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A machine learning framework for damage mechanism
identification from acoustic emissions in unidirectional SiC/SiC
composites
C. Muir 1, B. Swaminathan 1, K. Fields2, A. S. Almansour 3, K. Sevener 4, C. Smith 3, M. Presby 3, J. D. Kiser3, T. M. Pollock1 and
S. Daly 2✉

In this work, we demonstrate that damage mechanism identification from acoustic emission (AE) signals generated in
minicomposites with elastically similar constituents is possible. AE waveforms were generated by SiC/SiC ceramic matrix
minicomposites (CMCs) loaded under uniaxial tension and recorded by four sensors (two models with each model placed at two
ends). Signals were encoded with a modified partial power scheme and subsequently partitioned through spectral clustering.
Matrix cracking and fiber failure were identified based on the frequency information contained in the AE event they produced,
despite the similar constituent elastic properties of the matrix and fiber. Importantly, the resultant identification of AE events closely
followed CMC damage chronology, wherein early matrix cracking is later followed by fiber breaks, even though the approach is fully
domain-knowledge agnostic. Additionally, the partitions were highly precise across both the model and location of the sensors, and
the partitioning was repeatable. The presented approach is promising for CMCs and other composite systems with elastically similar
constituents.
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INTRODUCTION
Silicon carbide/silicon carbide ceramic matrix composites (SiC/SiC
CMCs) are structural ceramics with advantageous mechanical
properties for use in extreme environments. As a result, CMCs have
been increasingly incorporated in applications such as high-pressure
turbine (HPT) shrouds in the hot section of aircraft engines, HPT
vanes, and combustor liners, and are being considered as fuel
cladding in generation IV nuclear reactors1–4. In these and other
applications, CMC failure is costly and dangerous. A detailed
understanding of the failure envelope is critical for predicting
component lifetimes and optimizing material performance; to this
end, structural health monitoring (SHM) techniques are well suited
for characterizing the damage state in these high-impact materials.
Acoustic emission (AE) is one well-established SHM technique

that is widely used for nondestructive monitoring of damage
accumulation across a range of material systems. AE captures the
elastic waves that are produced when strain energy is rapidly
accumulated and released from damage sources5. In modern
practice, AE is used to triangulate the locations of damage
sources5, identify highly damaged areas in the bulk6, and assess
the severity of incurred damage7. As a characterization tool, the
spatial resolution of AE for triangulating surface cracking in situ
has been shown to be ±100 μm7, and the temporal distance
between resolvable AE events is 100 μs8; these exceed those of
other techniques, such as eddy current9, electrical resistance10,
and X-ray computed tomography (XCT)11, making AE uniquely
powerful for capturing evolving damage8.
Despite the rich scope of information that AE provides, the full

range of its utility remains to be explored. Akin to how humans
interpret variations in sounds to distinguish a tuba from a trombone,
one longstanding hypothesis is that AE waveforms contain signal-
specific features that can be used to identify the damage

mechanism(s) that generated them12–15. In continuous fiber
reinforced composites, this signal-specific identification is equivalent
to mapping an AE signal to the matrix crack, interfacial damage, or
fiber failure event that emitted it. The ability to identify a damage
mechanism from its AE event has far-reaching advantages both in
SHM and in predictive modeling. It would allow for the non-
destructive, in situ identification of damage sources, enable
researchers to bypass expensive high-resolution methods (such as
scanning electron microscopy and XCT7,8,11), and produce
information-rich datasets for large-scale statistical analyses of the
effects of small-scale damage in full composite structures.
However, damage mechanism identification in CMCs is non-

trivial and has remained an elusive goal16,17. In order to assign a
damage mechanism to an AE waveform, the identification of
patterns between many features (i.e., the use of a high-
dimensional representation) is necessary16, which is infeasible to
perform manually. Instead, this objective requires the use of
machine learning (ML) techniques, which are capable of finding
structure in datasets where objects are described by high-
dimensional feature vectors18,19.
AE features can be understood in terms of the orthotropic

model for wave propagation in solids, where the out-of-plane (w)
and in-plane (u0, v0) displacements are governed by20:
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with Aij and Dij functions of the orthotropic elastic constants and
plate thickness (h), with ρ* defined as:

ρ� ¼
Z h=2

�h=2
ρðzÞdz (4)

In this model, the waveform structure is dictated by the elastic
constants and plate density. It follows that, when the elastic
properties of the constituents are disparate, AE waveforms are
distinct in both the time and frequency domains21.
Over the past 30 years, many AE-ML frameworks have been

developed around material systems that obey the constraint of
constituent elastic dissimilarity, such as polymer matrix compo-
sites or elastically dissimilar brittle matrix composites (BMCs)21–24.
These frameworks typically encode waveforms with time-domain
parameters that are easily extractable by the commercial software
used to record the waveforms. ML techniques are then applied to
partition the encoded signals based on the source damage
mechanism21,25,26. As the ground truth of partition membership is
rarely known, the results must be manually interpreted to ensure
that the ML algorithm has indeed discriminated signals by
damage mechanisms. This workflow is demonstrated by Kosto-
poulos et al., who recorded waveforms in elastically dissimilar
BMCs. Waveforms were encoded with time-domain features and
sorted with the k-means algorithm. Their findings showed clear
differences in cluster activity, which corresponded with mechan-
istic expectations for their simplified composite geometry21,
allowing them to assign damage mechanism labels to clusters.
Despite the success of frameworks developed for elastically

dissimilar composites, damage mechanism identification in SiC/
SiC CMCs is more nuanced. In this system, where the elastic
properties of the fiber and matrix are similar, the microstructural
landscape drives waveform structure in the time domain14,16,27–31.
Commonly used time-domain parameters, like rise time/amplitude
value, are then dictated by waveform propagation pathways (both
as a function of propagation distance and the accumulated
damage state in the material bulk) rather than the generating
damage mechanism32. This relationship is detrimental to the
discriminating power of AE-ML frameworks, as waveforms are
sorted based on stochastic waveform distortions rather than the
source damage mechanism33.
It has also been proposed that, given their elastically similar

properties, the SiC/SiC matrix and fiber will fracture in similar
manners, thus preventing discrimination between damage
mechanisms altogether34. This hypotheses was predicated on
well-established theories of plate-wave propagation20,27,35 and
further substantiated by experimentation that found little or no
discriminating power between matrix cracking and fiber
failure34,36.
In this work, it is instead hypothesized that the historic lack of

discriminating power between the dominant damage mechan-
isms in SiC/SiC CMCs is a result of both the encoding scheme and
algorithm choice rather than their constituent elastic properties. In
addition to the improper use of time-domain features for
encoding schemes, the majority of previous ML frameworks21,22,34

use the k-means algorithm, which can only find isotropic clusters.
Because of the restrictive assumptions of k-means, it is often
outperformed by algorithms that are less limiting16,37,38. This
restriction motivates the exploration of alternate waveform
feature representations in conjunction with alternate ML algo-
rithms for damage mechanism identification from AE.
Here a frequency-based AE-ML framework capable of damage

mechanism identification in SiC/SiC minicomposites is presented.
The minicomposite architecture was chosen for this demonstra-
tion as it exhibits a limited number of damage mechanisms, in
which a well-established damage chronology enables a straight-
forward evaluation of clustering results. AE was recorded with a
four-sensor experimental configuration (Fig. 1a) in three SiC/SiC

specimens subjected to monotonic tensile loading. This config-
uration allowed for evaluation of framework precision, a metric of
the labeling consistency. AE waveforms were encoded with a
modified partial power scheme and partitioned according to their
generating damage mechanism using the spectral clustering
algorithm37,39. We find distinct activity of clusters in the stress
domain that follows the established damage chronology of
minicomposites. This ML approach is shown to assign labels
independently of the sensor used to record the AE signals. This
sensor independence demonstrates that differences between the
fundamental damage mechanisms drive label assignment, rather
than the stochastic distortion of waveforms resulting from the
experimental configuration. The framework developed herein can
be more broadly applied to brittle composites whose constituents
have elastically similar properties.

RESULTS
Unsupervised classification of acoustic spectra
AE data collection and preliminary filtering (described in
“Methods”) represent Step 1 of the general unsupervised AE-ML
framework, which proceeds as follows:

1. Experimentation: a number, n, waveforms are collected
2. Feature extraction: waveforms are represented in feature

space by extracting d pertinent features (i.e., each waveform
is represented by a d-dimensional vector)

3. ML algorithm: an algorithm is selected to partition wave-
forms into clusters that are representative of damage
mechanisms

4. Labeling and error analysis: post-clustering analysis is
performed to assign damage mechanism labels to clusters
and assess the validity of results

At each step, considerations must be made to ensure the
framework functions properly. The following section describes
Steps 2–4. The code created for this investigation utilizes the
Scikit-learn toolbox39 and is available without restriction40.

a b

Location ‘a’

Location ‘b’

Fig. 1 Diagram of the experimental set-up. a Two sets of AE
sensors were coupled to the minicomposite whose length is
nominally 20 mm. When any sensor was triggered, all sensors
began recording, ensuring that each AE event could be correlated
between all sensors. b A photograph of a sample. Epoxy tabs used
to mount AE sensors are denoted with arrows. Scale bar length is
10mm.
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Feature extraction
After AE waveforms are collected, suitable representations to
encode damage mechanism information must be determined.
Appropriate waveform features are those that are more depen-
dent on the generating damage mechanism than on extrinsic
factors, such as propagation distance. Prior finite element analysis
studies, supported by experimental evidence, indicate that partial
power is one such feature, provided that signals are recorded in
the near field31,41.
Here AE waveforms are encoded with a modified partial power

scheme, where the ith component of the feature vector is:

Featurei ¼
R ki
ki�1

F½xðtÞ�dkR kd
k0

F½xðtÞ�dk
(5)

where F[*] is the Fourier transform operator, x(t) is the recorded
signal, and d is the number of entries in the feature vector.
We set k0= 200 kHz and kd= 800 kHz for all specimens. To

determine the value of k0, a parametric sweep from k0= 50 to
350 kHz in increments of 50 kHz was conducted. The value-
optimizing validity metrics was chosen. Including partial powers
>800 kHz did not improve clustering quality. This was attributed to
the fact that the power of a frequency spectrum >800 kHz
approached zero and thus could not provide additional
discriminating power.
The frequency bounds encompass the pre-amplifier bandpass

on the digital wave system and the flat frequency response of the
B1025 sensors. While the frequency range includes values outside
the flat frequency response of the S9225 sensors, this does not
impact discriminating power. Any partitions made by the ML
algorithm result from differences between waveform character-
istics. The only stipulation is that recorded waveforms should be
clustered independently for each sensor to capture the shift in
damage mechanism (i.e., the singular set of all waveforms are not
clustered together).
Another parametric study was conducted to determine d, where

d was swept from d= 2 to 45. It was found that, when all other
parameters are fixed, d= 26 (Δk= 23 kHz) optimized validity
metrics for all specimens.
Though previous investigations have included the partial power

approach as part of their representation schemes15,42–45, the
representation scheme described here is unique in that it uses a
comparatively much finer resolution and only uses partial power.
Typically the partial power bandwidth used is 200–600 kHz,
whereas the approach herein uses a width of 23 kHz.

Spectral clustering
Once AE data are properly represented, a suitable ML algorithm
for clustering can be chosen. For this task, spectral clustering was
used. This is an unsupervised learning technique that has been
shown empirically to outperform k-means37,38 and is less
restrictive with respect to assumptions about input data
geometries.
Spectral clustering models the input dataset as a graph with

nodes (data points) connected by edges whose weight is 1 if the
nodes are nearest neighbors (NNs) and 0 if they are not. The
algorithm finds the optimal place to remove edges and segment
the original graph into a user-specified number of subgraphs (i.e.,
clusters)37.
Both the number of clusters and the number of NNs are

considered hyperparameters (i.e., a set of user-selected para-
meters). One common method for estimating the number of
clusters is through use of the eigengap heuristic, a measure of
differences between successive eigenvalues of the graph Lapla-
cian of the data46. However, noisy data can reduce differences
between successive eigenvalues, which is often the case for AE
data. In this case, the eigengap heuristic is not sufficient for

determining the number of clusters. Instead, a parametric sweep
from two to five clusters is performed and a drop in validity
metrics is used to indicate the optimum number of clusters. A
steep drop is observed after two (Fig. 2), corresponding with the
hypothesis that matrix cracking and fiber failure events (the
dominant damage mechanisms in SiC/SiC minicomposites) can be
differentiated.
It is important to note there are other less dominant damage

mechanisms active in minicomposites during loading (e.g.,
interfacial debonding and frictional sliding). It is well established
from a micromechanics frame that, when matrix cracking occurs,
there is simultaneous debonding and sliding in the crack wake; it
is also understood that, when fibers fail, there is simultaneous
fiber sliding and pullout47,48

When dominant and non-dominant mechanisms occur simul-
taneously, their waveforms become superimposed49; when non-
dominant mechanisms occur independently, they likely do so in
quantities too small for recognition by the ML algorithm. As such,
it is currently infeasible to isolate events resulting from damage to
the boron nitride (BN) interphase or determine which AE features
are characteristic of such damage. This is expected to be a source
of error. Moreover, the inability to discriminate interfacial damage
from other types of damage is reflected by the steep drop in
validity metrics seen after two clusters in Fig. 2.
Similar to the determination of d and the number of clusters, a

parametric study from NN= 5 to 20 was performed. The value of
NN that optimized validity metrics slightly varied between studies
(5, 5, and 7 for three experiments, respectively); however, there
was a range of values for NN that produced acceptable results. To
demonstrate the effectiveness of our approach, the number of NN
is fixed to be 5 for all specimens resulting in suboptimal validity
metrics for Experiment 3, particularly between sensors B1025-a
and S9225-a (Table 3).

Validity metrics for error analysis
To evaluate the efficacy of our AE-ML framework, events at each
sensor were clustered according to the steps described above, the
results of which are called a partition. The desired outcome is that
all partitions for AE data from a given specimen are the same and
are independent of both the sensor model and sensor location.
To quantify partitioning success, the total matching rate is first

considered, which is the percent of events assigned the same
label by the clustering routine. As clusters have unbalanced sizes

Fig. 2 Adjusted Rand Index as a function of the number of
clusters. When more than two clusters are used to initialize spectral
clustering, the steep drop in ARI corresponds to a decrease in
precision. As such, when more than two clusters are specified, the
spectral clustering algorithm is forced to find clusters, which are not
correlated with damage mechanisms. This drop occurs in all
experiments and is corroborated by results shown in Fig. 3.
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(fewer fiber break events are expected than matrix crack events), it
is possible to be unable to discriminate between damage
mechanisms and retain high matching rates. For example, if
90% of AE events come from matrix cracks, then classifying every
AE event as a matrix crack would yield a 90% matching rate, yet
the ML framework would have no discriminating power.
Therefore, it is also useful to consider the permutation model of

the adjusted Rand Index (ARI), which makes considerations for
unbalanced cluster sizes50,51. The ARI is an adjusted-for-chance
version of the Rand Index (RI), a metric for comparing the similarity
of a partition to the ground truth. First, the RI for two different
partitions, (A, B), is calculated as:

RIðA; BÞ ¼ N11 þ N00
N
2

� � (6)

where N is the number of elements, N11 is the number of element
pairs that are grouped into the same cluster in both partitions, and
N00 is the number of element pairs that are grouped into different
partitions in both A and B. The ARI is then calculated as39:

ARIðA; BÞ ¼ RIðA; BÞ �E½RIðA; BÞ�
max½RIðA; BÞ� �E½RIðA; BÞ� (7)

where E½RIðA; BÞ� is the expected value of the RI under a random
model. The ARI is bound between 0 and 1, with 0 corresponding
to random label assignments and 1 corresponding to perfectly
matching labels.
This metric is useful for comparing a partition to the ground

truth, and it is also useful for comparing two partitions that are
assumed to be drawn from the same random model51. This makes
it an effective tool to compare similarity between two partitions
whose ground truth is not known a priori. ARI values exceeding
0.40 are correlated with high values of other classification
metrics52.

T-distributed stochastic neighbor embedding (t-SNE)
A final, necessary step in this study was to confirm that the AE
data forms identifiable clusters in the chosen feature space. To this
end, t-SNE was employed. T-SNE is a manifold learning algorithm
used to produce a low-dimensional visualization of high-
dimensional data. Although t-SNE axes, inter-cluster separation,
and cluster size have no intrinsic meaning, t-SNE has been
empirically shown to be a powerful tool for the identification of
natural cluster structures in high-dimensional data53.
T-SNE maintains pairwise distances between the high- and low-

dimensional representation of feature vectors, xi and yi, respec-
tively53. For a given feature vector, xi, t-SNE models pairwise
distances in the high-dimensional representation according to a
Gaussian probability distribution with standard deviation σi,
centered at xi. Under this model, the conditional probability of
finding another feature vector xj is then:

pjji ¼
expð�jxi � xjj2=2σ2

i ÞP
k≠i expð�jxi � xjj2=2σ2

i Þ
(8)

and pairwise distances in the high-dimensional space are:

pij ¼
pjji þ pijj

2N
(9)

The pairwise distances in the high dimension are then translated
to similar pairwise distances in the low dimension, qij, which follow
a Student’s t-distribution with a single degree of freedom:

qij ¼
ð1þ jyi � yjj2Þ

�1

P
k≠lð1þ jyk � ylj2Þ

�1
(10)

If the low-dimensional representation has correctly maintained
the same high-dimensional pairwise distances, then pij= qij for all
pairs i, j.

An important consideration for t-SNE plots is the choice of
perplexity. This hyperparameter estimates a global value of σi, as
there is no single value of σi to describe all data points. Perplexity
measures how much of the local structure is retained in the final
low-dimensional map; as perplexity increases, local structure
information is exchanged for global structure information53.
Typical values of perplexity range from 5 to 50; a perplexity value
of 15 is chosen as this best shows the cluster structure within
our data.

Framework precision
Matching rates and ARIs for AE data from three SiC/SiC specimens
are presented (Tables 1–3) for partitions made from: (i) sensors of
the same model fixed on opposite ends of the specimen gauge
and (ii) sensors of different models fixed at the same gauge
location. Specimen 1 was found to have a misaligned sensor on its
larger epoxy tab wherein it did not fully overlay the minicompo-
site and is included to show that the ARI metric can also be used
to detect experimental issues such as these. The ARI of zero for
sensor pairs that included sensor S9225-b are the result of this
improper placement.
From the high values of matching rates and ARIs obtained

across specimens, we conclude that labels are not assigned
randomly between sensors based either on model or location. A
corollary of this observation is that stochastic experimental effects
that are known to influence frequency spectra, such as source-to-
sensor distance17 or proximity to a free surface54, do not drive
label assignment when using the approach presented herein.
The clustered events at each individual sensor exhibit distinct

activities in the stress domain, which are strongly characteristic of

Table 1. Validity metrics for Experiment 1.

Sensor pair Matching rate (%) ARI

B1025-a, B1025-b 96.4 0.78

B1025-a, S9225-a 92.1 0.62

B1025-b, S9225-ba 81.0 0.0

S9225-a, S9225-ba 73.0 0.0

aThis test had a misaligned sensor on its larger epoxy tab wherein it did
not fully overlay the minicomposite and is included to show that the ARI
metric can be used to detect experimental issues such as these. The ARI of
zero for sensor pairs that included sensor S9225-b are the result of this
improper placement (Section Results).

Table 3. Validity metrics for Experiment 3.

Sensor pair Matching rate (%) ARI

B1025-a, B1025-b 88.4 0.55

B1025-a, S9225-a 81.2 0.27

B1025-b, S9225-b 94.4 0.73

S9225-a, S9225-b 91.7 0.53

Table 2. Validity metrics for Experiment 2.

Sensor pair Matching rate (%) ARI

B1025-a, B1025-b 87.1 0.42

B1025-a, S9225-a 82.9 0.31

B1025-b, S9225-b 86.1 0.45

S9225-a, S9225-b 84.0 0.40
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how damage progresses in a CMC (shown for Specimen 3 in
Fig. 3). These clusters follow the established chronology of
damage accumulation in CMCs, wherein cracks initiate in the SiC
matrix early in the loading profile and evolve throughout the
specimen lifetime. As such, the initially activated cluster is
designated as matrix cracking. After the onset of major matrix
cracking, fiber failure begins and fibers continue to fail until
rupture55. The secondary cluster becomes significantly active at
70–85% of the ultimate tensile strength (UTS), which agrees with
experimental observations of fiber failure in SiC/SiC11.

Partial power trends
To further explore the hypothesis that there are frequency trends
which allow for discrimination between matrix cracking and fiber
failure, it is useful to inspect the partial powers of AE signals (the
input representation) as a function of stress. It was found that

select frequency bands exhibited similar behaviors, as shown in
Fig. 4. Specifically, AE events occurring at stresses >70% UTS
exhibited tighter distributions in partial power. A two-sample
Kolmogorov–Smirnov test shows that the partial powers, for the
selected frequency bands, sampled below 70% UTS come from a
different distribution than the partial powers sampled above 70%
UTS at a significance level of α= 0.01 (Fig. 4).
This decrease in partial power scatter coincided with the

activation of the fiber failure cluster, but it is currently unclear
whether this correlation is (i) characteristic of the damage
mechanism or (ii) characteristic of the differential strain-at-failure
of the constituents56,57 (e.g., a weak fiber failing at low strain is
indistinguishable from matrix cracking at the same strain). The
second option is possible while still allowing for the stepped
activity observed as the strain-to-failure of the fiber and matrix are
disparate. The former possibility is more consequential, as it would

a

b

c

d

Matching rate: 94.4%
ARI: 0.73

Matching rate: 91.7%
ARI: 0.53

Matching rate: 88.4%
ARI: 0.55

Matching rate: 81.2%
ARI: 0.27

Fig. 3 Damage mechanism identification from acoustic emission (AE) signals. AE waveforms were generated by SiC/SiC ceramic matrix
composites (CMCs) loaded under uniaxial tension and recorded by four sensors: a B1025-b and S9225-b, b B1025-a and S9225-a, and at
different locations c B1025-a and B1025-b and d S9225-a and S9225-b. Cluster assignment of individual AE events is consistent across sensors.
The resultant identification of AE events closely follows CMC damage chronology, wherein early matrix cracking is later followed by fiber
breaks, even though the approach is fully domain-knowledge agnostic. The cluster that becomes active at ≈85% of the UTS is labeled as fiber
failure, consistent with experiment11. Additionally, the partitions were highly precise across both the model and location of the sensors, and
the partitioning was repeatable.
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indicate that the ML algorithm is learning the differences between
dominant damage mechanisms. Given that the homogeneous
orthotropic model of wave propagation does not predict mean-
ingful frequency trends for elastically similar material systems,
additional experimentation and explicit modeling of AE in SiC/SiC
minicomposite geometries is needed to understand the physical
origins of the observed trends.

Feature vector cluster structure
The partitioning of each AE event into its associated cluster is the
result of the intrinsic cluster-like structure and not an artifact of
the chosen algorithm. This finding is evident in the visualization of
the input feature vectors via t-SNE. In Fig. 5, the left-hand column
shows the raw feature vectors plotted via t-SNE, and the right-
hand column shows the same feature vectors subsequently
colored according to the labels assigned by our ML framework. In
Fig. 5a, b, the two clusters are sufficiently distinct to be visually
identified in the unlabeled data. The unlabeled cluster structures
in Fig. 5c, d are less readily discernible, yet still evident. This
behavior is likely a result of dimension reduction rather than an
intrinsic lack of cluster structure, as validity metrics show the
events are given the same labels.

DISCUSSION
Damage mechanism identification in SiC/SiC CMCs from AE data is
of interest for both lifetime prediction and SHM. While computa-
tional frameworks exist for damage mechanism identification,
these are predominantly successful only when the composite
constituents are elastically dissimilar. As such, differentiating
between the dominant damage mechanisms in SiC/SiC architec-
tures has remained a long-standing challenge.
In this work, we develop and evaluate an AE-ML framework to

overcome these difficulties. A modified partial power representa-
tion scheme is adopted that allows inspection of local changes to

frequencies. This representation scheme is combined with the
spectral clustering algorithm, which is well suited for partitioning
AE data. This framework is then applied to waveforms collected by
our unique four-sensor configuration, which allows us to draw the
following conclusions:

1. Damage mechanism identification in elastically similar
composite systems is possible, when salient features are
chosen to represent AE waveforms and a suitable ML
approach is applied.

2. Partial power is a salient feature for damage mechanism
discrimination. It is not significantly perturbed by stochastic
experimental factors, as is evidenced by consistent labeling
between sensors, independent of both location and model.
Moreover, t-SNE plots show that AE data intrinsically adopt
cluster-like structures when represented by this scheme.

3. There are meaningful frequency trends, which are not
predicted by the orthotropic model of wave propagation,
which enable damage mechanism discrimination in SiC/SiC
CMCs. Further investigation is needed to determine the
physical basis of this.

This AE-ML framework is domain-knowledge agnostic, yet when
contextualized with domain knowledge it is clear that cluster
activities follow a domain-based assessment of accuracy, indicat-
ing promising robustness of this approach. Still, a full character-
ization of this framework’s behavior is needed before it can be
more broadly applied. While precision of clustering results is high
in our model minicomposite system, it is unclear how precision
will be affected when this framework is applied to more complex
CMC architectures, where more damage mechanisms are active.
Additionally, it is not known how specimen geometry, architec-
ture, and scale influence AE features58,59; this is an active area of
research. Both of these questions will require testing large-scale
composites in conjunction with in situ microstructural observa-
tions for error quantification and is the subject of future work.

315-338 kHz 338-361 kHz

638-661 kHz 730-753 kHz

a b

c d
Fig. 4 Partial power as a function of stress for four selected frequency bands in Specimen 3. Events occurring below 70% UTS are sampled
from a different distribution than events occurring >70% UTS at a significance level of α= 0.01 in frequency bands (a) 315-338 kHz, (b) 338-
361 kHz, (c) 638-661 kHz, and (d) 730-753 kHz. This is not predicted by the orthotropic model of wave propagation. We hypothesize that the
shift in partial power is a result of a shift in active damage mechanism from matrix cracking to fiber failure; however, further experimentation
and modeling is needed.
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Finally, it is desirable to understand the drivers for observed
trends in partial power in order to remove irrelevant frequency
bands from the feature space and increase precision. Future
investigations will aim to address this.

METHODS
Experimental configuration
SiC/SiC minicomposites (Rolls Royce High Temperature Composites,
Cyprus, CA) were loaded under uniaxial tension using a custom load
frame built in-house with a 220 N load cell and a cross-head displacement
rate of 0.120mm/min, corresponding to a nominal strain rate of 7.5 × 10−5

s−1. Specimens consisted of 500 Hi-Nicalon Type STM SiC fibers (HNS fibers),
a BN interphase, and an overlayer of chemical vapor-infiltrated SiC matrix.

The microstructural and damage characteristics of these minicomposites
are described in Swaminathan et al.7, where they are referred to as low
fiber content (LFC) minicomposites. Three tension tests on LFC mini-
composites are presented here to demonstrate the ML framework.
AE activity was recorded using a four-channel fracture wave detector

acquisition system (Digital Wave Corporation, Centennial, CO). The
threshold voltage was set to 0.1 V, the number of pre-trigger points was
set to 256, and the total length of signal captured was 1024 points at a rate
of 10 MHz. Two sets of AE sensor models were mounted (Fig. 1) on Duralco
132 epoxy tabs with vacuum grease (Fig. 1b). The tab thickness was
0.35mm, as measured from the surface of the minicomposite to the
sensor. Tabs were created using three-dimensional-printed molds of
10mm in diameter.
The choice of coupling medium is significant for waveform transmission

through an interface. The transmission coefficients are determined by how

a

b

c

d

t-SNE Retrieve label 
assignments

Color by 
label

Fig. 5 Dimensionality reduction by t-SNE of Specimen 3 feature vectors. Plots for the raw feature vectors are shown for (a) B1025-a, (b)
S9225-b, (c) B1025-b, and (d) S9225-a on the left and are subsequently colored on the right according to the labels given after spectral
clustering as described in Fig. 3. While the t-SNE axes have no intrinsic meaning, well-formed clusters indicate that partitions were made
according to similarity between feature vectors and are not an artifact of the clustering routine.
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closely the acoustic impedance of the specimen and the couplant match.
As the impedance mismatch between the two increases, the transmission
coefficient decreases60. Of the available medium choices examined,
Duralco 132 exhibited the lowest impedance mismatch to SiC/SiC.
Additionally, the thickness of the epoxy tabs controls the quality of data

collected. Previous work has reported that transmission coefficients
decrease as a function of coupling medium thickness60. Thinner epoxy
tabs resulted in more consistent labeling, which is hypothesized to be a
result of the higher transmission coefficients at all frequencies as
compared to thick (>1.5 mm) epoxy tabs.
AE signals were recorded using two miniature S9225 piezoelectric AE

transducers (Physical Acoustics, Princeton, NJ) with a broadband response
of 300–1800 kHz and two B1025 transducers (Digital Wave Corporation,
Centennial, CO) with a broadband response of 50–2000 kHz. The sensors
were designated S9225-a, S9225-b, B1025-a, and B1025-b, where the I.D.
letter corresponds to the position on the minicomposite (Fig. 1). The
acquisition system was synchronized; when one sensor was triggered, all
sensors recorded waveform data simultaneously.

Data processing
After acquisition, the raw AE data were cleaned to remove events not
suitable as input to the ML framework. First, clearly identifiable noise
events were removed (Fig. 6a). These events were either characterized by a
single voltage spike in the time domain of the waveform or they presented
with energies <0.001 V (low signal-to-noise ratio). Recorded waveforms
that showed multiple damage events within the same time window (Fig.
6b) were also not considered; <1% of all recorded waveforms were of type
(b). If the signal saturated the sensor (Fig. 6c, d), the event was not
considered. The majority of waveforms removed were of types (a), (c), and
(d). Then a location analysis was performed to remove out-of-gauge
events29 using:

location ¼ x
2

Δt
Δtx

� �
(11)

where x is the sensor separation distance, Δt is the difference in time-of-
arrival, and Δtx is the difference in time-of-arrival for an out-of-gauge event
as a function of the damage parameter. This analysis ensured that only
signals arising from in-gauge damage events were analyzed. During this

process, it was found that the majority of type (a) waveforms (>90%) came
from out-of-gauge events. This cleaning removed approximately 35% of all
recorded AE waveforms, including out-of-gauge events.

DATA AVAILABILITY
The datasets and code generated and analyzed in this study are available in the Muir-
UCSB repository at https://github.com/Muir-UCSB/AE-ML_Framework.
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