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Molecular design with automated quantum computing-based
deep learning and optimization
Akshay Ajagekar1 and Fengqi You 1,2✉

Computer-aided design of novel molecules and compounds is a challenging task that can be addressed with quantum computing
(QC) owing to its notable advances in optimization and machine learning. Here, we use QC-assisted learning and optimization
techniques implemented with near-term QC devices for molecular property prediction and generation tasks. The proposed
probabilistic energy-based deep learning model trained in a generative manner facilitated by QC yields robust latent
representations of molecules, while the proposed data-driven QC-based optimization framework performs guided navigation of the
target chemical space by exploiting the structure–property relationships captured by the energy-based model. We demonstrate the
viability of the proposed molecular design approach by generating several molecular candidates that satisfy specific property target
requirements. The proposed QC-based methods exhibit an improved predictive performance while efficiently generating novel
molecules that accurately fulfill target conditions and exemplify the potential of QC for automated molecular design, thus
accentuating its utility.
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INTRODUCTION
The development of novel compounds and materials has played a
critical role in the advancements of various scientific fields.
Technological and societal progress can be further fueled by the
discovery of novel molecules for applications ranging from drug
design for treating diseases to efficient energy storage devices for
combating climate issues1. The potential for the synthesis of novel
molecular compounds remains vast; for instance, the number of
molecules with pharmacological properties that could be synthe-
sized is estimated to be as high as 1060 2. Computer-aided
molecular design can facilitate the generation of molecular
candidates with desired chemical properties through various
means3. Simulations of chemical systems could estimate mole-
cular properties through quantum chemistry calculations. How-
ever, these techniques are unable to handle large-scale systems
through first-principle calculations and require the use of
approximations adopted at the expense of accuracy, which may
inhibit efficient exploration of the chemical space4. Computational
optimization techniques have also demonstrated some success in
the generation of useful molecules5. Additionally, machine
learning, specifically deep learning, has accelerated progress in
molecular design through learning patterns in molecular datasets
and offers a promising route toward the development of novel
compounds6. The complexities stemming from the nonlinearity of
molecular design problems at larger scales lead to the intract-
ability of optimization techniques7, while the machine learning
techniques may not be data-efficient and yield inaccurate
predictions despite consuming prohibitively large computational
power to process huge amounts of molecular data. It is imperative
to exploit efficient computational techniques for a guided
exploration of the chemical space to generate insights into the
synthesis of novel molecules.
Reliable techniques for molecular property prediction and

efficient search strategies are the building blocks for computer-
aided molecular design8. Prediction models that can estimate the

properties of given molecules can assist the virtual screening
process in isolating candidate molecules with the desired proper-
ties9. Computational screening of molecules is dependent on the
quality of virtual chemical libraries manually constructed from
chemical databases10 or through combinatorial approaches11,12,
and may induce uncertainty in the exploration of the appropriate
chemical space. In addition to using first-principle simulations for
predicting molecular properties13, machine-learning techniques
have also led to the development of advanced prediction models
that estimate properties with competitive precision as that of
traditional techniques14. Such data-driven methods circumvent
the need for computationally expensive quantum chemical
methods15 and have been more commonly embraced to improve
the performance of predictive models16. Characterization of
molecular structure–property relationships through interpretation
of machine learning models can be further used to guide the
design of novel molecules and is referred to as inverse molecular
design17. Inverse design can be performed by navigating the
chemical space of molecules with target functionality through
optimization, search, or sampling techniques18. Several optimiza-
tion techniques, including both heuristic and deterministic
algorithms, can be applied to inverse molecular design cast as
an optimization problem. Evolutionary techniques like genetic
algorithms19 and discrete combinatorial optimization approaches
like mixed-integer programming20 have demonstrated their utility
for the design of various molecules. However, genetic algorithms
require manual adjustment of heuristic rules for different
optimization problems and do not guarantee optimality, while
combinatorial optimization approaches may exhibit difficulty in
solving large-scale nonlinear optimization problems21. These
computational challenges can be tackled by deep learning
methods that utilize sophisticated neural network architectures
for constructing generative models for molecular design. Various
deep generative models allow for adopting different molecular
representations as input and can be trained to learn the

1Systems Engineering, Cornell University, Ithaca, NY 14853, USA. 2Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853,
USA. ✉email: fengqi.you@cornell.edu

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01099-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01099-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01099-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01099-0&domain=pdf
http://orcid.org/0000-0001-9609-4299
http://orcid.org/0000-0001-9609-4299
http://orcid.org/0000-0001-9609-4299
http://orcid.org/0000-0001-9609-4299
http://orcid.org/0000-0001-9609-4299
https://doi.org/10.1038/s41524-023-01099-0
mailto:fengqi.you@cornell.edu
www.nature.com/npjcompumats


distribution of the molecular dataset6, which is followed by
random sampling of molecules for further screening with property
estimation models. Recurrent neural networks22,23 and variational
autoencoders24,25 that use SMILES identifier as input, and graph
convolutional neural networks (GraphConv)26 that operate on
molecular structures represented by graphs are some of the
commonly used deep learning architectures for molecular design.
Deep learning approaches can also be tailored for the conditional
generation of molecules that satisfy the target property require-
ments27. In addition to direct sampling from trained generative
models, Bayesian optimization24 and reinforcement learning28,
assisted by neural network architectures for property estimation,
can perform a guided search for molecules through additional
optimization steps often carried out in the latent space of the
neural networks. Despite their potential, the dependence of deep
neural networks on large amounts of diverse training data
comprising molecules with properties spanning the chemical
space may cast doubt on their generative abilities in the presence
of out-of-domain uncertainty.
Quantum computing (QC) holds tremendous potential to

achieve significant technological feats in various domains,
including the design of novel molecules for specific purposes29.
Owing to their ability of exploiting quantum mechanical
phenomena for performing computation, QC techniques have
demonstrated remarkable improvements for several applications.
The promise of performance enhancement offered by QC has also
attracted considerable attention from the research community for
the development of QC-based methods in fields like computa-
tional chemistry, optimization, and machine learning30. Quantum
computers offer a fundamentally different approach to performing
quantum chemistry simulations that have helped overcome the
practical challenges of simulating chemical systems on classical
computers31. Quantum algorithms have also facilitated the
development of quantum-enhanced optimization and machine
learning techniques tailored for specific problem types and
learning tasks32,33. Recently, QC algorithms have also been
proposed for the search of optimal configuration of molecules
in protein chains that demonstrate a quantum speedup over
straightforward enumeration34. Despite their advantages, QC
techniques implemented on current quantum devices exhibit
limitations in terms of performance and scalability due to the
presence of hardware noise and a limited number of quantum bits
or qubits35. Therefore, it is important to develop models and
methods that harness the complementary strengths of high-
performance quantum and classical computation by overcoming
their individual limitations in order to effectively and efficiently
navigate through the complex chemical space for molecular
design. Although quantum-enhanced machine learning and
optimization can be employed for molecular property prediction
and inverse design, several research challenges remain. Develop-
ing prediction models and design methods that are compatible
with near-term quantum devices with noisy qubits is the first
challenge. There have been attempts at hybrid quantum-classical
optimization techniques for determining the structural configura-
tion of molecules36,37, but these approaches do not scale for larger
molecules on today’s quantum computers. As a result, scalable QC
approaches for a molecular design that can handle problems
across varying scales are another important research challenge. An
additional one lies in exploiting the noisy nature of near-term
intermediate-scale quantum (NISQ) devices which comprise 50 to
a few hundred qubits without fault-tolerant capabilities35 for
learning and inverting structure–property relationships without
compromising performance.
In this paper, we propose a hybrid quantum-classical

computational framework for molecular design that utilizes
QC-based learning and optimization strategies to efficiently
navigate the chemical space for targeted molecular generation.
We construct an energy-based deep learning model that can be

trained with QC-assisted generative training to extract latent
representations from molecular graphs for property prediction.
A QC-assisted optimization technique is further presented that
efficiently traverses through the chemical space to identify
molecules with desired properties by inverting the
structure–activity relationship captured with the energy-based
model. These are particularly advantageous when exploring the
chemical space for candidate molecules by not relying solely on
the available molecular datasets. A thorough analysis of the
proposed methods that includes benchmarking against the
baseline models and investigating the efficacy of the molecular
generation pipeline is also conducted. The proposed model
learns the conditional distribution of molecular properties
depending on their structural information allowing us to
efficiently predict properties for a given molecule. Conse-
quently, it learns the relationship between molecular composi-
tion and structure and its physiochemical properties, which is
exploited by the proposed optimization technique to generate
molecules exhibiting target properties. Previous deep learning
methods for molecular generation do not always facilitate
constrained sampling of molecular candidates6. In contrast, our
molecular design framework is designed to generate molecules
given a certain composition that exhibit target property values
within specific ranges. Upon benchmarking with existing deep
learning-based approaches, the proposed molecular design
framework not only demonstrates competitive predictive
performance for physiochemical properties but also efficiently
generates molecules for predefined property requirements. The
computational experiments conducted to validate the gener-
ated molecules and their properties obtained with various
molecular design approaches also reveal the data efficiency and
generalization capabilities of the proposed QC-based molecular
design approach through the exploration of sparsely populated
regions of the chemical space.
The major contributions of this study are summarized as

follows:

● A data-efficient hybrid quantum-classical approach for mole-
cular property estimation leverages a deep learning model
trained with a QC-assisted learning approach to extract robust
latent representations of molecules.

● A QC-based approximate optimization technique exploiting
the trained property estimation model to explore the chemical
space in a guided manner and identify molecular candidates
with desired properties.

● Several druglike molecules are generated with the proposed
QC-based molecular design framework for various physio-
chemical property targets in an efficient manner as compared
to existing deep learning-based molecular design approaches.

RESULTS AND DISCUSSION
QC-assisted molecule generation framework
This study utilized quantum annealing-based strategies for
learning and optimization required for molecular generation.
We first construct an energy-based model to learn the distribu-
tion of molecular properties conditioned on corresponding
fingerprints. A GraphConv network with fixed weights is
employed to generate fixed-length neural fingerprints, as
illustrated in Fig. 1a. The only input to this model is the structural
information of the molecule describing the atom types and their
connectivity26. The constructed energy-based model uses the
generated molecular descriptors f and the molecular property
range y as the input data. This energy-based model is trained with
a set of molecule–property pairs by drawing samples from a
quantum annealer to estimate the gradients required for
parameter update rules. Upon training, the constructed energy-
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based model learns the probability distribution pðyjf Þ, as shown
in Fig. 1b. The conditional energy-based model also utilizes latent
variable representations h that can be considered as the
compressed chemical space spanned by the molecules and their
properties. These latent representations can be further used to
perform molecular property estimation tasks by passing them as
input to a separate feedforward network. For a molecular
generation, we employ an iterative optimization procedure that
utilizes a quantum annealer to solve formulated quadratic
unconstrained binary optimization (QUBO) problems. As illu-
strated in Fig. 1c, a surrogate model is constructed to estimate
the free energy of the molecule–property pair with the trained
conditional energy-based model. After formulating a QUBO
problem that integrates the linear surrogate model with structural
constraints, the problem is then solved using a quantum annealer
to generate potential molecular candidates. Governed by the
proposed optimization procedure, the surrogate model is
sequentially refined to explore the chemical space for identifying
molecules that satisfy the desired property requirements and
structural constraints.

Molecular property prediction
Constructing an efficient molecular property prediction model
that can provide insights into the structure–property relationships
is an important first step toward guiding the generation of
molecules with desired properties. The latent representations of
the molecules generated by the proposed conditional energy-
based model play an important role in predicting molecular
properties. The predictive performance of feedforward models
that use various inputs obtained through different methods is
presented in Table 1. The average and standard deviation values
of the mean absolute error computed over multiple training-
evaluation repetitions are reported here. For the predictive models
that utilize the latent representations of the energy-based model
as inputs, we obtain several sets of these representations by
training multiple conditional energy-based models with both CD
learning and QC-assisted learning. With each latent representation
obtained with the corresponding energy-based model, repeated
experiments for property prediction are performed with feedfor-
ward networks to measure the relevant metrics along with their
statistical measures. Among the baseline predictive models that
use rule-based molecular descriptors as input, the larger ECFP

Fig. 1 Overview of QC-assisted learning and optimization strategies for molecular generation. The energy-based model is trained by
drawing samples from a quantum annealer in (b) and captures the structure–property relationship between molecular representations or
descriptors generated with a GraphConv network in (a) and the molecular properties. The trained conditional energy-based model is used to
estimate the free energy of input molecules and compute objective values in (c). Formulating and solving quadratic unconstrained binary
optimization problems in an iterative manner with a quantum annealer in (c) yields molecular design candidates with desired target
properties.
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fingerprint tends to perform better for predicting QED and LogP,
while the predictive model with MACCS yields much more
accurate predictions for the accessibility scores. The baseline
model, which uses neural fingerprints generated by the Graph-
Conv model, produces significantly higher errors when predicting
the drug-likeness property of the molecule but obtains compe-
titive results for the remaining molecular properties with only a
13.6% increase over the lowest error associated with the synthetic
accessibility scores. On the other hand, the latent variable
representations obtained with the conditional energy-based
models trained with both classical and QC-assisted learning
techniques achieve an accurate predictive performance for all
property targets despite their low dimensionality. The predictive
models that use latent representations obtained with QC-assisted
generative training not only yield competitive prediction errors as
that of other baseline models but also enjoy the least observed
error when predicting the drug-likeness of the molecules. The
obtained computational results demonstrate the effectiveness of
the latent representations obtained with the conditional energy-
based model trained with QC-assisted learning for molecular
property prediction. We also generate the latent representations
of 1000 molecules in the test set with their known target labels
using the conditional energy-based model trained through QC-
assisted generative training. The mapping of these representa-
tions along their three principal components is plotted in
Supplementary Fig. 1 for various molecular properties.

Targeted molecule generation
We utilize the trained energy-based model and impose restrictions
on the molecular properties for a targeted molecular generation
with the proposed QC-assisted optimization technique. Several
target conditions are imposed on the drug-likeness of molecules
as well as their partition coefficients. Table 2 presents the
generation statistics for the molecules generated with the QC-
assisted optimization technique along with their computed
properties. This table also comprises identical statistics for the
molecules in the training set that satisfy the corresponding target
requirements. For the chosen property targets, we benchmark the
selected baselines and report the corresponding properties of the
molecules obtained with these molecular design techniques. The
number of generated molecules obtained by exploring the
chemical space described by each property target range and

the atomic identities of the reference molecules in the test set are
reported in this table. Among the generated molecules for a given
target condition, a few duplicates are also identified that form
<1.5% of the overall molecules. During the sampling of molecules
performed by the QC-assisted approximate optimization techni-
que, the validity of the molecules is verified with the RDKit
package38. Although invalid molecules that fail to comply with
structural constraints are rarely detected owing to the feasible
molecular generation capability of the QC-assisted approach, they
are automatically discarded to prevent inaccurate estimations
computed within this data-driven approach. Furthermore, the
average and standard deviation values presented for each target
condition are calculated over the observed properties of the
generated molecules to ensure the reliability of the molecular
generation process subject to conditions. As evident from the
computational results in Table 2, the molecules generated with
the QC-based approach for each conditioned property range
satisfy the respective imposed restrictions. For some property
targets, the deep learning approaches CVAE and MGM are able to
generate molecules that comply with the requirements. On the
other hand, the genetic algorithm GBGA is unable to achieve
efficient targeted molecular generation and may require manual
adjustment of the fitness function for each property target. We
also plot the distribution of the SAS scores for all generated
molecules and different target properties in Fig. 3c, d to generate
insights for their ease of synthesis. From these violin plots, it can
be seen that the molecules generated with lower QED and LogP
values exhibit wider variability of accessibility scores, despite their
relatively higher average SAS scores. A reverse trend is observed
for molecules generated for higher utility as drug-like molecules
and high LogP values, demonstrating lower variability of SAS
scores with low average scores. We also investigate the latent
representations for the generated molecules obtained with the
trained conditional energy-based model using the t-SNE embed-
dings. Mapping these latent representations in 2D allows us to
identify the closeness of molecules with respect to their
corresponding properties. Figure 2 shows the 2D embeddings
obtained with t-SNE for the molecules in the training set as well as
the generated molecules colored according to the QED property
values. We also include a few examples of molecular structures
obtained for different property targets in this figure. A distinction
between the latent representations for various property ranges
can be observed with molecules exhibiting similar QED values
adjacent to each other. This illustrates that the constructed energy
based-model learns to capture the relationship between the
molecules and their properties as molecules with similar proper-
ties have close embeddings.
To assess the effects of data used to capture the structure-

property relationship on the exploration of the chemical space,
the densities of partition coefficients and QED values are
visualized with kernel density estimation (KDE) plots along with
their marginal distributions for the molecules in the training set
and all generated molecules in Fig. 3a, b. The observed
concentration of molecules in both training and generated sets
is highest in approximately similar ranges of molecular properties.
Figure 3a, b shows that the molecules generated exhibit higher
density levels when they have either low partition coefficients and
high QED values or high partition coefficients and lower QED
values. However, this trend is missing for the samples in the
training set. In addition to LogP and QED, we also compute the
Kullback–Leibler (KL) divergence values for various molecular
properties to measure the difference between the distribution of
generated molecules with that of the training set distributions.
The KL-divergence scores for the molecules generated with the
proposed QC-based framework, along with the CVAE, MGM, and
GBGA baselines, are reported in Supplementary Table 5. With the
exceptions of the number of hydrogen bond acceptors and
internal similarity, the molecules generated with the QC-based

Table 1. Mean absolute errors for the predicted property targets with
different molecular descriptors and inputs generated with both
conventional and QC-based techniques.

Methoda Input (size) QED SAS LogP

Rule-based ECFPb (2048) 0.17 ± 0.003 0.89 ± 0.21 1.18 ± 0.08

Rule-based MACCSc (512) 0.19 ± 0.008 0.76 ± 0.01 1.24 ± 0.02

GraphConv Neural (256) 0.75 ± 0.02 0.88 ± 0.02 0.81 ± 0.01

CD-learning Latent
variables (64)

0.12 ± 0.001 0.75 ± 0.09 1.33 ± 0.08

QC-assisted
learning

Latent
variables (64)

0.10 ± 0.002 0.66 ± 0.05 1.27 ± 0.05

The prediction metrics are computed over a test set comprising 1000
molecules. Lower values indicate better predictive performance of the
model that uses specified inputs obtained with the corresponding method.
aTraining of the feedforward networks that use the above inputs obtained
with the corresponding method was conducted with 10,000 molecules in
the training set.
bExtended-connectivity fingerprints (ECFP) describe the presence of
particular substructures46.
cMACCS keys indicate the presence or absence of specific chemical
groups47.
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molecular design approach exhibit the highest KL-divergence
scores as compared to the other baselines. These results indicate
that, unlike deep generative models that sample molecules from
the distribution captured from the training set, the proposed QC-
based optimization technique is able to efficiently traverse
through the unexplored chemical space that is not previously
mapped with the structure–property relationship described by the
training set samples. Examples of generated molecular structures
sampled for various atomic identities and target properties are
also provided in Fig. 3e, f. Although the proposed approximate
technique for molecular generation requires extra steps as
compared to direct sampling from deep generative models, the
QC-assisted technique yields a diverse set of feasible molecules
that satisfy structural constraints through efficient guided
optimization performed within the target chemical space.

Validation
The validity of the generated molecules obtained with different
molecular design frameworks is verified along with their proper-
ties, followed by plotting the distributions of the properties for
corresponding property targets in Fig. 4. Distributions for the
training data are also plotted to validate the generalization
capabilities of the molecular design techniques. As evident from
these density plots, the CVAE architecture does not guarantee
constrained sampling of molecular candidates. The graph-based
deep learning model MGM is able to generate a few molecules
that satisfy corresponding targets but is accompanied by the
generation of other noncomplying structures in a significant
proportion. As evident from the efficacy metrics reported in
Table 2, a deviation as high as 72.3% from the mean target
property requirements can be observed with the baseline deep
learning methods for molecular generation. In contrast to the
graph and autoencoder-based baselines, GBGA limits the search of
molecules candidates within a narrow domain for the QED
property targets but exhibits wider exploration for the LogP
property targets. On the other hand, the proposed QC-based
approach is able to generate molecules that exhibit target
properties efficiently with observed zero violations of the required
target property constraints. Additionally, the generated molecules
with the proposed molecular design technique follow trends
similar to that of the training data, which evidently demonstrates
the learning and data efficiency of the proposed energy-based
model trained with QC-assisted learning. Owing to the reliability of
the QC-based molecular design framework in terms of accurate

property prediction and efficient targeted molecular design, the
proposed strategies can be easily adopted in laboratories for
experimental validation. The efficacy of the presented QC-based
techniques implemented on noisy near-term quantum devices like
quantum annealers has further illustrated the promise of QC for
the design of novel molecules in the NISQ as well as the fault-
tolerant era.
The computational results presented in the above subsections

have demonstrated the applicability of QC-assisted techniques for
molecular property estimation and design. Although the goal of
this work is to develop a molecular design framework capable of
exploiting QC techniques for efficient molecular property estima-
tion and generation, it is essential to justify the use of QC for
learning and optimization tasks. To this end, we compare the
performance of the proposed QC-based techniques with that of
their classical counterparts. Computational experiments con-
ducted here use quantum annealers for training the conditional
energy-based model as well as for sampling molecules within the
proposed optimization technique. As seen in Table 1, the
predictive performance of the model that uses latent representa-
tions generated through QC-assisted training is significantly better
than the baseline predictive models but exhibits only slight
improvement over latent variables obtained with classical CD-
learning. To demonstrate the training efficiency of the energy-
based model with QC-assisted generative training, the training
curves obtained over multiple runs are plotted in Fig. 5a. As
evident from these, QC-assisted generative training progresses at
a rate similar to that of CD learning but converges to a
significantly lower free energy difference value. Additionally, by
drawing samples directly from the quantum annealer, QC-assisted
learning requires Oðjyj � jhj � ðjyj þ jhjÞÞ less algebraic operations
than one-step CD learning for each step of the training process,
where y and h represent the one-hot encoded vector denoting the
property target label and the latent vector, respectively. The
quality of training in energy-based models directly impacts the
molecular design capabilities of the QC-assisted optimization
technique. This is validated by utilizing two conditional energy-
based models trained with CD learning as well as QC-assisted
learning for estimating and minimizing associated free energy. We
fix the reference molecules used as the initial basis for the
optimization procedure along with the number of exploration and
optimization steps and measure the number of molecules
obtained with each conditional energy-based model that satisfies
the various property requirements. Distributions of the proportion

Table 2. The molecular generation efficacy of the proposed QC-based molecular design technique is described through different properties
computed for the generated molecules and the ones in the training set that satisfy target requirements for comparison purposes.

Target condition Training QC CVAE MGM GBGA

Quantitative estimation of drug-likeness (QED)

0.527 ≤QED < 0.615 0.58 ± 0.029 0.57 ± 0.025 0.81 ± 0.120 0.66 ± 0.092 0.75 ± 0.043

0.674 ≤QED < 0.721 0.70 ± 0.021 0.69 ± 0.013 0.83 ± 0.063 0.61 ± 0.168 0.74 ± 0.031

0.721 ≤QED < 0.76 0.74 ± 0.021 0.74 ± 0.012 0.86 ± 0.056 0.67 ± 0.147 0.74 ± 0.051

0.76 ≤QED < 0.79 0.78 ± 0.018 0.77 ± 0.010 0.83 ± 0.113 0.64 ± 0.129 0.75 ± 0.035

0.82 ≤QED < 0.847 0.84 ± 0.016 0.84 ± 0.007 0.82 ± 0.081 0.66 ± 0.146 0.74 ± 0.049

Wildman–Crippen partition coefficient (LogP)

0.522 ≤ LogP < 1.295 0.94 ± 0.215 0.86 ± 0.212 1.62 ± 1.036 1.21 ± 1.543 3.10 ± 0.951

1.799 ≤ LogP < 2.223 2.00 ± 0.122 2.00 ± 0.123 2.69 ± 0.861 1.83 ± 1.559 3.23 ± 1.218

2.223 ≤ LogP < 2.584 2.41 ± 0.105 2.40 ± 0.097 3.29 ± 0.959 1.95 ± 1.532 3.52 ± 1.273

2.584 ≤ LogP < 2.946 2.76 ± 0.105 2.71 ± 0.085 3.75 ± 1.339 2.32 ± 1.687 3.69 ± 1.029

3.314 ≤ LogP < 3.688 3.49 ± 0.109 3.39 ± 0.078 3.89 ± 0.597 2.63 ± 1.297 4.86 ± 1.759

Similar metrics are also presented for the selected baselines for molecular design, which include conditional variational autoencoder (CVAE), masked graph
model (MGM), and graph-based genetic algorithm (GBGA).
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of the total molecules generated with both conditional energy-
based models are presented in Fig. 5c, d for the QED and LogP
property targets. It can be observed that for most targets, the
number of identified molecules with desired properties is higher
for the energy-based model trained with QC-assisted learning
than one with CD learning. To verify whether the conditional
distribution captured by the energy-based model plays a role in
locating the desired molecular candidates, we plot the optimiza-
tion trajectories for identical reference molecules of varying sizes
used with both models in Supplementary Fig. 2. As evident from
the trajectory curves for CD learning, the approximate optimiza-
tion technique used with the conditional energy-based model is
subject to higher levels of stochasticity than its quantum
counterpart, which yields molecules in a structured manner. As
evident from the performance metrics associated with these
optimization trajectories in Supplementary Table 3, the proposed
optimization technique used with an energy-based model trained
with QC-assisted learning exhibits improved performance in terms
of speed of improvement as well as best-found solutions. The
proportion of molecules obtained with the classically trained
energy-based model in Fig. 5c, d can also be attributed to this
random exploration of the chemical space. Figure 5b also presents
a comparison of computational times required to solve the QUBO
problems of varying sizes that occurred during molecular
generation for different atomic compositions and property targets
with both simulated annealings implemented on a classical
computer and quantum annealing. In addition to the generation
efficacy of the proposed QC-based molecular design, we also

evaluate the computational resource utilization associated with
solving QUBO problems in the approximate optimization techni-
que. QUBOs constructed for reference molecules of varying sizes
are collected and solved with both simulated annealing and
quantum annealing with the graph and time metrics reported in
Supplementary Table 4. The 50th, 75th, and 90th percentiles of the
annealing times are also plotted in Fig. 5b. The computational
time required to solve QUBO problems arising during the
optimization procedure for molecular design increases with the
size of the reference molecules. On the other hand, the solution
time for the quantum annealer does not vary with the problem
size and is even approximately 200 times faster for the largest
problem instance solved with simulated annealing implemented
on a classical computer. The presented comparisons clearly
demonstrate that the QC-assisted techniques serve as an
enhanced alternative to conventional learning and optimization
methods implemented on classical computers.

Computational issues
One of the limitations of the proposed QC-assisted strategy for
molecular generation is that the exploration of molecular
candidates exhibiting target properties can only be performed
within certain ranges only. Although this constrained exploration
of the chemical space provides better flexibility in identifying
molecules with known atomic identities that satisfy the property
requirements, determining molecules with exactly given proper-
ties may be difficult. In contrast to the trained deep generative

Fig. 2 A t-SNE representation of the chemical space spanned by molecules. Visualization of the latent representations via t-SNE obtained
with the trained energy-based model for the molecules in the training set as well as the generated molecules with restrictions on the QED
property is shown.
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models that can sample molecules for specific target properties,
we apply an optimization procedure to perform a guided search
for molecules that satisfy the target requirements. This is evident
from the presented properties of generated molecules obtained
with various molecular design techniques in Table 2 and
Supplementary Table 3. Within our computational experiments,

we observed that the molecules that exhibit desired properties
were found generally towards the end of the optimization
procedure, which requires a higher computational effort than
direct sampling with deep generative models. We acknowledge
that the proposed QC-based strategies for molecular design
exhibit certain limitations as compared to the generative deep

Fig. 3 Quantitative comparisons across generated molecules and molecules in the training set. The KDE plots indicate the density of
partition coefficient (LogP) and quantitative estimation of drug-likeness (QED) for the a molecules in the training set and b the generated
molecules. The distribution of synthetic accessibility scores (SAS) for the generated molecules is visualized with violin plots for target
conditions on c QED and d LogP, respectively. Examples of generated molecular structures conditioned upon restrictions on molecular
properties of e QED and f LogP are also provided.
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Fig. 4 Targeted molecular generation performance of QC-based approach and baseline methods. Distributions of the molecular properties
of molecules generated with various molecular design frameworks, including the proposed QC-based technique, conditional variational
autoencoder (CVAE), masked graph model (MGM), and graph-based genetic algorithm (GBGA). The molecules are generated with these
frameworks for different property targets for QED (a–e) and LogP (f–j), as shown in the figure. The distribution of the properties for molecules
in the training set satisfying the corresponding targets is also provided for reference.
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learning systems for molecular generation in literature. Despite
these limitations and the challenges associated with near-term
QC, comparisons of property prediction with various baselines
followed by an analysis of the generated molecules substantiates
our objective of developing a QC-based molecular design
framework capable of generating molecules with high efficacy.
Areas for future improvements involve the development of
generative models that could be trained efficiently with QC-
based strategies and are capable of directly sampling molecular
candidates without any additional steps. Furthermore, the use of
the presented QC-based strategies to study and generate
chemical reactions could also be explored.

METHODS
Data
We use compounds from the Zinc database39 to train and validate
the performance of the proposed methods. A subset of Zinc
comprising 12,000 molecules that are commonly used for
benchmarking purposes is collected for our computational
study40. The collected SMILES identifiers of the molecules are
converted to graph-structured data by identifying the node

features and edge features using the RDKit package38. The node
features distinguish constituent atoms into nine heavy atom types,
while the edge features describe the presence of bonds between
atoms and bond types. For each molecular graph in the dataset,
we also collected three different properties, namely, the
quantitative estimation of drug-likeness (QED)41,
Wildman–Crippen partition coefficient (LogP)42, and the synthetic
accessibility score (SAS)43. The LogP value or the water-octanol
partition coefficient provides a measure of lipophilicity and serves
as one of the molecular properties used to estimate QED. On the
other hand, the SAS values describe the ease of synthesis of drug-
like molecules. The QED property can vary between zero and one,
with a larger value indicating a more drug-like molecule while the
SAS ranges from one to ten. Among the molecules in the selected
dataset, LogP ranges from -4.58 to 6.66. The averages of QED, SAS,
and LogP for the collected samples are 0.728, 3.048, and 2.450,
and the standard deviations for these are 0.138, 0.834, and 1.433,
respectively. Target labels for each molecule and its corresponding
property are also generated by discretizing the target space into
several bins. Bin ranges for each property are provided in
Supplementary Table 1.
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Molecular representation
The first step towards constructing quantitative structure-property
relationships is to transform the chemical information of molecules

into descriptors or fingerprints. The numerical encoding of the
molecular structures is necessary for their feature representation as
well as for similarity searches during virtual screening. MACCS and

Fig. 5 Performance comparisons between quantum and classical approaches. a Learning curve for the conditional energy-based model
trained with QC-assisted generative training and CD learning, b the 50th, 75th, and 90th percentiles of annealing times over a set of 25
instances for both simulated and quantum annealing. The distribution of the proportion of molecular candidates satisfying target
requirements obtained with the energy-based models trained with both CD learning and QC-assisted learning are plotted for c QED property
targets and d LogP property targets. The same set of reference molecules is used as the initial starting point for optimizing molecules with
both models for a fair comparison.
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ECFP are examples of substructure-based and circular fingerprints,
respectively44. Although such fingerprints have been previously used
for predictive modeling, they are expert-based representations that
are constructed with expert knowledge governed by a set of rules45.
In addition, the non-invertibility of molecular fingerprints further
complicates the search for molecules within the chemical space that
produce desired representations obtained with predictive models. As
a result, we use a graph convolutional neural network to generate
neural fingerprints that serve as input to the energy-based model.
Graph convolutional networks allow for learning task-specific
molecular features to achieve a competitive predictive performance
and are capable of generating molecular fingerprints analogous to
circular fingerprints like ECFP46. To generate neural fingerprints, a
graph convolutional neural network is constructed that operates on
molecules structured as graphs with atoms as nodes and bonds as
edges. We fix the weights of the graph neural network to generate a
direct non-adaptive mapping between the molecular structure and
the generated fingerprint and exploit their versatility. The con-
structed network uses a convolution operator described in46 followed
by a linear transformation to generate hidden feature vectors for
individual atoms. This convolution operator consists of distinct
weight matrices for each possible degree of vertices in the input
graph. A softmax operation along the node features is then
performed for each node to facilitate information flow between
the atomic features of the molecule. Finally, a global pooling
operation is applied to the updated hidden node features to
generate a fixed-length vector as the network output. It should be
noted that the graph convolutional network is initialized with large
random weights without training. This graph convolutional network
yields a direct nonlinear mapping Gc between the molecular graph
and its neural fingerprint f ¼ GcðX;AÞ, where X represents the
feature matrix for nodes and A represents the adjacency matrix of
the graph. The neural fingerprints are validated in Supplementary
Note 4 through similarity comparisons with ECFP and MACCS
molecular representations.

Drawing samples from quantum annealer
Quantum annealing refers to a search technique that can be
implemented on an AQC platform. Compared to simulated
annealing, quantum annealing demonstrates convergence to the
ground state with a larger probability under similar conditions47.
Quantum annealers are made available by D-Wave Systems with
access to their users through the cloud. The D-Wave system can
only solve quadratic unconstrained binary optimization (QUBO)
problems. The QUBO graph is then mapped onto the quantum
processing unit (QPU), with edges between nodes as internal
couplers and qubits as the nodes. D-Wave offers QPUs with a
topological structure of interconnected qubits forming either the
Chimera graph or Pegasus topology48. To physically perform this
mapping from variables to qubits, the process of minor
embedding is required49,50. Solving a QUBO problem on the
D-Wave QPU comprises three main steps. First, the QUBO problem
graph is embedded in the QPU. Second, low-energy solutions to
the problem Hamiltonian are obtained through quantum anneal-
ing. Third, the solution is unembedded and is returned to the user.
Notably, the process of finding an optimal graph-minor embed-
ding is NP-hard. However, heuristic algorithms exist for finding
graph minors51, and the D-Wave system implements its automatic
embedding and unembedding tools52. Nevertheless, special care
must be taken to formulate the smallest QUBOs possible to
facilitate the embedding process for large-scale problems, and to
enable the solution on such quantum devices. Quantum annealers
allow for the implementation of a target Ising Hamiltonian with
only pairwise interactions and local terms as HIsing ¼ P

i;j Jijσ
z
i σ

z
j þP

ihiσ
z
i and can generate independent configurations from noisy

Gibbs distributions53. HIsing indicates the Ising Hamiltonian
representing the quantum form of the QUBO problem, such that

eigenvalues of the Ising Hamiltonian coincide with the least
energy solution minimizing the corresponding QUBO. All compu-
tational experiments involving the use of quantum annealers in
this work are performed with the D-Wave Advantage quantum
processor that offers at least 5000 qubits and 35,000 couplers54.
Each annealing run used for both generative training and
optimization is performed for 20 µs on this quantum processor.

Energy-based model
We develop an energy-based model for molecular property
prediction that can utilize QC techniques for efficient learning.
Energy-based models can learn the distribution of data by
associating an unnormalized probability value or energy to each
data point. Additionally, the difficulty in sampling from such
models allows us to explore alternatives for classical approxima-
tion techniques with quantum sampling facilitated by a quantum
computer. In this work, we adopt a conditional generative model
called conditional restricted Boltzmann machine (CRBM) to
incorporate molecular property targets as binary variables. CRBM
is a nonlinear generative model that can capture the conditional
probability of observed data and has been previously applied for
time series generation55. Although energy-based models are
typically used for generative modeling, they can also be used for
classification tasks56. Owing to their rich expressivity of latent
variables and modeling flexibility, we use a conditional energy-
based model for the supervised learning task of molecular
property prediction.
An input to the energy-based model is a fixed-length vector

description of the molecule under consideration captured by the
neural fingerprint. In order to learn the conditional distribution
pðyjfÞ of property targets y given the fingerprint f, we construct a
CRBM network that defines a conditional joint distribution over f
and latent variables h denoted by pθðy;hjfÞ. The property targets
are encoded into one-hot vectors through discrete binning of the
target property values to minimize the effects of small observation
errors. The hidden latent variables are modeled as binary units
and can provide auxiliary information. The marginal conditional
distribution of the target property y given the molecular
fingerprint f can then be written as shown in Eq. (1), where
Fθðy; fÞ represents the associated free energy and ZðfÞ denotes
the partition function, as defined in Supplementary Method 3. The
constructed conditional energy-based model can be trained over
a dataset D by maximizing the conditional log-likelihood of the
input data as maxθ

P
d2D log pθðydjfdÞ. In order to apply gradient

ascent for this maximization problem, the gradients of conditional
log-likelihood can be analytically computed which leads to the
parameter update rules as derived in Supplementary Method 3.
The h�idata terms in the update rules can be easily computed with
training data comprising of molecular fingerprints and properties
for different molecules, however, computing the h�ipθðy;hjfÞ exactly
requires evaluating an expectation over pθðy;hjfÞ. Estimation of
this expectation value is computationally intractable due to the
complexity stemming from the partition function ZðfÞ and
requires appropriate approximation techniques in a practical
setting.

pθðyjfÞ ¼
expð�Fθðy; fÞÞ

ZðfÞ (1)

Contrastive divergence (CD) learning can approximate the
intractable expectations with Gibbs sampling57 and has been
extensively used for training energy-based models. CD-learning
can, however, produce biased estimates of the conditional log-
likelihood gradients and may even fail to converge in some cases.
Although improved variants of CD learning can tackle such issues,
the improvement in training performance is obtained at the
expense of increased computational burden56. To overcome the
limitations of classical approximation techniques, we incorporate
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QC-assisted training methodologies for efficient training of our
energy-based model. pθðy;hjfÞ is a Boltzmann distribution also
termed as Gibbs distribution expressed in the form of
pðsÞ ¼ expð�EðsÞÞ=Z, wherein the energy E resembles an Ising
Hamiltonian. As a result, we exploit quantum annealers to model
pθðy;hjfÞ and draw samples from them to train the constructed
energy-based model. The target Ising Hamiltonian on the
quantum annealers is specified through the local fields h and
pairwise couplings J. These input parameters are computed by
mapping the energy function of the conditional energy-based
model Eðf;hÞ ¼ �P

iðbi þ
P

kW
ki
1 f kÞyi �

P
jðcj þ

P
kW

kj
2 f kÞhj �P

i;jW
ijyihj to the Ising Hamiltonian. This energy function can be

cast as a logical bipartite graph with y and h as its nodes and the
parameters θ � ðW1;W2;W; b; cÞ and fingerprint f governing its
node and edge weights. In order to draw samples from the
quantum annealer, we map the bipartite graph onto the physical
hardware graph of qubits and couplers. It is important to note that
the connectivity of the hardware graph poses certain restrictions
on the size of logical graphs that can be embedded into the QPU,
so careful consideration of the degree of the logical bipartite
graph dependent on the sizes of fingerprint and latent variable
vectors is required. We obtain an embedding scheme for mapping
the energy function onto the quantum annealer with a heuristic
tool51 which is used repeatedly while drawing samples from the
Boltzmann distribution. For each update step of the model
parameters, several samples are drawn from pθðy;hjfÞ by
performing multiple annealing runs to estimate the expectations
hyipθðy;hjfÞ, hhipθðy;hjfÞ , and hyThipθðy;hjfÞ.

Property estimation
The trained conditional energy-based model yields the marginal
distribution pθðyjfÞ due to the generative modeling approach. For
property prediction tasks, we can estimate the target property by
computing the latent representations with pθðhjy; fÞ and training
a feedforward neural network using these representations as
input. For molecules with unknown targets, the latent variables
can be estimated by first determining the appropriate target label
y with maximization of the conditional log-likelihood given a
molecular fingerprint as maxy log pðyjfÞ, which is followed by
computing the latent representations and passing them through
the feedforward network to predict exact property targets. Fixed-
length neural fingerprints of size 256 are generated with the fixed
weights GraphConv network that serves as input to the
conditional energy-based model in addition to the corresponding
property labels encoded as discrete bins. We set the dimension of
latent space representation to 64 during the construction of the
energy-based model. This conditional energy-based model is
trained with the molecules and their property targets in the
training set by drawing samples from a quantum annealer. The
same energy-based model is also trained with CD-learning57

carried out on a classical computer to discern any benefits of the
QC-based approach over its classical counterpart. The training
procedure of the proposed conditional energy-based models is
monitored with the difference between the free energy of original
and reconstructed target labels. Furthermore, three baseline
models are trained to predict molecular properties for bench-
marking purposes. Two fully-connected networks that use ECFP
and MACCS fingerprints44 of lengths 2048 and 512 as input are
trained using backpropagation with the Adam optimizer58. The
same procedure is used to train a GraphConv model46 that
operates directly on molecules cast as graph-structured data to
predict their properties directly. The training for all models is
terminated when the validation metrics fail to improve over
consecutive steps, and their predictive performance is evaluated
with mean absolute errors computed on the test set.

Optimization strategy for molecular design
Generation of molecules by inverting the structure-property
relationships obtained with the trained conditional energy-based
model can be cast as an optimization problem. For a given target
property range, the corresponding one-hot label can be deter-
mined as y, then the optimization problem deals with the objective
minX;AFθðy; fÞ and is subject to the constraint f ¼ GcðX;AÞ in
addition to the structural constraints Ω that guarantee the
generation of feasible molecules. This problem can be simplified
by fixing the feature matrix of atoms X in the molecule provided
either by guided intuition or reference molecules, which leads to a
search of the chemical space defined by the given atomic
identities. Despite this, the optimization problem minAfFθðy; fÞjf ¼
GcðX;AÞ; A 2 Ωg is a constrained nonlinear optimization problem
with discrete-continuous variables and is challenging to solve with
off-the-shelf solvers. To tackle this problem, we develop a QC-
assisted approximate optimization technique that is capable of
efficiently navigating the chemical space defined by the given
atomic identities and the desired property targets.
In order to exploit QC for optimization, it is important to

formulate problems that are compatible with the specific
quantum hardware. It should be noted that both circuit model
quantum devices and quantum annealers can natively solve
QUBO problems. The main idea behind the proposed solution
technique is the use of a weighted linear model

P
i;j>iβijAij that

serves as a surrogate model to approximate the objective function
Fθðy;GcðX;AÞÞ. Since the adjacency matrix is symmetric, A �
fAij 2 f0; 1gjj>i; 8ig form the variables for the molecular genera-
tion problem. In addition, the set of structural constraints Ω
comprises inequalities of the form

P
j>iAij þ

P
i>jAji � vi where vi

represents the valency of constituent atom i. These structural
constraints can be modeled as a QUBO problem denoted by Qc

such that argminAQc 2 Ω. This QUBO problem can be formulated
as Qc ¼

P
iQi where Qi is given by Eq. (2).

Qi ¼ ð1� viÞð
P

j>i Aij þ
P

i>j AjiÞ þ
P

j>i

P
i>k AijAki

þ2ðPj>i

P
k>j AijAik þ

P
i>j

P
j>k AjiAkiÞ (2)

Similar to Bayesian optimization59, the proposed QC-based
approximate optimization technique implements two phases. The
primary phase involves random exploration of the chemical space
to generate molecules and computing the associated objective
function values. This exploration phase is performed by using a
quantum annealer to solve minAQc to generate feasible molecules.
The collected samples and the objective function values are
recorded as D � ðAi; FiθÞi¼1;:::N where N indicates the number of
exploration steps. The secondary phase of the proposed solution
technique adopts a data-driven approach to train the surrogate
model by minimizing the squared error as minβ

P
k2DðFkθ � βTAÞ2

to yield least square estimates for β. Sampling a molecule in this
phase then involves solving the QUBO minA

P
i;j>iβijAij þ λQc

where λ is a fixed multiplier that satisfies λ � kβk1. The obtained
molecule and the observed objective value function are further
appended to D. During each step of the second phase, the least
square estimates are updated over dataset D, followed by solving
the updated QUBO problem. This ensures that the adjacency
matrix is sampled such that it approximately minimizes the
surrogate model while maintaining the structural constraints. It is
important to note that the QUBO problems in both phases of the
proposed QC-based optimization technique can be cast as a fully
connected graph. This graph can be mapped onto the physical
hardware graph of the quantum annealer and is subjected to
restrictions posed by the connectivity of the specific device. As the
connectivity of the logical graph cast by the QUBO problems
remains consistent throughout the optimization procedure, we
obtain an embedding scheme for the mapping of the logical
graph to the physical graph using a heuristic tool51. For a given
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optimization problem, the embedding scheme is determined only
once and is reused over all sampling steps of the proposed QC-
based approximate optimization technique.

Generating molecules
To demonstrate the viability of the proposed QC-assisted
optimization technique for molecular generation, we conduct
multiple computational experiments with various property targets.
The conditional energy-based model trained with QC-assisted
generative training is used as the structure-property relationship
for inversion with the QC-based approximate optimization. For a
given property target, appropriate target labels are obtained, and
the corresponding conditional energy-based model is used to
compute the objective function values for sampled molecules.
Atomic identities of the molecules in the test set are used to
search the associated chemical spaces with the proposed solution
technique for molecular candidates that satisfies target property
requirements. Ten exploration steps are performed for each
optimization problem, followed by 90 sampling steps to minimize
the associated free energy of the trained conditional energy-based
model. The molecules generated with the QC-assisted optimiza-
tion technique are recorded for various conditions on properties
like partition coefficient and drug-likeness. Additionally, we also
calculate the QED, SAS, and LogP values for all generated
molecules using the RDKit package38 to validate the performance
of the proposed QC-based optimization technique.

Baseline methods
To evaluate the efficiency of the structure-property relationship
captured by the energy-based model, we benchmark their predictive
performance against different neural network models that adopt
various learning strategies and input types. The latent vector
representations of the conditional energy-based models trained
with both contrastive divergence (CD) learning57 and QC-based
generative training are used as inputs to a single-layered neural
network for predicting the corresponding property targets. CD-
learning is an approximate learning approach and has been
extensively used for training energy-based models60, so it is chosen
for comparison against the energy-based model trained with the
quantum generative approach. Additionally, three baseline models,
including feedforward neural networks that use ECFP61 and MACCS62

molecular representations as input, as well as a GraphConv model46

that operates directly on molecules cast as graph-structured data to
predict their properties directly, are chosen as baselines for property
estimation performance.
In addition to revealing the exploration capabilities of the

proposed QC-based molecular design approach in the sparsely
populated chemical space, it is important to validate the targeted
molecular generation. To this end, we compare the proposed
method with two baseline deep learning-based approaches for
molecular design, namely, conditional variational autoencoder
(CVAE)63 and masked graph model (MGM)64, for benchmarking
the targeted molecular generation results. CVAE is an
autoencoder-based generative model that operates on the SMILES
representations of molecules due to their compact line notation
obtained with simple vocabulary and grammar rules65. On the
other hand, MGM employs a graph neural network to operate on
molecules represented as graph-structured data. CVAE imposes
molecular properties onto the latent space of the autoencoder to
learn a distribution of the molecular SMILES strings conditioned
on their corresponding properties, while MGM captures a
distribution over atoms and bonds in molecular graphs given
partial ones. We also employ a graph-based genetic algorithm
(GBGA)66 as a baseline owing to its ability to optimize
combinatorial problems associated with targeted molecular
design. In contrast to conventional genetic algorithms that
manipulate SMILES notations67, GBGA performs crossover and

mutation operations by altering the graph representation of
molecules. Implementation details of the selected baselines for
molecular design are provided in Supplementary Method 268–71.
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