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Atomistic Line Graph Neural Network for improved materials
property predictions
Kamal Choudhary 1,2,3,4✉ and Brian DeCost 1,4

Graph neural networks (GNN) have been shown to provide substantial performance improvements for atomistic material
representation and modeling compared with descriptor-based machine learning models. While most existing GNN models for
atomistic predictions are based on atomic distance information, they do not explicitly incorporate bond angles, which are critical
for distinguishing many atomic structures. Furthermore, many material properties are known to be sensitive to slight changes in
bond angles. We present an Atomistic Line Graph Neural Network (ALIGNN), a GNN architecture that performs message passing
on both the interatomic bond graph and its line graph corresponding to bond angles. We demonstrate that angle information
can be explicitly and efficiently included, leading to improved performance on multiple atomistic prediction tasks. We ALIGNN
models for predicting 52 solid-state and molecular properties available in the JARVIS-DFT, Materials project, and QM9 databases.
ALIGNN can outperform some previously reported GNN models on atomistic prediction tasks with better or comparable model
training speed.
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INTRODUCTION
Graphs are a powerful non-Euclidean data structure method for
establishing relationships between features (nodes) and their
relationships (edges)1,2. Graph neural networks (GNN)3,4 have
immense potential for modeling complex phenomena. Com-
mon applications of GNNs include community detection and
link prediction in social networks5,6, functional time series on
brain structures7, gene DNA on regulatory networks8, informa-
tion flow through telecommunications networks9, and property
prediction for molecular and solid materials10. From a quantum
chemistry point of view, GNNs provide a unique opportunity to
predict properties of solids, molecules, and proteins in a much
faster way rather than by solving the computationally expen-
sive Schrodinger equation11–14.
There has been rapid progress in the development of GNN

architectures for predicting material properties such as
SchNet10, Crystal Graph Convolutional Neural Networks
(CGCNN)15, MatErials Graph Network (MEGNet)16, improved
Crystal Graph Convolutional Neural Networks (iCGCNN)17,
OrbNet18, and similar variants19–31. This family of models
represents a molecule or crystalline material as a graph with
one node for each constituent atom and edges corresponding
to interatomic bonds. A common theme is the use of elemental
properties as node features and interatomic distances and/or
bond valences as edge features. Through multiple layers of
graph convolution updating node features based on their local
chemical environment, these models can implicitly represent
many-body interactions. However, many important material
properties (especially electronic properties such as band gaps)
are highly sensitive to structural features such as bond angles
and local geometric distortions. It is possible that these models
are not able to efficiently learn the importance of such many-
body interactions. Explicit inclusion of angle-based information
has already been shown to improve models with hand-crafted

features such as classical force-field inspired descriptors
(CFID)32. Recently, there has been growing interest in the
explicit incorporation of bond angles and other many-body
features17,19,20.
In this work, we use line graph neural networks inspired by

those proposed in ref. 6 to develop an alternative way to include
angular information to provide high accuracy models. Briefly, the
line graph L(g) is a graph derived from another graph g that
describes the connectivity of the edges in g. While the nodes of
an atomistic graph correspond to atoms and its edges
correspond to bonds, the nodes of an atomistic line graph
correspond to interatomic bonds and its edges correspond to
bond angles. Our model alternates between graph convolution
on these two graphs, propagating bond angle information
through interatomic bond representations to the atom-wise
representations and vice versa. We use both the bond distances
and angles in the line graph to incorporate finer details of atomic
structure which leads to higher model performance. Our
Atomistic Line Graph Neural Network (ALIGNN) models are
implemented using the deep graph library (DGL)33 which allows
efficient construction and neural message passing for different
types of graphs. ALIGNN is a part of the Joint Automated
Repository for Various Integrated Simulations (JARVIS) infrastruc-
ture34. We train ALIGNN models for several crystalline material
properties from JARVIS-density functional theory (DFT)34–44 and
Materials project45 (MP) datasets as well as molecular properties
from QM946 database.

RESULTS AND DISCUSSION
Atomistic graph representation
ALIGNN performs Edge-gated graph convolution4 message
passing updates on both the atomistic bond graph (atoms are
nodes, bonds are edges) and its line graph (bonds are nodes,
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bond pairs with one common atom are edges). The Edge-gated
graph convolution variant has the distinct advantage of
updating both node and edge features. Because each edge
in the bond graph directly corresponds to a node in the line
graph, ALIGNN can aggregate features from bond pairs to
efficiently update atom and bond representations by alternat-
ing between message passing updates on the bond graph and
its line graph.
For crystals, we use a periodic 12-nearest-neighbor graph

construction. We expand this nearest-neighbor graph to include
edges to all atoms in the neighbor shell of the 12th-nearest
neighbor. Each node in the atomistic graph is assigned 9 input
node features based on its atomic species: electronegativity,
group number, covalent radius, valence electrons, first ionization
energy, electron affinity, block, and atomic volume. This feature
set is inspired by the CGCNN15 model. The initial edge features are
interatomic bond distances. We use a radial basis function (RBF)
expansion with support between 0 and 8 Å for crystals and up to
5 Å for molecules. This undirected graph then can be represented
as G= (υ, є) where υ are nodes and є are edges i.e., a collection of
(υi, υj) linking vertices from υi to υj. G has an associated node
feature set H= {h1, …, hN), where hi is the feature vector
associated with node υi.

Atomistic line graph representation
The atomistic line graph is derived from the atomistic graph.
Each node in the line graph corresponds to an edge in the
original atomistic graph; both entities represent interatomic
bonds, and in our work, they share latent representations.
Edges in the line graph correspond to triplets of atoms or pairs
of interatomic bonds. The initial line graph edge features are an
RBF expansion of the bond angle cosines: θ ¼ arccosð rij �rjk

rijj jrjkÞ,
where rij and rjk are atomic displacement vectors between
atoms i, j, and k. A schematic of an atomistic graph and
corresponding atomistic line graph is shown in Fig. 1. To avoid
ambiguity between the node and edge features of the atomistic
graph and its line graph, we write atom, bond, and triplet
representations as h, e, and t.

Edge gated graph convolution
ALIGNN uses Edge-gated graph convolution4 convolution for
updating both node and edge features. This convolution is similar
to the CGCNN update, except that edge features are only
incorporated into normalized edge gates. Furthermore, edge gated
graph convolution uses the pre-aggregated edge messages to update
the edge representations.

Edge gated graph convolution updates node representations hl

from layer l according to the formula:
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The edge messages in this Eq. (4) are equivalent to the gating
term in the CGCNN update15, which coalesces the weight matrices
A, B, and C into Wgate, and the augmented edge representation

zij ¼ hi � hj � eij (5)

elij ¼ el�1
ij þ SiLU Norm Wl

gatez
l�1
ij
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(6)

ALIGNN update
One ALIGNN layer composes an edge-gated graph convolution on
the bond graph (g) with an edge-gated graph convolution on the
line graph (L(g)), as illustrated in Fig. 2. To avoid ambiguity
between the node and edge features of the atomistic graph and
its line graph, we write atom, bond, and triplet representations as
h, e, and t. The line graph convolution produces bond messages m
that are propagated to the atomistic graph, which further updates
the bond features in combination with atom features h.

ml; tl ¼ EdgeGatedGraph ConvðLðgÞ; el�1; tl�1Þ (7)

hl; el ¼ EdgeGatedGraphConvðg; hl�1;mlÞ (8)

Overall model architecture and training
We use N layers of ALIGNN updates followed by M layers of edge-
gated graph convolution (GCN) updates on the bond graph. We
use Sigmoid Linear Unit (SiLU, also known as Swish) activations
instead of rectified linear unit (ReLU) or Softplus because it is twice
differentiable like Softplus but can result in a better empirical
performance like ReLU on many tasks. After N+M graph
convolution layers, our networks perform global average pooling
over nodes and finally predict the target properties with a single
fully connected regression or classification layers. Table 1 presents
the default hyperparameters of the ALIGNN model used to train
the models reported in “Model performance” section. These
hyperparameters were selected through a combination of

Fig. 1 Schematic showing undirected crystal graph representation and corresponding line graph construction for a SiO4 polyhedron. For
simplicity, only Si–O bonds are illustrated. The ALIGNN convolution layer alternates between message passing on the bond graph (left) and its
line graph (or bond adjacency graph, right).
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hypothesis-driven experiments and random hyperparameter
search, as discussed in detail in the “Methods” section. “Model
analysis” section provides a detailed analysis of the sensitivity of
model performance and computational cost.

Model performance
Model performance can vary substantially depending on the
dataset and task. To evaluate the performance of ALIGNN, we
currently use two different solid-state property datasets (Materials
Project and JARVIS-DFT) as well as molecular property dataset
QM9. Because the solid-state datasets are continuously updated,
we use time-versioned snapshots of them, specifically selecting the
MP version used by previous works to facilitate a direct comparison
of model performance with the literature. It is likely that as these
dataset sizes increase in the future the performance of the model
can be further improved. We select the MP 2018.6.1 version which
consists of 69,239 materials with properties such as Perdew Burke-
Ernzerhof functional (PBE)47 bandgaps and formation energies.
Similarly, we use 2021.8.18 version of JARVIS-DFT dataset, which
consists of 55,722 materials with several properties such as van der
Waals correction with optimized Becke88 functional
(OptB88vdW)48 bandgaps, formation energies, dielectric constants,
Tran-Blaha modified Becke Johnson potential (MBJ)49 bandgaps
and dielectric constants, bulk, shear modulus, magnetic moment,
density functional perturbation theory (DFPT) based maximum
piezoelectric coefficients, Boltztrap50 based Seebeck coefficient,
power factor, maximum absolute value of electric field gradient
and two-dimensional materials exfoliation energies. All of these
properties are critical for functional materials design. For the MP
dataset we use a train-validation-test split of 60,000–5000–4239 as
used by SchNet10 and MEGNet16. For the JARVIS-DFT dataset and
its properties, we use 80 %:10 %: 10 % splits. For QM9 dataset we

use a train-validation-test split of 110,000–10,000–10,829 as used
by SchNet10, DimeNet++20, and MEGNet16.
Performance of ALIGNN models on MP is shown in Table 2,

which shows the regression model performance in terms of mean
absolute error metric (MAE). The best MAEs for formation energy
(Ef) and band gap (Eg) with ALIGNN are 0.022 eV(atom)−1 and
0.218 eV, respectively. In terms of Ef, ALIGNN outperforms reported
values of CGCNN, MEGNet, and SchNet models by 43.6%, 21.4%,
and 37.1%, respectively. For Eg, ALIGNN outperforms CGCNN and
MEGNet by 43.8% and 33.9%, respectively. Good performance on
well-known and well-characterized datasets ensures high predic-
tion accuracy of ALIGNN models. Because each property has
different units and in general a different variance, we also report
the mean absolute deviation (MAD) for each property to facilitate
an unbiased comparison of the model performance between
different properties. The MAD values represent the performance of
a random guessing model with average value prediction for each
data point. We also report the CFID based predictions for
comparison. Clearly, all the neural networks, especially ALIGNN,
perform much better than the corresponding MAD of the dataset
as well as CFID performance. Analyzing the MAD: MAE (ALIGNN)
ratio, we observe that the ratio could be as high as 42.27 model.
Generally, a model with high MAD:MAE ratio (such as 5 and above)
is considered a good predictive model51.
Similarly, we train ALIGNN models on the JARVIS-DFT34–44

dataset which consists of data for 55,722 materials. In addition to
properties such as formation energies, and bandgaps it also
consists several unique quantities such as solar-cell efficiency
(spectroscopic limited maximum efficiency, SLME), topological
spin-orbit spillage, dielectric constant with (єx (DFPT)), and without
ionic contributions (єx (OPT, MBJ)), exfoliation energies for two-
dimensional (2D), electric field gradients (EFG), Voigt bulk (Kv) and
shear modulus (Gv), energy above convex hull (ehull), maximum
piezoelectric stress (eij) and strain (dij) tensors, n-type and p-type
Seebeck coefficient and power factors (PF), crystallographic
averages of electron (me) and hole (mh) effective masses. As we
converge plane wave-cutoff (ENCUT) and k-points used in Brillouin
zone integration (Kpoint-length), we attempt to make machine
learning predictions on these unique quantities as well. Such a
large variety of properties allow a thorough testing of our ALIGNN
models. More details for individual properties, its precision with
respect to experimental measurements, applicability, and limita-
tions can be found in respective works. However, it is important to
mention that many important issues such as tackling systematic
underestimation of bandgaps by DFT methods, the inclusion of
van der Waals bonding, and the inclusion of spin-orbit coupling
interactions, all critically important for materials-design perspec-
tive have been key areas of improvements for the JARVIS-DFT
dataset. For instance, meta-GGA (generalized gradient approxima-
tion) based Tran-Blaha modified Becke Johnson potential (TBmBJ)
band gaps are more reliable and comparable to experimental data
than Perdew Burke-Ernzerhof functional (PBE) or van der Waals
correction with optimized Becke88 functional (OptB88vdW)
bandgaps, but their calculations are computationally expensive
and hence they are underrepresented in the dataset. In addition
to the ALIGNN performance, we also include hand-crafted
Classical force-field inspired descriptors (CFID) descriptor and

Table 1. ALIGNN model configuration used for both solid-state and
molecular machine learning models.

Parameter Value

ALIGNN layers 4

GCN layers 4

Edge input features 80

Triplet input features 40

Embedding features 64

Hidden features 256

Normalization Batch normalization

Batch size 64

Learning rate 0.001

Table 2. Test set performance on the Materials Project dataset.

Prop Unit MAD CFID CGCNN MEGNet SchNet ALIGNN MAD:
MAE

Ef eV/at. 0.93 0.104 0.039 0.028 0.035 0.022 42.27

Eg eV 1.35 0.434 0.388 0.33 — 0.218 6.19

Predictions on test set are shown in parity plots in Supplementary Figs. 1, 2.

Fig. 2 Schematic of the ALIGNN layer structure. The ALIGNN layer
first performs edge-gated graph convolution on the line graph to
update pair and triplet features. The newly updated pair features are
propagated to the edges of the direct graph and further updated
with the atom features in a second edge-gated graph convolution
applied to the direct graph.
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CGCNN MAE performances for these properties using identical
data-splits.
In Table 3 we show the performance on regression models for

different properties in the JARVIS-DFT database. We observe that
ALIGNN models outperform CFID descriptors by up to 4 times,
suggesting GNNs can be a very powerful method for multiple
material property predictions. Also, ALIGNN outperforms CGCNN
by more than 2 times (such as for OptB88vdW total energy). Cross-
dataset comparison of corresponding property entries in Tables 2,
3 shows that generally models generally obtain better perfor-
mance on the MP dataset, which we attribute primarily to the
larger size of MP. For example, the MAE for the formation energy
target on MP dataset is 50% lower than for JARVIS-DFT. However,
for some targets, the differences in the DFT method and settings,
as well as potential differences in the material-space distribution,
might significantly contribute to the difficulty of a prediction task.
For example, the MAE on high throughput band gaps is lower (by
35.7%) for the JARVIS-DFT dataset, which is interesting in light of
MP’s dataset size advantage over JARVIS-DFT. One potential
source of this discrepancy is the differing computational
methodologies used, such as different functionals (PBE vs
OptB88vdW), use of the DFT+U method, and settings for various
DFT hyperparameters like smearing and k-point settings, all of
which can influence the values of computed bandgaps as
discussed in ref. 37. Another potential contributing factor could
be differing levels of dataset bias in the MP and JARVIS-DFT

datasets stemming from differing distributions in material space.
Clarifying this situation is beyond the scope of the present work,
though it is of great importance for the atomistic modeling
community to resolve.
Nevertheless, application of ALIGNN models on different

datasets shows improvements for materials-property predictions.
Both CFID, CGCNN and ALIGNN models’ MAEs are lower than the
corresponding MADs. The MAD:MAE ratios can vary for energy
related quantities from a high value of 48.11 (total energy), and
26.06 (formation energy model) to low values such as for DFPT
based piezoelectric strain coefficients (1.19) and dielectric
constant with ionic contributions (1.63). The results indicate that
there is still much room for improvement for the GNN models,
especially for electronic properties.
As we notice above, the regression tasks for some of the

electronic properties do not show very high MAD: MAE. we train
classification models for some of them. Classification tasks
predict labels such as high value/low value (based on a selected
threshold) as 1 and 0 instead of predicting actual data in
regression tasks. Such models can be useful for fast screening
purposes38 for computationally expensive methods. We evaluate
the performance of these classifiers using the receiver operating
characteristic curve area under the curve (ROC AUC). A random
guessing model has a ROC AUC of 0.5, while a perfect model
would be a ROC AUC of 1.0. Interestingly, we notice most of our
classification models (as shown in Table 4) have high ROC AUCs,

Table 3. Regression model performances on JARVIS-DFT dataset for 29 properties using CFID, CGCNN and ALIGNN models on 55,722 materials.

Property Units MAD CFID CGCNN ALIGNN MAD: MAE

Formation energy eV(atom)−1 0.86 0.14 0.063 0.033 26.06

Bandgap (OPT) eV 0.99 0.30 0.20 0.14 7.07

Total energy eV(atom)−1 1.78 0.24 0.078 0.037 48.11

Ehull eV 1.14 0.22 0.17 0.076 15.00

Bandgap (MBJ) eV 1.79 0.53 0.41 0.31 5.77

Kv GPa 52.80 14.12 14.47 10.40 5.08

Gv GPa 27.16 11.98 11.75 9.48 2.86

Mag. mom µB 1.27 0.45 0.37 0.26 4.88

SLME (%) No unit 10.93 6.22 5.66 4.52 2.42

Spillage No unit 0.52 0.39 0.40 0.35 1.49

Kpoint-length Å 17.88 9.68 10.60 9.51 1.88

Plane-wave cutoff eV 260.4 139.4 151.0 133.8 1.95

єx (OPT) No unit 57.40 24.83 27.17 20.40 2.81

єy (OPT) No unit 57.54 25.03 26.62 19.99 2.88

єz (OPT) No unit 56.03 24.77 25.69 19.57 2.86

єx (MBJ) No unit 64.43 30.96 29.82 24.05 2.68

єy (MBJ) No unit 64.55 29.89 30.11 23.65 2.73

єz (MBJ) No unit 60.88 29.18 30.53 23.73 2.57

є (DFPT:elec+ionic) No unit 45.81 43.71 38.78 28.15 1.63

Max. piezoelectric strain coeff (dij) CN−1 24.57 36.41 34.71 20.57 1.19

Max. piezo. stress coeff (eij) Cm−2 0.26 0.23 0.19 0.147 1.77

Exfoliation energy meV(atom)−1 62.63 63.31 50.0 51.42 1.22

Max. EFG 1021 Vm−2 43.90 24.54 24.7 19.12 2.30

avg. me electron mass unit 0.22 0.14 0.12 0.085 2.59

avg. mh electron mass unit 0.41 0.20 0.17 0.124 3.31

n-Seebeck µVK−1 113.0 56.38 49.32 40.92 2.76

n-PF µW(mK2)−1 697.80 521.54 552.6 442.30 1.58

p-Seebeck µVK−1 166.33 62.74 52.68 42.42 3.92

p-PF µW(mK2)−1 691.67 505.45 560.8 440.26 1.57

Predictions on test set are shown in Supplementary Figs. 3–31.
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ranging up to a maximum value of 0.94 (for convex hull stability)
showing their usefulness for material classification-based appli-
cations. All results are based on the performance of 10 % test
data which is never used during the training or model selection
procedures.
Next, we evaluate the ALIGNN model on QM9 molecular

property dataset (130,829 molecules) and compare it with other
well-known models such as SchNet10, MatErials Graph Network
(MEGNet)16, and DimeNet++20 as shown in Table 5. The results
from models other than ALIGNN are reported as given in
corresponding papers, not necessarily reproduced by us. QM9
provides DFT calculated molecular properties such as highest
occupied molecular orbital (HOMO), lowest unoccupied molecu-
lar orbital (LUMO), energy gap, zero-point vibrational energy
(ZPVE), dipole moment, isotropic polarizability, electronic spatial
extent, internal energy at 0 K, internal energy at 298 K, enthalpy at
298 K, and Gibbs free energy at 298 K. ALIGNN outperforms
competing methods for HOMO and dipole moment tasks while
other accuracies are similar to the SchNet model. Most
importantly, all ALIGNN results reported here use the same set
of hyperparameters obtained by tuning to validation perfor-
mance on the JARVIS-DFT bandgap target, suggesting that

ALIGNN provides robust performance with respect to different
datasets and material types.

Model analysis
We ablate individual components of the ALIGNN model to
evaluate their contribution to the overall architecture. Keeping
other parameters intact in the ALIGNN model (as specified in
Table 1), we vary the number of ALIGNN and GCN layers as shown
in Table 6 and Supplementary Table 1 for JARVIS-DFT OptB88vdW
formation energies and bandgaps respectively. We find that
without any graph convolution layers the MAE for the formation
energy and bandgap are 1248.5% and 453.6% higher than the
default model. Adding even a single ALIGNN or GCN layer can
reduce the MAE by 102.9% illustrating the importance of these
layers. However, further increase in ALIGNN/GCN layers doesn’t
scale well and performance quickly saturates at a depth of 4.
Excluding GCN layers and increasing ALIGNN layers and vice versa
show the individual importance of these layers. Performance of
GCN-only models saturates at 4 layers with 44meV/atom MAE on
the JARVIS-DFT formation energy task, while ALIGNN-only models
saturate at 34meV(atom)−1—a relative reduction of 29.14%. Each
of these models, along with the other highlighted configurations
in Table 6, performs four atom feature updates via graph
convolution modules. At least two ALIGNN updates are needed
to obtain peak performance. Additional atom feature updates
provide little marginal increase in performance. This is consistent
with the widely reported difficulty of GCN architectures scaling in
depth beyond a few layers52.
Figure 3 shows in detail the tradeoff between the performance

benefit of including ALIGNN layers and their computational
overhead relative to GCN layers. Per-epoch timing for each
configuration is reported in Supplementary Table 2. All GCN-only
configurations (annotated with the number of GCN layers) are on
the low-computation portion of the pareto frontier, but the high-
accuracy portion of the pareto frontier is dominated by ALIGNN/
GCN combinations with at least two ALIGNN updates. The
ALIGNN-2/GCN-2 configuration obtains peak performance (again,
relative reduction of MAE by 29.14 %) with a computational
overhead of roughly 2× relative to the GCN-4 configuration.
Supplementary Table 1 and Supplementary Fig. 53 present layer
ablation study results yielding similar conclusions on the JARVIS-
DFT OptB88vdW band gap target.
This layer ablation study clearly demonstrates that inclusion of

bond angle information and propagation of bond and pair
features through the node updates improves the generalization
ability of atomistic GCN models. This is satisfying from a materials
science perspective, as interatomic bonding theory clearly
motivates the notion that inclusion of bond angles should
improve accuracy of the model.
Similarly, we vary the number of hidden features (i.e., the width

of the graph convolution layers), edge input features, and
embedding input features to evaluate the MAE performance for

Table 4. Classification task ROC AUC performance on JARVIS-DFT
dataset for ALIGNN models.

Model Threshold ALIGNN

Metal/non-metal classifier (OPT) 0.01 eV 0.92

Metal/non-metal classifier (MBJ) 0.01 eV 0.92

Magnetic/non-magnetic classifier 0.05 µB 0.91

High/low SLME 10 % 0.83

High/low spillage 0.1 0.80

Stable/unstable (ehull) 0.1 eV 0.94

High/low-n-Seebeck −100 µVK−1 0.88

High/low-p-Seebeck 100 µVK−1 0.92

High/low-n-powerfactor 1000 µW(mK2)−1 0.74

High/low-p-powerfactor 1000 µW(mK2)−1 0.74

The ROC curve plots for these models are provided in Supplementary Figs.
32–41.

Table 5. Regression model performances on QM9 dataset for 11
properties using ALIGNN.

Target Units SchNet MEGNet DimeNet++ ALIGNN

HOMO eV 0.041 0.043 0.0246 0.0214

LUMO eV 0.034 0.044 0.0195 0.0195

Gap eV 0.063 0.066 0.0326 0.0381

ZPVE eV 0.0017 0.00143 0.00121 0.0031

µ Debye 0.033 0.05 0.0297 0.0146

α Bohr3 0.235 0.081 0.0435 0.0561

R2 Bohr2 0.073 0.302 0.331 0.5432

U0 eV 0.014 0.012 0.00632 0.0153

U eV 0.019 0.013 0.00628 0.0144

H eV 0.014 0.012 0.00653 0.0147

G eV 0.014 0.012 0.00756 0.0144

These models were trained with same parameters as solid-state databases
but for 1000 epochs. Predictions on test set are shown in Supplementary
Figs. 42–52.

Table 6. Effect of changing ALIGNN and GCN layers on machine
learning models for JARVIS-DFT OptB88vdW formation energy
database in ALIGNN models.

Layers GCN-0 GCN-1 GCN-2 GCN-3 GCN-4

ALIGNN-0 0.445 0.065 0.050 0.045 0.044

ALIGNN-1 0.064 0.041 0.037 0.036 0.037

ALIGNN-2 0.039 0.036 0.034 0.034 0.034

ALIGNN-3 0.036 0.034 0.033 0.034 0.034

ALIGNN-4 0.034 0.034 0.034 0.034 0.033

The bold values represent the best performing models.
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JARVIS-DFT formation energy and bandgap model in comparison
with the default model in Table 1. In Supplementary Table 3, we
observe that the marginal performance from increasing the
hidden features saturates at 256 for both properties. Supplemen-
tary Table 4 shows that the number of edge input features is
optimal at 80 for formation energy model, while for the bandgap
model performance saturates at 40. Similarly, embedding features
are optimized at 64 for formation energy while 32 for bandgap
model (Supplementary Table 5). Additionally, we tried three
different node feature attributes such 1) CFID chemical features
(total 438), only atomic number (total 1), and default CGCNN type
attributes (total 92) and compared them for formation energy
model in Supplementary Table 6. We observe that the default
node attributes have the lowest MAE.
Next, we study time taken per epoch of several models for QM9

and JARVIS-DFT formation energy dataset in Supplementary Table 7.
To help facilitate fair comparison, we train all models with the same
computational resources using the reference implementations and
configurations reported in the literature. We note that the timing
code for the reference implementations of different methods may
include differing amounts of overhead. For example, the ALIGNN
timings reported in Supplementary Table 7 amortize the overhead of
initial atomistic graph construction across 300 epochs, and each
epoch includes the overhead of evaluating the model on the full
training and validation sets for performance tracking. Additionally, the
computational cost of deep learning models, in general, is not
independent of certain hyperparameters; in particular, larger batch
sizes can better leverage modern accelerator hardware by exposing
more parallelism. We find ALIGNN requires less training time per
epoch time compared to other models except DimeNet++ and
MEGNet. However, it is important to note that DimeNet++ and other
models usually take around 1000 epochs or more to reach desired
accuracy, while ALIGNN can converge in about 300 epochs, resulting
in lower overall training cost for similar or better accuracy.
While we report timing comparisons using our standard

hyperparameter configuration used to train models reported in
“Model performance” section, through subsequent model analysis
we have identified several strategies that substantially reduce
computational workload without incurring a large performance
penalty. We observe in Supplementary Fig. 54 that model
performance converges after 300 epochs; shorter training budgets
incur a modest performance reduction and slightly increased
variance with respect to the training split. The performance
tradeoff presented in Table 6 and Fig. 3 indicates that switching
from the default configuration of 4 layers each of ALIGNN and
GCN updates to 2 layers each could offer a speedup of ~1.5× with
negligible reduction in accuracy. Finally, we performed a drop-in
replacement study comparing batch normalization and layer

normalization in Supplementary Table 8, finding that switching to
layer normalization provides an additional ~1.7× speedup with a
slight degradation in validation loss and negligible degradation in
validation MAE. Because the cost of retraining models for all
targets reported is still high, and because some of these strategies
equally apply to competing models, we defer a more compre-
hensive performance-cost study to future work.
Finally, we simultaneously investigate the effects of dataset size

and different train-validation-test splits by performing a learning
curve study in cross-validation for the JARVIS-DFT formation
energy (Fig. 4 and Supplementary Table 9) and bandgap
(Supplementary Fig. 55 and Supplementary Table 9) targets. We
perform the cross-validation splitting procedure by merging the
standard JARVIS-DFT train and validation sets and randomly
sampling without replacement Ntrain training samples and 5000
validation samples. The learning curve study shows no sign of
diminishing marginal returns for additional data up to the full size
of the JARVIS-DFT dataset. On the full training set size (44,577) we
obtain an average validation MAE of 0.0316 ± 0.0004 eV/at
(uncertainty corresponds to the standard error of the mean over
five cross-validation (CV) iterates). The standard deviation over CV
iterates is 0.0009 eV/at, indicating that model performance is
relatively insensitive to the dataset split.
In summary, we have developed an ALIGNN model which uses

the line graph neural network that improves the performance of
GNN predictions for solids and molecules. We have demon-
strated that explicit inclusion of angle-based networks in GNNs
can significantly improve model performance. A key contribution
of this work is the inclusion and development of both the
undirected atomistic graph and its line graph counterpart for
solid-state and molecular materials. We develop regression and
classification ALIGNN models for some of the well-known pre-
existing databases and it can be easily applied for other datasets
as well. Our model significantly improved accuracies over prior
GNN models. We believe the ALIGNN model will rapidly improve
the machine learning prediction for several material properties
and classes.

METHODS
JARVIS-DFT dataset
The JARVIS-DFT34–44 dataset is developed using Vienna Ab-initio simulation
package (VASP)53 software (please note commercial software is identified
to specify procedures. Such identification does not imply recommendation
by National Institute of Standards and Technology (NIST)). Most of the
properties are calculated using the OptB88vdW functional48. For a subset
of the data we use TBmBJ49 for getting better band gaps. We use density
functional perturbation theory (DFPT)54 for predicting piezoelectric and
dielectric constants with both electronic and ionic contributions. The linear
response theory-based55 frequency based dielectric function was calcu-
lated using both OptB88vdW and TBmBJ and the zero-energy values are
trained for the machine learning model. Note that the linear response

Fig. 3 ALIGNN accuracy-cost ablation study on JARVIS-DFT
formation energy target. The red and blue markers represent the
number of layers in GCN-only and ALIGNN-only models.

Fig. 4 Learning curve for JARVIS-DFT formation energy regres-
sion target. Blue markers indicate validation set MAE scores for
individual cross-validation iterates. Error bars indicate the mean
cross-validation MAE ± one standard error of the mean.
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based dielectric constants lack ionic contributions. The TBmBJ frequency
dependent dielectric functions are used to calculate the spectroscopic
limited maximum efficiency (SLME)38. The magnetic moments are
calculated using spin-polarized calculations considering only ferromag-
netic initial configurations and neglecting any density functional theory
(DFT)+U effects. The thermoelectric coefficients such as Seebeck
coefficients and power factors are calculated using BoltzTrap50 software
using constant relaxation time approximation. Exfoliation energy for the
van der Waals bonded two-dimensional materials are calculated as the
energy per atom differences between the bulk and corresponding
monolayer counterparts. The spin-orbit spillage40 is calculated using the
difference in wavefunctions of a material with and without inclusion of
spin-orbit coupling effects. All the JARVIS-DFT data and Classical force-field
inspired descriptors (CFID)32 are generated using the JARVIS-Tools
package. The CFID baseline models are trained using the LightGBM
package (please note commercial software is identified to specify
procedures. Such identification does not imply recommendation by
National Institute of Standards and Technology (NIST)).56 using the models
developed in ref. 32.

ALIGNN model implementation and training
The ALIGNN model is implemented in PyTorch57 and deep graph library
(DGL)33; the training code heavily relies on PyTorch-ignite58. For
regression targets we minimize the mean squared error (MSE) loss, and
for classification targets we minimize the standard negative log
likelihood loss. We train all models for 300 epochs using the AdamW59

optimizer with normalized weight decay of 10−5 and a batch size of 64.
The learning rate is scheduled according to the one-cycle policy60 with a
maximum learning rate of 0.001. We use the same model configuration
for each regression and classification target. We use the initial atom
representations from the CGCNN paper, 80 initial bond radial basis
function (RBF) features, and 40 initial bond angle RBF features. The atom,
bond, and bond angle feature embedding layers produce 64-dimensional
inputs to the graph convolution layers. The main body of the network
consists of 4 ALIGNN and 4 graph convolution (GCN) layers, each with
hidden dimension 256. The final atom representations are reduced by
atom-wise average pooling and mapped to regression or classification
outputs by a single linear layer. These hyperparameters are selected to
optimize validation MAE on the JARVIS-DFT band gap task through a
combination of manual hypothesis-driven experiments and random
hyperparameter search facilitated and scheduled through Ray Tune61;
hyperparameter ranges are given in Supplementary Table 10. The
random search results indicate that model performance is most highly
sensitive to the learning rate, weight decay, and convolution layer width,
and beyond a relatively low threshold is insensitive to the sizes of the
initial feature embedding layers.
We used NIST’s Nisaba cluster to train all ALIGNN models, and we

reproduce results from the literature using the reference implementations
for each competing method on the same hardware. Each model is trained
on a single Tesla V100 SXM2 32 gigabyte Graphics processing unit (GPU),
with 8 Intel Xeon E5-2698 v4 CPU cores for concurrently fetching and
preprocessing batches of data during training (please note commercial
software is identified to specify procedures. Such identification does not
imply recommendation by National Institute of Standards and Technology
(NIST)). For the MP dataset we use a train-validation-test split of
60,000–5000–4239. For the JARVIS-DFT dataset, we use 80%:10%: 10%
splits. The 10% test data is never used during training procedures. For QM9
dataset we use a train-validation-test split of 110,000–10,000–10,829.

DATA AVAILABILITY
All data used in this work is available at Figshare link https://figshare.com/collections/
ALIGNN_data/5429274. During the training these datasets are accessed using JARVIS-
Tools’s figshare module.

CODE AVAILABILITY
The code and full model and training configurations used in this work are available
on GitHub at https://github.com/usnistgov/alignn, along with general tooling at
https://github.com/usnistgov/jarvis. An interactive web-app for using ALIGNN models
is also made available at https://jarvis.nist.gov/jalignn.
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