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Graph neural networks for an accurate and interpretable
prediction of the properties of polycrystalline materials
Minyi Dai 1,3, Mehmet F. Demirel 2,3, Yingyu Liang 2✉ and Jia-Mian Hu 1✉

Various machine learning models have been used to predict the properties of polycrystalline materials, but none of them directly
consider the physical interactions among neighboring grains despite such microscopic interactions critically determining
macroscopic material properties. Here, we develop a graph neural network (GNN) model for obtaining an embedding of
polycrystalline microstructure which incorporates not only the physical features of individual grains but also their interactions. The
embedding is then linked to the target property using a feed-forward neural network. Using the magnetostriction of polycrystalline
Tb0.3Dy0.7Fe2 alloys as an example, we show that a single GNN model with fixed network architecture and hyperparameters allows
for a low prediction error of ~10% over a group of remarkably different microstructures as well as quantifying the importance of
each feature in each grain of a microstructure to its magnetostriction. Such a microstructure-graph-based GNN model, therefore,
enables an accurate and interpretable prediction of the properties of polycrystalline materials.

npj Computational Materials (2021)7:103 ; https://doi.org/10.1038/s41524-021-00574-w

INTRODUCTION
Polycrystalline materials are ubiquitously used in everyday life and
industry. The properties of such materials are governed not only
by the atomic lattice structure within each grain, but also their
microstructures which typically refer to the size (nm–μm), shape,
orientation, and adjacency relation of the grains. Here, we develop
a graph neural network1,2 based machine learning model which
enables an accurate prediction of the property of polycrystalline
microstructures and quantifying the relative importance of each
feature in each grain to the predicted property.
The application of machine learning models to predicting the

properties of materials microstructure usually becomes necessary
in two scenarios. First, prediction from physics-based models is
too slow due to the large size or high complexity of the material
system. For example, brute-force simulation of polycrystalline
samples having thousands of grains would be impractically slow.
Second, developing an accurate physics-based predictive model
is too challenging due to the insufficient understanding of the
underlying physical processes, e.g., for materials with high
compositional/structural complexity or under complex/extreme
conditions.
Existing machine learning models for predicting the properties

of polycrystalline microstructures can be classified into two main
types: statistical-descriptor-based3–6 and image-based7–14. Both
models focus on extracting statistical correlations between
microstructures and properties, thereby achieving a fast prediction
of the properties of similar microstructures via regression. A critical
step in both models is to obtain a low-dimensional representation
(i.e., embedding) of the microstructure because raw microstructure
data are high-dimensional and usually cannot directly be linked to
the target properties. In the statistical-descriptor-based machine
learning models, the microstructure is represented by a statistical
correlation function, such as a two-point correlation function3–5

which relates two physical features (composition, crystal orienta-
tion, etc.) at two different spatial locations through a probability
function15. In the image-based machine learning models, raw

microstructure data can be directly used as the model input. For
example, each voxel of a 3D microstructure image can be
associated with a vector that stores the physical features (e.g.,
crystal orientation12) in that voxel. Convolutional neural network
(CNN) can then be used to obtain low-dimensional microstructure
embeddings (known as “feature maps”) in an automated manner
with little bias from human researchers7–14. In both types of
models, although the physical features at different positions/voxels
of a microstructure are somewhat correlated, there are no reported
means to let the physical features from neighboring grains interact
with each other because of the adjacency relations of the grains
are not stored. The inability to directly consider such interactions
could negatively affect the performance of the subsequent
property prediction because the macroscopic properties of
polycrystalline materials are critically determined by such micro-
scopic interactions16,17.

RESULTS
Building a microstructure graph
In this article, we present the third type of machine learning
model for predicting the properties of polycrystalline materials,
where a polycrystalline microstructure is represented using a
graph, which refers to a data structure comprising a set of
interacting nodes. Fig. 1 illustrates the conversion of a micro-
structure input into a graph input G using a simple ten-grain
microstructure as an example. As shown in Fig. 1, each grain is
labeled and represented by a node. Physical features of each grain
are stored using a vector, which together forms a feature matrix F,
as sketched on the bottom right. There are five components in
each feature vector, including three Euler angles (α, β, γ) for
describing the grain orientation, grain size which is defined as the
number of voxels occupied by a specific grain, and the number of
neighboring grains, as shown in the left panel of Fig. 1. These
three physical features are selected because the physical proper-
ties of polycrystalline materials are critically determined by grain
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size, grain orientation, and the interactions among neighboring
grains. If the grains have strong shape anisotropy (e.g., columnar
grains), one may also include additional components in the
feature vector such as the aspect ratio and orientations of the long
and short axes of grain, and the number of faces of the grain. All
these physical features of grains can be obtained experimentally
by for example the high-energy x-ray diffraction microscopy,
which permits reconstruction of 3D crystallographic orientation
fields from diffraction data and thereby extracting the size, 3D
morphology, and Euler angles (or other parameters describing the
orientations) of thousands of grain simultaneously18,19.
The adjacent relation of all the nodes/grains is stored using a

separate matrix A, where matrix element Aij= 1 if grain i and j are
neighbors (in physical contact) and Aij= 0 otherwise. In Fig. 1, the
adjacency relation is illustrated by connecting neighboring grains/
nodes with solid lines, as sketched on the top right. The feature
matrix F and the adjacency matrix A together constitute the graph
input of a microstructure, G= (F, A). By relating F and A using an
appropriate mathematical function (known as the update func-
tion), physical features from neighboring grains can be correlated,
as will be discussed later.
Based on such microstructure graph G, we develop a GNN1,2

model for predicting the microstructure-property link in poly-
crystalline materials. Using polycrystalline Tb0.3Dy0.7Fe2 (Terfenol-
D) alloys as an example, we train the GNN model using datasets
of different sizes. Each dataset contains a group of different
polycrystalline microstructures with corresponding magnetostric-
tion (that is, macroscopic mechanical deformation induced by an
applied magnetic field)20. A low prediction error of ~10% is
achieved over a broad range of datasets, notably with relatively
small datasets (down to only 72 microstructures). The relative
importance of each feature of each grain in a given microstructure
to the predicted magnetostriction is also quantified.

Dataset generation
Our main goal is to demonstrate that one single GNN model with
fixed network architecture and hyperparameters can be used to
accurately predict the properties of a diverse set of polycrystalline
microstructures. To this end, we use Dream.3D to generate 492
different 3D polycrystalline microstructures. The number of grains
per microstructure varies broadly from 12 to 297. Microstructures
with and without strong textures are both generated. Figure 2a–c
shows the statistical distributions of the size, the number of
neighboring grains, and the orientation of all 87,981 grains in the
492 microstructures. The grain orientation is represented by Euler

angles α, β, γ in “zxz” sequence. For each microstructure (see an
example in Fig. 2d), we performed phase-field modeling (see
“Methods”) to obtain 3D distributions of local magnetization
under a magnetic field applied along the x-axis (denoted as Hx).
2D slice of the local magnetization distribution under zero
magnetic field is shown in Fig. 2e. Such magnetization distribution
is determined by both the magnetic and elastic properties (elastic
modulus, orientation) of individual grains as well as the magnetic
and elastic interactions among both the neighboring and non-
neighboring grains. Fig. 2f shows the distribution of local
magnetostriction λxx associated with the magnetization distribu-
tion. The effective magnetostriction λeffxx , which describes the
macroscopic deformation of the material along the x-axis induced
by the applied magnetic field, can then be obtained by taking a
volumetric average of the local λxx. For each microstructure, we set
λeffxx = 0 at zero magnetic fields (Hx= 0) as a reference. As Hx

increases, λeffxx also increase (Fig. 2g) because magnetization
vectors inside each grain will rotate in the direction of the
magnetic field. Once all magnetization vectors are parallel to
the magnetic field, λeffxx would reach their saturation value. Four or
five different magnetic fields are applied to each microstructure,
amounting to 2287 data points. Each data point has a format of
[(G, Hx), λ

eff
xx ], where G refers to the graph input of the polycrystal-

line microstructure, which can be converted from the raw
microstructure input as discussed above.

GNN built upon microstructure graph
Since being introduced in 200921, over a dozen GNN models of
different network architectures and/or update functions have
been proposed for different application scenarios1. For materials-
related research, GNN models have been developed for predicting
the properties of molecules22–26 and crystals23,27, but not yet for
polycrystalline materials to our knowledge. In this work, we
employ a relatively simple but general GNN model, namely, the
graph convolutional network (GCN)28, to obtain the embedding of
the polycrystalline microstructure graph G. This low-dimensional
embedding incorporates not only the physical features of the
grains but also their interactions. A fully connected layer is then
used to link the embedding to the target property.
As shown in Fig. 3, the GCN model comprises a series of

message passing layers (MPLs). Each MPL employs an update
function, which updates the feature vector of each node based on
its own feature vector and the feature vectors of its neighboring
nodes. After the nth MPL, the input feature matrix of the graph F(n)

is updated to F(n+1). The adjacency matrix A remains unchanged in

Fig. 1 Graph-based representation of an N-grain polycrystalline microstructure. A 10-grain microstructure is considered as an example
(N= 10). The M different physical features (M= 5 herein) of each grain (label “i”, i= 1,2,…N) are stored using N different M-component feature
vectors f ki (k= 1,2…M), as shown in the left panel. These feature vectors are then combined into an N ×M feature matrix F. The adjacency
relations of the grains (nodes) are stored using an adjacency matrix A; the matrix element Aij equals 1 if grain i and grain j are neighbors and
equals 0 otherwise. The neighboring grains are connected by lines (in the top right). Overall, a graph G= (F, A).
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the entire process. The layer-wise update function is given as28,

F nþ1ð Þ ¼ σ D̂
�1

2ÂD̂
�1

2F nð ÞW nð Þ
� �

: (1)

Here σ (x)=max(0,x) denotes an activation function known as a
rectified linear unit (ReLU), which is applied for every element x of
the matrix in the bracket. Â ¼ Aþ I is a summation of the
adjacency matrix A and an identity matrix I. D̂ is the diagonal
matrix with D̂ii ¼

P
j Âij . The matrix Â undergoes a symmetric

normalization D̂
�1

2ÂD̂
�1

2 before being multiplied with the input
feature matrix F(n). W(n) is a trainable weight matrix. Depending on
the dimension of W(n), the dimension of the feature matrix may
change after passing through the MPL. For example, after the
second MPL in Fig. 3, the 10 × 5 matrix F(1) transforms into a 10 × 7
matrix F(2) after being multiplied with a 5 × 7 weight matrix W(1).
Overall, the matrix operation in the bracket of Eq. (1) enables
taking a weighted average of the feature vectors of each node and
those of its neighboring nodes. As a result, the interactions

between the physical features of neighboring grains are
considered in the output feature matrix F(n+1).
The embedding of the graph input, denoted as {X} in Fig. 3, can

then be obtained by concatenating the most updated feature
matrix F(n+1). The {X}, together with Hx, are used as the inputs of a
fully connected layer (FL) for regressing the output property or
properties {Y}—in this case, the effective magnetostriction λeffxx . As
shown in Fig. 3, each unit νi in the hidden layer or the output layer
is determined by a weighted summation of all units uj in its
preceding layer,

vi ¼ σ
P
j
wijuj þ bi

 !
; (2)

where the activation function σ (x) is again the ReLU. wij is the
weight and bi is the bias parameter, both of which can be trained
to improve prediction performance.

Fig. 3 Network architecture of the GNN model. A series of message passing layers (MPLs) are employed for obtaining an embedding {X} of
the graph input by sequentially updating the feature matrix (sketched in the bottom). The first MPL allows a specific node to take messages
from its neighbors. By using more MPLs, interactions between non-neighboring nodes can also be established. For example, grain #1 and #10
are interacting through intermediate grain #8. Such message-passing enables considering the influence of all the other nodes in the graph on
a specific node, which in effect describes the magnetostatic interaction among different grains. A simple graph input with 10 nodes (grains) is
used for illustration. The embedding {X}, together with the applied magnetic field Hx, is linked to the effective magnetostriction λeffxx through a
fully connected layer (FL).

Fig. 2 Dataset of 3D polycrystalline microstructures and their effective magnetostriction. Distributions of (a) size (represented by the
number of voxels), (b) the number of neighboring grains for a specific grain, and (c) three Euler angles of the 87,981 grains in the entire
dataset of 492 microstructures. d An example of 3D polycrystalline microstructure in the dataset (colored by grain orientation). e Local
magnetization and (f) local magnetostriction λxx on the 2D slice shown in (d). g Effective magnetostriction λeffxx of the 3D microstructure shown
in (d) as a function of the applied magnetic field Hx.
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Property prediction by the GNN model
The whole dataset of the generated 2287 data points of [(G, Hx),
λeffxx ], in which there are 492 different graphs G (Four or five Hx are
associated with each graph), is divided into ten subsets of roughly
the same size, including eight subsets (1831 data points) for
training, one subset (228 data points) for validation, and one
subset (228 data points) for testing. Figure 4a shows the GNN-
predicted λeffxx versus the true λeffxx of training and validation
datasets. The hyperparameters are optimized to ensure the
associated GNN model delivers the lowest macro average relative
error (MARE) on the validation dataset. Details of model training
and hyperparameters optimization are provided in the Methods
section. Figure 4b shows the GNN-predicted λeffxx versus the true
λeffxx of the independent testing dataset. The MARE for these data is
as low as 8.24%. A data ablation test is performed to investigate
the influence of dataset size on the MARE for the testing data
points. A smaller group of microstructure graphs G are randomly
selected from the total 492 different graphs. The associated data
points of [(G, Hx), λ

eff
xx ] are then used to evaluate the performance

of the GNN model. As shown in Fig. 4c, the average value of the
MARE quickly decreases from ~16% to ~12% when the number of
microstructure graphs increases to 72. As the dataset size further
increases, the prediction error decreases more slowly and
saturates at ~9%. This proves that the model is capable of
achieving low prediction error with a relatively small dataset.
Moreover, the standard deviation of the MARE, represented by the
error bar, decreases and then remains stable with increasing
dataset size, indicating improved stability of prediction.

The computational efficiency of the GNN model
It is generally more computationally efficient to use a trained GNN
model for property prediction than using either physics-based
direct numerical simulations such as phase-field modeling or
image-voxel-based machine learning models such as CNN. In this
work, predicting 1 data point of effective magnetostriction of one
microstructure by phase-field modeling will take ~5 h to complete
with 16 cores running simultaneously on state-of-the-art super-
computers. By contrast, the property prediction by a trained GNN
model is almost instantaneous: for example, it only takes ~0.2 s to
predict all the 228 data points in Fig. 4b.
For evaluating the computational efficiency of our GNN model

with respect to CNN models, three different 3D CNN models that
have previously been utilized to predict the properties of
polycrystalline12 or two-phase8,29 composite microstructures
were trained separately under the same hardware (one Tesla
P100 GPU core). Details of datasets generation for such tests,
time measurement, and the CNN models are in the Methods
section. Figure 5a compares the training time (the data loading
time plus model training time) of our GNN model and the three
CNN models as a function of the number of voxels in the 3D
microstructure Nd

3. In CNN models, the representation of
microstructure is a voxel-by-voxel basis. Therefore, the total
training time increases significantly with the total number of
voxels. Such increase is particularly significant for CNN models
with complex network architecture and a large number of
convolutional or pooling layers such as the pre-trained VGGNet
(denoted as the CNN-3 in Fig. 5a). In the meantime, the cache

Fig. 4 Property prediction by the trained GNN model. a Predicted effective magnetostriction λeffxx vs. ground truth of training and validation
datasets. b Predicted λeffxx vs. ground truth of the independent testing dataset. The GNN model used in (a) and (b) are trained, validated, and
tested based on a dataset of 492 microstructures (2287 data points). c Macro average relative error (MARE) of the GNN models trained using
datasets of different sizes. A lower MARE value indicates better prediction performance. The error bar indicates the standard deviation of
the MARE.

Fig. 5 Computational efficiency of the GNN model. a The training time (the data loading time plus model training time) of our GNN model
and the three baseline CNN models as a function of the number of voxels in the 3D polycrystalline microstructure, denoted as Nd

3, with Nd
varying from 32 to 128. The number of grains in each microstructure image, denoted as Ngrain, is fixed to be 300. The training time is shown in
the reduced unit (r.u.), using the training time of the GNN model as the reference (training time= 1). b The training time of our GNN model as
a function of Ngrain in the range of 300 to 4700. The number of features in each grain/node is fixed to be 5. The training time is shown in
real unit (s).
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memory required by CNN models also increases significantly
with the number of voxels. Specifically, the cache memory of a
single Tesla P100 GPU core would be insufficient for training the
CNN-1, CNN-2, and CNN-3 model when the number of voxels
exceeds 1123, 1203, 643, respectively. This severely limits the
capability of applying 3D CNN models to large-scale micro-
structure image datasets, which often have 1 billion (=10003)
voxels or more per image19.
By comparison, microstructure representation is a node-by-

node basis in GNN models. Therefore, the training time is directly
determined by the number of nodes in a graph, which is the
number of grains (Ngrain) in a polycrystalline microstructure. In
every 3D microstructure image generated for computational
efficiency tests in Fig. 5a, Ngrain is fixed to be 300 although the
number of voxels (Nd

3) can be different. As a result, the total
training time of our GNN model does not vary with the number of
voxels. In particular, since a 3D polycrystalline microstructure
image almost always contains a greater number of voxels than the
number of grains (that is, one grain occupies more than one
voxel), the total training time of CNN should typically be longer
than the GNN. In the present test (Fig. 5a), the training time of the
CNN-2 model is about 35 times longer than that of GNN for a 3D
microstructure image containing 1203 voxels and 300 grains, and
this difference in training time is expected to further increase in
larger-scale microstructure images. Fig. 5b shows the training time
of our GNN model as a function of the Ngrain, with the number of
features in each grain remaining unchanged. As shown in Fig. 5b,
our GNN model can be trained with a large-scale polycrystalline
microstructure containing up to 4700 grains without exceeding
the cache memory limit of one single Tesla P100 GPU, with an
acceptable total training time of ~13 h for a training dataset of 160
data points.

DISCUSSION
With a trained GNN model, the importance of each feature in each
node of a graph to the predicted output can be quantified using
the Integrated Gradient (IG) method30. Specifically, one can
evaluate the IG value for each physical feature in each node/
grain of a microstructure graph G. The higher the absolute IG
value, the more important the specific feature. As illustrated in
Fig. 6a, the IG value of a given feature (grain size in this case) is
calculated by integrating the gradient of the predicted magnetos-
triction with respect to the feature along a straight line from a
baseline graph ~G= (~F, A) to the target graph G= (F, A); see details
in “Methods”.
Among the three physical features of a grain (size, orientation,

the number of neighboring grains) being considered in the
present GNN model, the grain size and the number of neighbors
are somewhat correlated in a computer-generated microstructure
with fixed dimension: in general, the bigger the grain size, the
more neighboring grains. Therefore, we focus on comparing
the importance of grain size and grain orientation to effective
magnetostriction through the IG analysis. However, since the grain
orientation is described by three different feature components
(the Euler angles α, β, γ), one cannot use the IG value of one
specific Euler angle to represent the importance of grain
orientation. Simply averaging the IG values of all three Euler
angles would not be physically reasonable as well.
To address this issue, a two-step analysis is performed. The first

step is to calculate the IG values of the grain size with a specific
baseline graph ~G, in which the grain size is set to be zero in all
nodes (see Fig. 6a) while the values of the other four-node
features (α, β, γ, and a number of neighbors) are set to be the
same as those of the target graph G. Using such a baseline graph
allows us to quantify the individual contribution of grain size to

Fig. 6 Integrated Gradient (IG) analysis. a Schematic of the IG calculation by defining a baseline graph ~G, where the grain size is set to be
zero in all nodes while the values of the other four-node features are set to be the same as those of the target graph G. b Node-resolved
absolute IG values of a 12-node microstructure graph. c Correlation analysis between the absolute value of the normalized grain size and its
corresponding absolute IG value for this 12-node graph by both linear and polynomial fitting. d The distribution of the R2 factor obtained
through linear fitting and polynomial fitting for all the 492 microstructure graphs.
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the macroscopic property. As an example, Fig. 6b shows the
absolute IG value of each feature of each node/grain in a simple
microstructure graph with 12 nodes/grains, where only the grain
size (the second to the last in the five-component node feature
vector) displays nonzero absolute IG values. The second step is to
analyze the correlation between the grain size and the absolute IG
value of grain size for each microstructure graph. Fig. 6c shows
such correlation analysis in the abovementioned 12-node micro-
structure graph. A relatively strong correlation is observed, with an
R2 factor of >0.9 in both linear and polynomial regression. This
indicates that the grain size is more important than grain
orientation in this specific microstructure graph. This is due to
the fact that increasing the absolute value of normalized grain size
would always enhance the absolute IG value of grain size if
omitting the contribution from the grain orientation, as can be
seen from Eq. (10) in the Methods section. In this regard, if there is
no strong correlation, the only possible explanation would be that
the contribution of grain orientation outweighs the contribution
of grain size. Figure 6d shows the distribution of the R2 factor
among the 492 microstructure graphs. It can be seen that the
majority of them only display a relatively weak correlation. This
means that in the present dataset, grain orientation generally
plays a more important role than grain size in determining
effective magnetostriction. This is consistent with the physical
principle that the magnetostriction would be different in grains of
the same grain size but different orientations.
In summary, a GNN model has been developed for predicting

the effective properties of polycrystalline materials, where a
polycrystalline microstructure is represented by a graph. Using the
effective magnetostriction of Terfenol-D alloys as an example, the
GNN model demonstrates a low relative error of 8.24% in property
prediction with a dataset of ~500 polycrystalline microstructures
in which the number of grains per microstructure varies from 12 to
297. Therefore, a single GNN model with fixed network
architecture and hyperparameters can be used to rapidly and
accurately predict the magnetostriction of these ~500 different
microstructures. In particular, the prediction error of this GNN
model can remain at a low level of ~10% over a broad range of
dataset size, even when the dataset size is relatively small. In
combination with the IG method, our GNN model enables
quantifying the importance of each feature in each grain to the
predicted effective properties, which has remained challenging to
achieve with existing data-driven or physics-based models.
Importantly, the design of baseline graph for the calculation of
IG values and the post-processing of the calculated IG values need
to align with the physical principles of the target material system.
Overall, we show that graph-based representation of a

polycrystalline microstructure permits a direct consideration of
the physical interactions among neighboring grains, which leads
to an accurate property prediction by the associated GNN model.
Moreover, the grain-by-grain analysis of the microstructure in the
present GNN model is computationally more efficient than the
voxel-by-voxel analysis of microstructure in existing machine
learning models such as CNN, because one grain often occupies
multiple voxels in a reasonably high-spatial-resolution micro-
structure image. This high computational efficiency will become
particularly valuable for harnessing large-scale 3D polycrystalline
microstructures, e.g., those obtained through high-energy x-ray
diffraction microscopy19, which typically contain billions of voxels
per microstructure image. This unique combination of high
accuracy, high interpretability, and high computational efficiency
makes our microstructure-graph-based GNN model an attractive
tool for harnessing large-scale 3D microstructure datasets.
Looking ahead, the present GNN model can be extended to

describe the orientations (including three parameters for the
crystal misorientation and two parameters for the orientation of
the normal axis) and other features of grain boundaries31 by
assigning an additional feature vector eij to each edge that

connects node (grain) i and node (grain) j in the microstructure
graph. This is similar to the application of GNN model for
predicting the properties of organic molecules and inorganic
crystals23,27 where an edge vector eij is introduced to describe the
features of the chemical bond between atom i and atom j. The
present GNN model can also be extended to describe the features
of other mesoscale defects (e.g., precipitates and pores) by
introducing additional nodes in the microstructure graph such
that the defect-grain interactions can be incorporated. Therefore,
the graph can enable a compact but comprehensive representa-
tion of the salient features of the hierarchical structure elements in
a polycrystalline microstructure. However, for the subsequent
development of the GNN model on effective property prediction,
the appropriate level of complexity in the microstructure graph,
the selection of physical features for the grains and/or grain
boundaries, the identification of optimum network architecture
and update functions will critically depend on the physical
principles of the target material systems or properties. It is
challenging to determine one GNN model with fixed microstruc-
ture graph input, network architecture, and update function (the
three key components of a GNN model) that is universally
applicable to any polycrystalline materials and/or effective
properties. In fact, developing such universal machine learning
models for harnessing vastly different datasets remains to be one
of the most significant challenges in the entire field of artificial
intelligence. Despite this, when the available training datasets for
the target material system are not abundant, it would be
beneficial to use a GNN model pre-trained using larger datasets
of similar materials/properties as the starting point of model
development. Such transfer learning of GNN models for predicting
the properties of polycrystalline microstructures has not yet been
reported but can be pursued by leveraging the established
strategies of pre-training GNN models for molecular property
prediction32. We thus hope the present work can stimulate more
research into the development and application of graph-based
machine learning models for predicting the microstructure-
property link and other important tasks (e.g., predicting
processing-microstructure link and microstructure evolution) in
the field of microstructure informatics33.

METHODS
Phase-field simulations of the effective magnetostriction of
polycrystals
Phase-field simulations are performed using the commercial μ-Pro®

package (mupro.co). In the simulation, the whole polycrystalline micro-
structure is discretized into 64 × 64 × 64 cuboid-shaped cells with
dimension of 1 nm × 1 nm × 1 nm. In each cell, the magnetization in the
global system (sample coordinate system) M=Msm, where Ms is saturation
magnetization and m= (mx,my,mz) is the normalized magnetization vector.
The total free energy of the polycrystal Ftot is written as

Ftot ¼
R
V fexch þ fstray þ fext þ fanis þ felastic
� �

dV; (3)

where fexch, fstray, fext, fanis and felastic are the densities of Heisenberg
exchange energy, magnetic stray field energy, external field energy,
magnetic anisotropy energy and elastic energy, respectively. Among them,
fexch ¼ A ∇mð Þ2, where A is the Heisenberg exchange constant.
fstray ¼ � 1

2 μ0MsHstray �m, where μ0 is the vacuum permeability and Hstray

is the magnetic stray field. Periodic boundary condition is used in the
simulation, hence Hstray ¼ �∇ϕþ NDM, where ϕ is the magnetic scalar
potential solved using the Fourier spectral method34, ND is the
demagnetizing factor which depends on the shape of the microstructure
and M is the average magnetization of the whole microstructure. External
field energy density fext ¼ � 1

2 μ0MsHext �m, where Hext is the external
magnetic field.
To calculate fanis and felastic in the global system, the normalized

magnetization vector in local crystalline system mL is introduced and
can be converted from m through mL

i ¼ Rijmj (i,j= x, y, z), where Rij is
the rotation matrix (determined by the Euler angles in each simulation
cell) describing the difference between local crystalline system and

M. Dai et al.

6

npj Computational Materials (2021) 103 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



global system35. Therefore, the cubic anisotropy energy density

fanis ¼ K1 mL
xm

L
y

� �2
þ mL

ym
L
z

� �2
þ mL

zm
L
x

� �2� �
þ K2 mL

xm
L
ym

L
z

� �2
, where K1

and K2 is the first-order and second-order magnetic anisotropy constant,

respectively34. felastic ¼ 1
2 cijkl εij � ε0ij

� �
εkl � ε0kl
� �

, where cijkl represents the

elastic stiffness constant, εij is the total strain and ε0ij is the spontaneous
strain in the global system36. ε0 can be obtained from the spontaneous
strain in local crystalline system ε0L through ε0ij ¼ RkiRljε0Lkl , where,

ε0Lij ¼
3
2 λ100 mL

i m
L
j � 1

3

� �
i ¼ jð Þ

3
2 λ111m

L
i m

L
j i ≠ jð Þ

8<
: : (4)

λ100 and λ111 are the magnetostriction constants34. The total strain ε is
the sum of spatially independent homogeneous strain ε and a spatially
heterogeneous strain εhet(ref. 37). The distribution of εhet at mechanical
equilibrium can be obtained by numerically solving ∇ � cðε� ε0Þ ¼ 0
through the Fourier Spectral Iterative Perturbation Method35,38. The
homogeneous strain indicates the average deformation of the entire
microstructure under an applied strain. In the simulation, no external strain
is applied, hence, one can derive ε ¼ ε0 through minimizing the total
elastic energy as a function of homogeneous strain. This also means, for a
polycrystalline magnetic material that is stress-free in all directions, the
local magnetostriction (magnetic-field-induced strain) λxx is equal to the
local spontaneous strain ε0xx , yielding,

λxx ¼ ε0xx ¼ RkxRlxε0Lkl ; λ
eff
xx ¼ ε0xx (5)

Therefore, for obtaining the λxx and λeffxx , one needs to obtain the
equilibrium distribution of local magnetization mL under different
magnetic fields. To this end, we compute the evolution of the local
magnetization m (in global system) induced by effective magnetic field
Heff ¼ � 1

μ0Ms

δFtot
∂m by solving the Landau–Lifshitz–Gilbert (LLG) Equation,

∂m
∂t ¼ � γ0

1þα2 m ´Heff þ αm ´m ´Heffð Þ (6)

where α is the Gilbert damping coefficient and γ0 is the gyromagnetic ratio.
The LLG equation is solved using implicit Gauss–Seidel projection method
implemented with Fourier–Spectral approach34, with a dimensionless
discretized time interval Δt� ¼ γ0Ms

1þα2 Δt ¼ 0:005. The material parameters of
the Terfenol-D used for phase-field simulations are listed as follows:34

saturation magnetization Ms ¼ 8:0 ´ 105 Am−1, exchange constant
A ¼ 9:0 ´ 10�12 Jm−1, anisotropy constant K1 ¼ �6:0 ´ 104 Jm−3, K2 ¼ 0;
elastic stiffness constant c11 ¼ 1:41 ´ 1011 Pa, c12 ¼ 6:48 ´ 1010 Pa,
c44 ¼ 4:87 ´ 1010 Pa, magnetostriction constant λ100 ¼ 0, λ111 ¼ 1:64 ´ 10�3.
A randomized magnetization distribution is considered as the initiating state.
The equilibrium distribution of m is considered to be reached when the total
free energy density ftot no longer changes significantly with time.

GNN model training and evaluation protocols
All trainable weights in the model are updated through Gradient Descent,

w ¼ w � η ∂L
∂w (7)

where w includesW(n) in MPLs (Eq. (1)); the wij and bi in the fully connected
layers (Eq. (2)); η is the learning rate, L is the loss, taken as the mean square
error (MSE) between the predicted value ŷm and real value ym in one batch,

L ¼ 1
n

Pn
m¼1

ŷm � ymð Þ2; (8)

where n is the batch size—the number of data points used for one
iteration of weight updating. During the training process, the whole
training dataset will be iterated several times. The number of iterations is
called the number of epochs. The gradient ∂L⁄∂w is obtained through
backpropagation. The MARE is used for representing the relative error
between the model predicted value and the simulated value of the testing
dataset (see Fig. 4c),

MARE ¼
Pn0

m¼1
ŷm�ymj jPn0

m¼1
ymj j ; (9)

where n0 is the total number of testing data points.
Hyperparameter optimization is performed with the whole dataset with

492 microstructures. The associated data points of the form G;Hxð Þ; λeffxx

h i
are randomly divided into ten subsets of about the same size. Among
them, one subset is used for validation, one subset is used for testing and
the remaining eight subsets are used for training. Eighty-one different

GNN models, each with a unique set of hyperparameters (including the
dimension of the weight matrices W(1) and W(2) in MPLs, the number of
units in the first hidden layer Nh1 and the second hidden layer Nh2 in the
FL, batch size n, number of epochs, and learning rate η), are trained. These
81 trained GNN models are then independently evaluated for MARE with
the validation dataset. The GNN model that leads to the lowest MARE is
identified as the optimized model and applied to the testing dataset,
which has remained unseen during the entire training and validation
process, for the evaluation of property prediction performance (indicated
by the “testing MARE” in Fig. 4b). The hyperparameters associated with this
optimized GNN model are listed in Table 1.
For the data ablation study in Fig. 4c, the optimized hyperparameters listed

in Table 1 were used for training the GNN model in each case. Tenfold cross
validation is used to evaluate the prediction performance. A group of k
microstructure graphs (k varying from 32 to 392) are randomly selected from
the 492 microstructure graphs. For each group, the associated data points (ca.,
4k–5k) of the form [(G, Hx), λ

eff
xx ] are randomly divided into ten subsets of about

the same size. Each time, one subset is used for testing while the remaining
nine subsets are used for training. Such training and testing processes are
repeated for 10 times, and it is ensured that each subset is only used for
testing for one time. The resultant 10 MSE and MARE numbers are averaged
to be the final estimation.
Finally, to evaluate the stability of the optimized GNN model, the influence

of randomness on the model performance is studied, including (1) the
random selection of the group of k microstructures graphs from the total 492
graphs; and (2) the random division of the associated data points (ca., 4k–5k)
into ten subsets. Specifically, starting from the GNN models with optimized
hyperparameters (Table 1), we used three different random numbers to
achieve three different versions of the ten subsets and then performed
tenfold validation independently. The average and standard deviation of
MARE are calculated based on the obtained 30 testing errors (Fig. 4c).

Time measurement of the GNN models and CNN models
The three CNN models used for time measurement (in Fig. 5a) have the
same neural network architecture as those in the literature: Ref. 8. for
CNN-1; Ref. 29. for CNN-2; Ref. 12. for CNN-3. The inputs to these three CNN
models are 3D microstructure images. Each image is comprised of 3D
discretized voxels of Nd × Nd × Nd, where each voxel is assigned to three
values of Euler angles. The whole dataset for time measurement comprises
50 different 3D microstructure images. Together with the four different
magnetic fields, Hx applied to each microstructure and the associated
effective magnetostriction λeffxx , a total of 200 data points is used. Each point
has a format of [(I3D, Hx), λ

eff
xx ]. The whole dataset is then divided into eight

training subsets (160 data points), one validation subset (20 data points),
and one testing subset (20 data points). For a fair comparison of the model
training time, the batch size and number of epochs in the three CNN
models and the GNN models are all set to be the same as those listed in
Table 1. All tasks (data loading and model training) were performed on a
single Tesla P100 GPU core. We note that the CNN-2, due to its specific
network architecture, are not applicable to microstructure images of some
Nd values (specifically, Nd= 32), hence its data loading and training time
cannot be measured.

IG calculation
The recently proposed IG method30 is used to evaluate the importance of
each physical feature in each grain to the predicted magnetostriction for a
given microstructure graph G= (F, A). The microstructure graph G along
with the external field Hx is termed as the real input (G, Hx) below. The
calculation of the IG values for each feature requires defining a baseline
input (~G, Hx), where ~G= (~F, A), which is analogs to the selection of the origin
of a coordinate system. Specifically, the grain size in the feature matrix ~F of
the baseline input are set to be zero while other features are set to the
same with F of the real input. This allows us to quantify the individual
contribution of grain size to the magnetostriction.

Table 1. Hyperparameters of the optimized GNN model.

Wð1Þ W(2) Nh1 Nh2 Batch size Number
of epochs

Learning rate

5 × 60 60 × 3 1024 128 32 2000 1 × 10−4

M. Dai et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021) 103



The IG of each feature in each grain is defined to be the aggregation of
the gradients along the straight line connecting the baseline input with
the real input, given as,

IG f ki
� �

::¼ f ki � ~f ki
� �

´
Pm

l¼1
∂y ~Fþ l

m´ F�~Fð Þ;Að Þ;Hx½ �
∂f ki

´ 1
m

(10)

where f ki and ~f ki are the kth feature of ith node of graph of real input
and baseline input, respectively. Among the five features, the grain size
(k= 4) and number of neighbors (k=5) of each node in the microstructure
graph are the normalized values of the original feature f koi , specifically,
f ki ¼ ðf koi � μÞ=σ, where the average value μ and the standard deviation σ
are calculated based on the original feature values in all nodes of a specific
microstructure graph. The purpose of this normalization is to convert the
two features into a common scale and meanwhile preserve the relative
difference of these feature values across the nodes. A is the adjacency
matrix of the real input; y ~F;A

� �
;Hx

� 	
refers to the trained GNN model; m is

the number of steps in the Riemman approximation of the integral. As
shown in Eq. (10), IG f ki

� �
is directly determined by the f ki through the term

f ki � ~f ki
� �

and also the aggregation term
Pm

l¼1
∂y ~Fþ l

m ´ F�~Fð Þ;Að Þ;Hx½ �
∂f ki

´ 1
m. The

other features f kj≠i can indirectly influence the IG f ki
� �

since the gradient is
influenced by all the features along the integration path. Note that the sum
of all IG values of the whole graph, that is,

PN
i¼1

PM
k¼1 IG f ki

� �
, is equal to

the difference between the two final predictions (the value of normalized
λeffxx herein) obtained using the real input F;Að Þ;Hx½ � and the baseline input
~F;A
� �

;Hx
� 	

. Here N denotes the number of nodes (grains) in the graph
(microstructure); M is the number of features of each node/grain (M= 5
herein). A large positive (negative) IG value indicates that the predicted
output will increase (decrease) significantly as the value of a given feature
increases. Therefore, larger absolute value of IG suggests greater
importance of a specific feature.
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PolycrystalGraph. The other data that support the plots presented in this paper are
available from the corresponding authors upon reasonable request.

CODE AVAILABILITY
The open-source codes for the Graph Neural Network (GNN) model and Integrated
Gradient (IG) calculations can be accessed via https://github.com/mehmetfdemirel/
PolycrystalGraph.

Received: 16 December 2020; Accepted: 16 June 2021;
Published online: 09 July 2021

REFERENCES
1. Zhou, J. et al. Graph neural networks: a review of methods and applications.

AI Open 1, 57–81 (2020).
2. Wu, Z. et al. A Comprehensive survey on graph neural networks. IEEE Trans.

Neural Networks Learn. Syst. 1–21 (2020).
3. Khosravani, A., Cecen, A. & Kalidindi, S. R. Development of high throughput assays

for establishing process-structure-property linkages in multiphase polycrystalline
metals: application to dual-phase steels. Acta Mater. 123, 55–69 (2017).

4. Yabansu, Y. C., Patel, D. K. & Kalidindi, S. R. Calibrated localization relationships
for elastic response of polycrystalline aggregates. Acta Mater. 81, 151–160
(2014).

5. Yabansu, Y. C. & Kalidindi, S. R. Representation and calibration of elastic locali-
zation kernels for a broad class of cubic polycrystals. Acta Mater. 94, 26–35 (2015).

6. Latypov, M. I. et al. Materials characterization application of chord length dis-
tributions and principal component analysis for quantification and representa-
tion of diverse polycrystalline microstructures. Mater. Charact. 145, 671–685
(2018).

7. Kondo, R., Yamakawa, S., Masuoka, Y., Tajima, S. & Asahi, R. Microstructure
recognition using convolutional neural networks for prediction of ionic con-
ductivity in ceramics. Acta Mater. 141, 29–38 (2017).

8. Yang, Z. et al. Deep learning approaches for mining structure-property linkages in
high contrast composites from simulation datasets. Comput. Mater. Sci. 151,
278–287 (2018).

9. Li, X. et al. A transfer learning approach for microstructure reconstruction and
structure-property predictions. Sci. Rep. 8, 1–13 (2018).

10. Cang, R., Li, H., Yao, H., Jiao, Y. & Ren, Y. Improving direct physical properties
prediction of heterogeneous materials from imaging data via convolutional
neural network and a morphology-aware generative model. Comput. Mater. Sci.
150, 212–221 (2018).

11. Chan, H., Cherukara, M., Loeffler, T. D., Narayanan, B. & Sankaranarayanan, S. K. R.
S. Machine learning enabled autonomous microstructural characterization in 3D
samples. npj Comput. Mater. 6, 1 (2020).

12. Herriott, C. & Spear, A. D. Predicting microstructure-dependent mechanical
properties in additively manufactured metals with machine- and deep-learning
methods. Comput. Mater. Sci. 175, 109599 (2020).

13. Yang, C., Kim, Y., Ryu, S. & Gu, G. X. Prediction of composite microstructure stress-
strain curves using convolutional neural networks. Mater. Des. 189, 108509
(2020).

14. Rong, Q., Wei, H., Huang, X. & Bao, H. Predicting the effective thermal con-
ductivity of composites from cross sections images using deep learning methods.
Compos. Sci. Technol. 184, 107861 (2019).

15. Torquato, S. Statistical description of microstructures. Annu. Rev. Mater. Sci. 32,
77–111 (2002).

16. Nan, C.-W. Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 37,
1–116 (1993).

17. Chen, L.-Q. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res.
32, 113–140 (2002).

18. Lienert, U. et al. High-energy diffraction microscopy at the advanced photon
source. JOM 63, 70–77 (2011).

19. Pokharel, R. et al. In-situ observation of bulk 3D grain evolution during plastic
deformation in polycrystalline Cu. Int. J. Plast. 67, 217–234 (2015).

20. Savage, H. T., Abbundi, R., Clark, A. E. & McMasters, O. D. Permeability, magne-
tomechanical coupling and magnetostriction in grain‐oriented rare earth–iron
alloys. J. Appl. Phys. 50, 1674–1676 (1979).

21. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The graph
neural network model. IEEE Trans. Neural Netw. 20, 61–80 (2009).

22. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message
passing for quantum chemistry. In Proc. 34th International Conference on Machine
Learning. 70, 1263–1272 (2017).JMLR. org.

23. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal
machine learning framework for molecules and crystals. Chem. Mater. 31,
3564–3572 (2019).

24. Liu, S., Demirel, M. F. & Liang, Y. N-gram graph: Simple unsupervised repre-
sentation for graphs, with applications to molecules. Adv. Neural Inf. Process. Syst.
8464–8476 (2019).

25. Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatchenko, A. Quantum-
chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890
(2017).

26. Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. Molecular graph
convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30,
595–608 (2016).

27. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an
accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120,
145301 (2018).

28. Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional
networks. https://arxiv.org/abs/1609.02907 (2016).

29. Rao, C. & Liu, Y. Three-dimensional convolutional neural network (3D-CNN) for
heterogeneous material homogenization. Comput. Mater. Sci. 184, 109850 (2020).

30. Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In
Proc 34th International Conference on Machine Learning. ICML 2017 7, 5109–5118
(2017)..

31. Hu, C., Zuo, Y., Chen, C., Ping Ong, S. & Luo, J. Genetic algorithm-guided deep
learning of grain boundary diagrams: addressing the challenge of five degrees of
freedom. Mater. Today 1–19 (2020).

32. Hu, W. et al. Strategies for pre-training graph neural networks. https://arxiv.org/
abs/1905.12265 (2019).

33. McDowell, D. L. & Lesar, R. A. The need for microstructure informatics in process-
structure-property relations. MRS Bull. 41, 587–593 (2016).

34. Zhang, J. X. & Chen, L. Q. Phase-field microelasticity theory and micromagnetic
simulations of domain structures in giant magnetostrictive materials. Acta Mater.
53, 2845–2855 (2005).

35. Choudhury, S., Li, Y. L., Krill, C. & Chen, L. Q. Effect of grain orientation and grain
size on ferroelectric domain switching and evolution: Phase field simulations.
Acta Mater. 55, 1415–1426 (2007).

36. Rossetti, G. A., Khachaturyan, A. G., Akcay, G. & Ni, Y. Ferroelectric solid solutions
with morphotropic boundaries: vanishing polarization anisotropy, adaptive, polar
glass, and two-phase states. J. Appl. Phys. 103, (2008).

M. Dai et al.

8

npj Computational Materials (2021) 103 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://github.com/mehmetfdemirel/PolycrystalGraph
https://github.com/mehmetfdemirel/PolycrystalGraph
https://github.com/mehmetfdemirel/PolycrystalGraph
https://github.com/mehmetfdemirel/PolycrystalGraph
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/1905.12265


37. Khachaturyan, A. G. Ferroelectric solid solutions with morphotropic boundary:
rotational instability of polarization, metastable coexistence of phases and
nanodomain adaptive states. Philos. Mag. 90, 37–60 (2010).

38. Wang, J. J., Ma, X. Q., Li, Q., Britson, J. & Chen, L. Q. Phase transitions and domain
structures of ferroelectric nanoparticles: phase field model incorporating strong
elastic and dielectric inhomogeneity. Acta Mater. 61, 7591–7603 (2013).

ACKNOWLEDGEMENTS
Acknowledgment is made to the donors of The American Chemical Society
Petroleum Research Fund for partial support of this research, under the award PRF
# 61594-DNI9 (M.D. and J.-M.H.). This work was supported in part by FA9550-18-1-
0166, IIS-2008559, and NSF 1740707. J.-M.H. also acknowledges the support from a
start-up grant from the University of Wisconsin-Madison. This work used the Extreme
Science and Engineering Discovery Environment (XSEDE) Specifically, it used the
Bridges-2 system at the Pittsburgh Supercomputing Center (PSC).

AUTHOR CONTRIBUTIONS
J.-M.H. initiated the project and designed the structure of the paper. J.-M.H. and Y. L.
supervised the research. M.D. and M.F.D. developed the codes for the Graph Neural
Network (GNN) model based on an existing version of the code from the research group
of Y.L. Specifically, M.F.D. developed the code for the data input, GNN model
architecture, model training and model testing. M.D. developed the code for data
division and Integrated Gradient (IG) values calculation. M.D. generated the datasets and
performed the phase-field simulations. Using substantial feedback from all co-authors,
M.D. performed the GNNmodel training and testing, the IG analysis, and the benchmark
test on computational efficiency against baseline convolutional neural network (CNN)
models. M.D. and J.-M.H. wrote the paper with feedback from M.F.D. and Y.L.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Y.L. or J.-M.H.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021, corrected publication 2022

M. Dai et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021) 103

http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
	Introduction
	Results
	Building a microstructure graph
	Dataset generation
	GNN built upon microstructure graph
	Property prediction by the GNN model
	The computational efficiency of the GNN model

	Discussion
	Methods
	Phase-field simulations of the effective magnetostriction of polycrystals
	GNN model training and evaluation protocols
	Time measurement of the GNN models and CNN models
	IG calculation

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




