ, respectively. c Dimensionless temperature profiles T* at the vertical centerline is validated by the numerical results when Kn is 1.
Results are compared at t= 0.1τ, t= 0.7τ, and t= 10τ, respectively. Y is the normalized coordinate.
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analytical or numerical results. The model accuracy including the
training and validation loss is shown in the Supplementary
Information. The proposed data-free PINN framework is appealing
compared to learning solely from labeled data, where those data
are sometimes expensive or impossible to obtain. PINN can
predict temperature distribution and temperature evolution in a

few seconds after training. While showing great promise, the
current PINN framework can still be further improved to adapt to a
wider range of applications. The current framework has been
successfully implemented on 1D and 2D models, but the 3D
model remains to be tested, which is currently hindered by the
capability of our GPU hardware. However, we do not believe there

Table 3. Training and testing information for the nongray model cases.

Case Training Testing Range of t

Nx Nt Ns Walltime (h) Nx Nt Ns Walltime (s)

L= 1 μm (1D) 100 100 40 41.2 101 101 40 20.8 [0, 2 ns]

L= 10 μm (1D) 100 100 40 27.1 101 101 40 19.8 [0, 80 ns]

L= 10 μm (2D) 240 60 144 66.9 2601 51 144 25.2 [0, 100 ns]

Fig. 5 Results of the 2D square case with the nongray model. a Schematic of the 2D square domain with a Gaussian hot spot on the top
boundary. b–e Contours of dimensionless temperature at t= 0, t= 10 ns, t= 50 ns, and t= 100 ns, respectively. f Temperature profiles at the
vertical centerline converge to the results of Fourier’s law for our case of L= 10 μm.

Fig. 4 Results of the 1D TTG case with the nongray model. a The amplitude of the temperature variation Â is validated by numerical solution
when L= 1 μm. Results are compared at t= 100 ps, t= 500 ps, and t= 1500 ps, respectively. b The amplitude of the temperature variation Â is
validated by numerical solution when L= 10 μm. Results are compared at t= 0, t= 20 ps, and t= 60 ps, respectively.
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is any algorithm difficulties in extending our model to 3D. Our
PINN has already demonstrated its superiority by solving 2D
transient nongray phonon BTE, which conventional numerical
solvers often struggle with. We also note that while training takes
much more time than prediction, it can be carried out in
parametric settings, enabling the trained model to predict phonon
transport in arbitrary values in the parameter space. For example,
by training the model with system length as a parameter, the
trained model can be utilized to study phonon transport in
geometries with different lengths. While still at the early stage, the
current work represents the first effort of using PINN to efficiently
solve transient nongray phonon BTE, which could impact micro-/
nanoscopic thermal transport research and facilitate the practical
application of phonon BTE for device design and optimization.

METHODS
Phonon properties
In this study, silicon is the material we use for modeling. The
phonon dispersion relation in the [100] direction is employed for
our analysis. The detailed phonon properties are described in the
Supplementary Information. We use Matthiessen’s rule to calculate
the effective relaxation time induced by the overall effect of
impurity scattering, Umklapp, and normal phonon–phonon
scattering.

Training
Training points are sampled from the input space using quasi-
random low-discrepancy Sobol sequences. We construct two
distinct full-connected neural networks to estimate the equili-
brium and nonequilibrium phonon energy separately. Both neural
networks consist of the same number of layers and neurons per
layer, but they take different sets of input variables. The size of the
neural networks depends on the complexity of the problems.
Specifically, we employed 5 layers with 30 neurons per layer for
gray models and 8 layers with 30 neurons per layer for the non-
gray model. Both neural networks are trained simultaneously with
a unified loss function. Adam optimizer is used, and the initial
learning rate is set as 10−3. Additionally, we scale the spatial and
temporal variables to the range of [0,1] prior to feeding them into
the neural networks.

DATA AVAILABILITY
The code of the 1D case will be available for download from https://github.com/
Jiahang-Zhou/transient-pBTE upon publication. Other code and data can be available
upon reasonable request from the authors.
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