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Adsorption space for microporous polymers with diverse
adsorbate species
Dylan M. Anstine 1,2, Dai Tang3, David S. Sholl 3 and Coray M. Colina 1,2,4✉

The enormous number of combinations of adsorbing molecules and porous materials that exist is known as adsorption space. The
adsorption space for microporous polymers has not yet been systematically explored, especially when compared with efforts for
crystalline adsorbents. We report molecular simulation data for the adsorptive and structural properties of polymers of intrinsic
microporosity with a diverse set of adsorbate species with 345 distinct adsorption isotherms and over 240,000 fresh and swollen
structures. These structures and isotherms were obtained using a sorption-relaxation technique that accounts for the critical role of
flexibility of the polymeric adsorbents. This enables us to introduce a set of correlations that can estimate adsorbent swelling and
fractional free volume dilation as a function of adsorbate uptake based on readily characterized properties. The separation
selectivity of the 276 distinct binary molecular pairs in our data is reported and high-performing adsorbent systems are identified.
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INTRODUCTION
In one form or another, chemical separations have an unavoidable
presence in the functioning of nearly every sector of the chemical
process industry. By some estimates 10–15% of global energy
consumption stems from separation processes1, which has yielded
opportunities for emergent low-energy adsorption-based tech-
nologies that could result in an annual savings of billions of US
dollars in the United States2,3. One avenue for progress toward
this challenge is the replacement of traditional energy-intensive
industrial processes such as distillation with lower energy
separations driven by microporous adsorbent materials. Alongside
the demand for separation applications, microporous adsorbents
can have potential impact in other areas, such as chemical
storage4 or catalysis5.
To address the wide-reaching nature of applications mentioned

above various families of microporous adsorbent materials have
been developed. Metal-organic frameworks6, covalent-organic
frameworks7, and zeolites8 are common types of adsorbents with
crystalline order, whereas hyper-cross-linked polymers9, conju-
gated microporous polymers10, carbonaceous materials11, and
polymers of intrinsic microporosity (PIMs)12 are examples of
adsorbents with amorphous structures. A common feature to all of
these families is that thousands or even millions of structures can
be envisioned on the basis of chemical modifications or
systematic combinations of constituent components. However,
substantial experimental exploration of a library of these
structures tends to be impractical, especially in cases where
materials synthesis is complex. This challenge can potentially be
addressed through molecular simulation screening studies before
the development of synthetic chemistry methods13,14, which can
also generate the data needed for machine learning approaches15.
PIMs are defined by contorted and ladder-like backbones that

inefficiently pack and produce high-free volume microporous
polymeric adsorbents. Through creative design of monomeric
units many remarkable PIMs have been produced. For example,
Rose et al.16 presented 2-dimensional PIM-TMN-Trip membranes

that surpass the performance of poly(1-(trimethylsilyl)-1-propyne)
(PTMSP), a polymeric material currently used commercially. Recent
work by Thompson et al.17 demonstrated the use of PIM structures
for the fractionation of light shale-based crude oil. An attractive
characteristic of PIMs is their potential to be scaled up to meet
the demands of large volume industrial separations. They can be
solution processed, readily modified by a range of organic
chemical reactions, and present in different geometries (e.g., films
or hollow fibers). Despite their potential, information that
addresses a large and diverse collection of PIM-adsorbate pairs
is not currently available. One explanation for the lack of these
studies are the difficulties associated with modeling amorphous
microporous polymers. The simulation techniques needed to
construct models of amorphous polymers have been discussed by
Kupgan et al.18. The demands of these techniques mean that there
is no exhaustive structure or property database of amorphous
microporous polymers that rivals the size of the databases of
crystalline materials19,20. An initial step toward providing access to
existing structures was reported recently by Thyagarajan and
Sholl, who made available a database of 205 atomically detailed
amorphous materials collected from previous studies21.
It is not only the structure of amorphous polymers that

complicate modeling of adsorption in PIMs. Microporous polymers
of all kinds are influenced by varying degrees of adsorbate-
induced framework rearrangement. This limits property predic-
tions from traditional molecular simulation methods because the
modeling of adsorption including polymer flexibility is a nontrivial
task22. Depending on the pressure range, adsorbates, and
adsorbent species studied, employing a simulation method that
accounts for polymer dynamics, swelling, and plasticization can be
essential for making quantitative predictions. To highlight a
specific example, an adsorbent’s separation selectivity can be
severely reduced by swelling/plasticization, an effect that is
entirely unaccounted for with a traditional rigid framework
approximation23,24.
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Here, we provide an extensive dataset of amorphous polymeric
adsorbents under different loading conditions (over 240,000 struc-
tural conformations), including 345 unary adsorption isotherms
accounting for polymer flexibility, and an evaluation of the binary
selectivity of 4140 PIM-mixture combinations. We evaluate the
effect that systematic chemical modification of the adsorbent
monomeric units has on adsorption loading and show how
several adsorptive properties and structural feature rearrange-
ments can be determined from simple relationships with
reasonable accuracy.

RESULTS
Adsorption with polymer flexibility
Molecular simulations that account for framework flexibility for
adsorption predictions can quantify structural features that may
be otherwise difficult to obtain experimentally, e.g., determining a
polymer’s fractional free volume (FFV) at elevated adsorbate
pressures. FFV can be determined experimentally using positron
annihilation lifetime spectroscopy, but to the best of our
knowledge this technique has never been applied with an
adsorbed phase at significantly swollen conditions. FFV can also
be probed experimentally with X-ray scattering, inverse gas
chromatography, and N2 adsorption25; however, demonstrations
of extensibility for swollen adsorbents are limited. In addition to
FFV, simulations can measure the expansion of geometric surface
area (SAgeo) and induced volumetric swelling (V/Vo) associated
with adsorption. To provide context for the results to follow, the
behavior of carboxyPIM-1 upon adsorption of propene, acetalde-
hyde, butane, hexane, and dipropyl ether is discussed.
Figure 1a shows five adsorption isotherms in carboxyPIM-1 at

300 K. In general, the larger molar mass adsorbates have stronger
adsorption in the Henry’s Law regime than the lighter species. As
relative pressure increases, however, the heavier adsorbates
display saturation-like behavior, whereas the loadings of the
lighter species continue to increase without clear saturation.
Figure 1b provides swelling (V/Vo)-pressure curves that correspond

to the state points of Fig. 1a. We report swelling as a relative value
with reference to the adsorbate-free polymer rather than a
percent change; a relative swelling of 1.1 is equivalent to a 10%
volume change. Figure 1c, d shows that the framework flexibility
predicted in the highlighted adsorbate-carboxyPIM-1 combina-
tions is substantial, with values ranging from 0.208 to 0.508 and
362 to 2221m2 g−1 for FFV dilation and SAgeo expansion,
respectively. The full set of loading, swelling, FFV dilation, and
surface area expansion data for every adsorbate-adsorbent pair
other than propan-1-ol is provided in the repository listed under
Data availability.
Although MC/MD simulations are effective for determining a

series of state points on an adsorption isotherm, it is useful to fit
the simulated data with an isotherm model. We used the dual-
mode sorption (DMS) model26–28 to fit the 345 adsorption
isotherms obtained from our simulations. The accuracy of the
DMS model fit is shown in Fig. 2a. The DMS functional form gives a
mean absolute deviation (MAD) of 0.16 mmol g−1. As a demon-
stration, the adsorption isotherms from Fig. 1 have been replotted
with their DMS fits in Fig. 2b. The fitted DMS model parameters are
reported in the provided database. Validation for the sorption-
relaxation procedure is presented in Supplementary Fig. 1 for
propane and propene. The discrepancy between traditional Grand
Canonical Monte Carlo (GCMC) assuming a rigid polymer structure
and the sorption-relaxation methods for n-hexane with
carboxyPIM-1 is shown in Supplementary Fig. 2, which highlights
the considerable additional uptake from swelling.

Correlations for sorption-induced rearrangement
To progress towards adsorbent design criteria for polymers it is
essential to have methods to quantify polymer restructuring.
Experimentally, measurements of macroscopic swelling are
possible with spectroscopy29,30 or in situ ellipsometry31, although
these approaches are not yet widespread in the development of
high-free volume polymeric membrane materials. Our simulations
provide a set of over 240,000 polymer conformations exhibiting a
range of adsorption-induced swelling. This large set of data allows
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Fig. 1 CarboxyPIM-1 isotherms produced from sorption-relaxation (GCMC/MD) simulations at 300 K. Sorption-relaxation simulation data is
shown for propene (black circles), acetaldehyde (blue squares), butane (red triangles), n-hexane (green diamonds), and dipropyl ether (orange
crosses). a adsorption isotherm (loading denoted Q), b relative swelling (V/Vo), c fractional free volume (FFV) dilation, and d geometric surface
area (SAgeo). Dotted lines are to guide the eye. Error bars indicate 95% confidence intervals (1.96 standard deviations) from simulations of
independent replicas.
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us to consider relationships that can be used to estimate
polymeric framework swelling from the adsorption isotherm and
the connection between swelling and FFV dilation. We found that
the V/Vo-Q curve is convex with two regimes24. The initial swelling
regime, V/Vo < 1.15, follows a quadratic relationship described by

V=Vo ¼ KVQ ´Q2 þ 1 (1)

where KVQ is a fitted constant specific to the adsorbate–adsorbent
system. For V/Vo > 1.15 swelling is approximately linear, following

V=Vo ¼ γVQ ´Qþ 0:75 (2)

with γVQ also being a system specific fitted constant. Figure 3a
illustrates that this piecewise pair of equations is effective in
representing the data for all adsorbing species. The MAD is 0.004
across all samples, which is appreciably less than the 95%
confidence intervals associated with the data points.
The propensity to swell the polymer framework is generally

correlated with the molar mass of the adsorbate species. Figure 3b
shows an example of this observation. For a given adsorbent, the
values of KVQ and γVQ can be estimated by

KVQ ¼ δads
Tc
MM

� ��3

(3)

and

γVQ ¼ ξads
Tc
MM

� ��1:25

(4)

with TC being the adsorbate’s critical temperature and MM the
adsorbate’s molar mass. We find that the leading coefficients of

Eqs. (3) and (4) can be related to adsorbent structural features by

δads ¼ 150ðSAgeo ´ VHeÞ�3=4 (5)

and

ξads ¼ 4:57ðSAgeo ´ VHeÞ�1=4 (6)

where SAgeo is the geometric surface area (m2 g−1) and VHe the
helium void volume (cm3 g−1) of the adsorbate-free polymer.
Physically, the product of SAgeo and VHe is a descriptor of the
available adsorbent pore space in the empty polymer. Simulated
swelling values are compared to the correlated swelling values
estimated using Eqs. (1)–(6) in Fig. 4, and demonstrations of the
quality of the fit for these correlations are given in Supplementary
Figs. 3–8. The estimated results from the correlations have a MAD
of 0.019. It is useful to note that these equations could be used in
both computational and experimental studies because they rely
only on quantities accessible by routine characterization of the
fresh polymer.
In Fig. 5a the FFV dilation is plotted as a function of relative

swelling. At low-swelling values (i.e., where elastic deformation is
expected to occur) the FFV dilation is occurring to a degree
approximately three times the volumetric swelling. This allows for
the modification of the Eq. (3) (restricted to V/Vo < 1.15) to
represent the relative FFV dilation as

FFV=FFVo ¼ 3KVQðQÞ2 þ 1 (7)

Dilation of this nature results in a slight shift of the pore size
distribution (PSD) and a peak intensity change dictated by the
expanded FFV. This type of PSD for V/Vo= 1.11 is shown in Fig. 5b.
In contrast, for a material that is 11% swollen relative to the static
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framework the simulated results display a mean peak position at a
larger value with greater intensity and broadened distribution. The
PSD in the 33% swollen (severely plasticized) material shows
the same behavior to a greater extent. This discrepancy reveals
that significant free volume restructuring is occurring in a
nonaffine nature.

Evaluating binary separation performance
To report separation performance of PIMs for adsorption of binary
mixtures, we exploit the fact that the binary adsorption selectivity
(α) in the dilute limit is exactly equal to the ratio of the single-
component Henry’s constants32. At non-dilute conditions the
restructuring of polymeric materials generally leads to a reduction
of α33. The Henry’s constants used for calculating α were
determined using the Widom insertion method34 and their
distribution is reported in Supplementary Fig. 9. Additionally, a
box and whisker plot of the dilute heats of adsorption are
provided in Supplementary Fig. 10. We characterize adsorbent
selectivity performance for a given binary mixture as the
maximum of α and 1/α, where a selective adsorbent displays
values greater than 1. The spread across all PIMs is reported in
Fig. 6a, where the best α for each molecular pair is shown above
the diagonal and the worst α below the diagonal. This is by far the
largest set of data for mixture adsorption in PIMs that is currently
available.
To expand the adsorbent selectivity analysis, a simple relation-

ship for predicting the typical α for arbitrary binary pairs, similar to

the functional form reported by Tang et al.35,36 that was based on
a relationship described by Freeman37, was explored. Specifically,
we assessed the applicability of predicting the dilute limit
selectivity using

ln αð Þ ¼ NpimðTC;A � TC;BÞ (8)

where TC;A � TC;B is the difference of adsorbate critical tempera-
tures. By fitting the simulated median α values for each adsorbate
pair we obtain a scaling factor specific to PIMs: Npim= 0.043 K−1.
This equation fits our simulated data well, as shown in Fig. 7,
although the variations associated with the full range of polymer
architectures are considerable.

DISCUSSION
We have reported simulated adsorption data for several high-free
volume PIMs in combination with 24 diverse adsorbate species.
Importantly, the simulated results are obtained with a sorption-
relaxation technique that overcomes the ‘rigid’ framework
approximation, which allows for quantification of adsorbate-
induced polymeric adsorbent restructuring. The results of these
simulations include 345 adsorption, swelling, FFV dilation, and
surface area expansion isotherms, and a database of over 240,000
fresh and swollen polymer structures. These results provide insight
for the role that species diversity plays in adsorption. However, the
observations are contingent upon the quality of the modeling
approach. For the set of PIMs studied in this work, structure factors
from wide-angle X-ray scattering, adsorptive properties, and
mechanical behavior have been previously validated16,38–40. This
is essential to the physical relevance of the results produced.
Ensuring that all of these properties are accurately represented is
key to applying the sorption-relaxation approach. As an example,
if the PIM models display mechanical characteristics that are too
weak because of an incorrect interatomic potential, then the
sorption-induced swelling will be overpredicted. Further informa-
tion regarding modeling details and implications can be found in
References16,38–40 as well as Supplementary Discussion 1.
In Fig. 1a the degree of swelling is 1.0–1.05 at low relative

pressures for all species. A similar result was found in 2018 by
Kupgan et al.23 for PIM-1, which led to the conclusion that this
regime could be simulated with either GCMC/MD or traditional
rigid MC with approximately equivalent accuracy for the lighter
species of their work (methane, carbon dioxide, nitrogen, oxygen,
and hydrogen). However, Fig. 2 shows that at a pressure of P/Po=
0.1 a n-hexane loading of ~2.0 mmol g−1 results in framework
dilation of ~1.13; in other words, beyond the applicability of the
rigid framework assumption. The challenge of utilizing PIMs at such
conditions would be that the deliverable capacity of a plasticized
material severely suffers with each adsorption-desorption cycle, i.e.,
depreciating hysteresis behavior. An attractive future approach is

Fig. 4 Parity plot illustrating the predictive capability of Eqs. (3)–(6).
The estimated (est.) swelling from correlations based on readily
obtainable adsorbate and adsorbent properties is compared to the
simulated (sim.) swelling.
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to focus on developing PIMs that can be regenerated quickly and
at low cost, to take advantage of the large uptake due to their
propensity to swell. Figure 2c, d shows that the degree of relative
change of adsorbent structural features follows the order of
volumetric swelling < FFV dilation < SAgeo expansion. This has
implications for tuning adsorbent performance since FFV is known
to play a dominant role in adsorbate mass transport41 and SAgeo
has a considerable influence on adsorption thermodynamics (e.g.,
enthalpy of adsorption). The observed behaviors are widely
consistent across all adsorbate–adsorbent pairs assessed in this

work. Propan-1-ol was omitted from the analysis in Fig. 2 because
the majority of state points were found to excessively swell or did
not reach convergence even after hundreds of MC/MD iterations.
This is likely a result of the sigmoidal isotherm shape that this
species displays in PIMs42 and/or the molecular clustering that can
occur for small primary alcohols43.
An empirical DMS model was found to fit the adsorption

isotherm data with a MAD of 0.16 mmol g−1. Polymer restructur-
ing is not accounted for in the DMS functional form and therefore
it is somewhat surprising that this choice is so effective in fitting
our diverse dataset. We used the data from our molecular
simulations to develop a set of correlations for PIMs that give
good estimates for swelling and FFV dilation at moderate swelling
(V/Vo < 1.15) and reasonable predictions across the full range of
swelling. These correlations rely only on readily accessible
properties of the polymer, SAgeo and VHe. SAgeo can be easily
calculated computationally if a structural model is available using
open-source software (e.g., Poreblazer44 or zeo++45) or by
subtracting 250m2 g−1 from the experimentally measured
Brunauer–Emmett–Teller surface area (SABET) as shown by Hart
and Colina46. Pore volume is measurable using helium pycno-
metry or can be computationally calculated using the same
software mentioned above. To connect the quality of our reported
correlations with the experimental sensitivity of swelling measure-
ments, we highlight a recent experimental work by Ogieglo et al.47

that showed a variability of 2–4% in swelling induced by CO2 in
PIM-1 (with V/Vo < 1.1) based on the initial polymer film thickness.
This variability is similar to the spread of the initial swelling data
points in Fig. 4. We emphasize that the method introduced relies
only on characterization of the adsorbent in the unswollen fresh
state without adsorbate present (SAgeo and/or VHe). These
adsorbent properties are related to separation thermodynamics
and mass transport, which can be tied to the well-known
permeability-selectivity tradeoff that polymers exhibit48,49. It
seems likely that these relationships could be relevant to other
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Fig. 7 Correlation for the typical selectivity of binary pairs.
Selectivity is calculated as the ratio of Henry’s constants obtained
from Widom insertion with the critical temperature of each
adsorbate (blue). Values shown in red are for adsorbate pairs that
contain either octanal or octan-1-ol and have been omitted from the
fitting procedure. The slope of the linear fit is 0.043 K−1 with an R2

value of 0.86. Error bars indicate 95% confidence intervals
(1.96 standard deviations) from simulations of independent replicas.
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families of high-free volume glassy polymers, or even more
generally to high-free volume organic glasses.
We found that adsorbent restructuring upon adsorption is

significantly nonuniform (nonaffine), which manifests in the
relative change in FFV dilation occurring at a greater degree than
the overall adsorbent swelling. This occurs because during
swelling free volume elements are dilating in relation to the
adjusted polymer chain positions but at the same time additional
free volume elements and pore connectivity are being created. It
is this second effect that drives the change of FFV to be greater
than that of the swelling behavior. Regardless of the approach for
measuring volumetric swelling (whether it is through the above
correlations or direct experimental measurement) the results of
Fig. 5a should be equally extendable.
We also quantified the dilute separation performance of 4140

adsorbent-binary mixture pairs, allowing us to identify high-
performing adsorbents. By comparing symmetric entries in Fig. 6a
across the diagonal we see that for the majority of binary mixtures
a range of α spanning orders of magnitude is available among the
PIMs. Challenging separations of adsorbate pairs, e.g., with similar
sizes and/or chemistry are also identified. soPIM-1 was observed
to be the overall top performer across the set of PIMs with the
greatest number of best separations capabilities and being
consistently above average. This appears to be related to the
adjacent position of the sulfonyl group to the nitrile, which creates
strongly interacting electrostatic sites within the polymer that
enhances separation capabilities for mixtures containing polar
species50. We also found that estimates for typical selectivity
behavior for PIMs follows a simple relationship based on the
adsorbates’ critical temperature. It should be noted that there are
several instances where the preferential species is split among the
PIMs studied, in other words, some of the frameworks favor
species A over B and the rest B over A. These instances can be
seen in Supplementary Fig. 11. There are also seven gas mixtures
where all of the PIMs assessed prefer that opposite species to the
one predicted with Eq. (8). The variation in selectivity is relatively
large and this correlation should be viewed as a qualitative
baseline to compare against adsorbent-specific selectivities. The
field of microporous polymeric materials has progressed tremen-
dously since the introduction of the original correlation, i.e., 20
years ago and before the synthesis of the first PIM. The usefulness
of this relationship lies on the possibility of predicting the typical
PIM selectivity and not the selectivity of a specific PIM material.
Moreover, the dilute limit separation capabilities are known to
have poor extension to loading conditions where swelling and
plasticization occur. An example from Kupgan et al. showed a 20%
reduction in CO2/CH4 selectivity when PIM-1 is simulated at
plasticizing conditions23. In general terms, this reduction is
associated with regions of expanded volume in a structure that
has plasticized and/or swelled. A significant complication for
making quantitative predictions about multicomponent selectivity
in these systems at non-dilute loadings is that the degree of
swelling must be a function of the activity of all of the adsorbing
species. An interesting challenge for future work will be to explore
whether information on the swelling from multiple single-
component adsorption isotherms can be combined to predict
that full range of behaviors that arise from adsorbed mixtures.
Additionally, a highly swollen pore structure can provide spatial
accessibility to large species (e.g., n-octane) and result in regions
of competitive adsorption that were previously size excluded.
Finally, to assess whether privileged adsorbents36 exist among

the examples we considered two metrics as reported in Fig. 6b, c,
namely the frequency at which a given adsorbent performs better
than the average α and the frequency with which a given
adsorbent gave the best α from the set. A similar analysis with an
alternative metric that combines selectivity and gas uptake is
demonstrated in Supplementary Fig. 12. While the notion of a
privileged adsorbent is not defined by specific quantitative

criteria, it is certainly appropriate for soPIM-1 in the set of the
adsorbents studied. This particular polymer appears above
average for 74% of the separations considered and is the top
performer among all the PIMs we considered for 68% of them.
PIM-1 displays low comparative performance (23% above average
and 0% best separations). Even if soPIM-1 and soPIM-0 are not
considered in the analysis of Fig. 6c, PIM-1 still exhibits a similar
comparative performance (23% above average and 0% best
separations). This finding reiterates that there is significant
membrane design space available through chemical modifications
that can be explored in parallel with efforts to develop PIMs
composed of more complex monomers25,51,52.
This work provides an expanded understanding of the interplay

between adsorbent diversity, adsorbate diversity, and polymer
restructuring as a function of adsorbate loading for microporous
polymeric adsorbents. Although computationally laborious, our
molecular simulations have provided insights that would other-
wise be challenging to obtain experimentally. We provided a
database of over 240,000 fresh and swollen PIM structures and
345 distinct adsorption isotherms. The single-component iso-
therms and adsorbent restructuring and selectivity relationships
produced will be valuable for materials design and predicting
adsorption behavior in the very large adsorption space associated
with polymeric adsorbents. The initial success of the correlations
reported here for single-component adsorption suggests that
similar relationships may ultimately be useful for describing the
more challenging situation of multicomponent adsorption in
flexible polymers.

METHODS
Polymer structure preparation and modeling parameters
All polymer structures assessed in this work were previously built53,54

using the open-source Polymatic software55. Briefly, Polymatic simulates
‘computational polymerization’ by starting with a low-density simulation
cell packed with a defined number of repeating units and creating bonds
using distance and orientation criteria. Between bond searches, MD
simulations are performed to allow the growing polymer chains to sample
the simulation cell space and find other unreacted species. After a
specified number of bonds have been added the polymer systems are
further equilibrated to production quality samples using methods based
on the work of Theodorou and Suter56, which was later adapted by Larsen
et al. for PIMs38. Essentially, a set of NPT and NVT ensemble MD
simulations are performed at increasing temperatures/pressures, followed
by incremental cooling/depressurization, and ultimately equilibration at
standard temperature and pressure (300 K and 1 atm). Conditions for each
simulation step are provided in Supplementary Table 1. Producing
physically representative polymer configurations is vital to making
meaningful adsorption predictions18. The monomer units of the 15
polymer chemistries are shown in Fig. 8 with the associated naming
convention.
The interatomic potential applied to the polymeric adsorbents was the

General Amber Force Field57 for bonded terms and the united-atom
variation of the Transferable Potential for Phase Equilibria (TraPPE-UA) for
nonbonded terms58–62. Electrostatic partial point charges were derived
using the restrained electrostatic potential fitting method63. This
combination of force fields, in conjunction with the structure generation
procedure referenced above, has been well-validated for modeling a range
of PIM materials by reproducing wide-angle X-ray scattering spectra,
adsorptive properties, and tensile moduli16,38–40. Force field information for
each monomer unit illustrated in Fig. 8 is openly available in the Colina
group’s force field database. Porous features of the equilibrated polymer
samples studied in this work were characterized with Poreblazer (v3.0.2)44

and are reported in Supplementary Table 2. The adsorbates of interest
were modeled as fully flexible species with TraPPE/TraPPE-UA (see
Supplementary Table 3 for more details). Characteristics of each adsorbent
polymer conformation are summarized in Supplementary Tables 4–6. The
TraPPE force field is based on accurate bulk phase properties of a large set
of molecules and is appropriate for our adsorbate species of interest. Long-
range electrostatics were calculated using Ewald summation64 for MC
simulations and the particle–particle particle–mesh (p3m)65 approach for
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MD simulations with convergence precision of 10−5 and a real space cutoff
of 14.0 Å. Nonbonded van der Waals pair coefficients were determined
using the Lorentz–Berthelot mixing rules and applied a truncated (14.0 Å)
shifted tail corrected form of the Lennard–Jones 12-6 potential. Additional
specifics regarding the molecular simulation strategy are provided in
Supplementary Discussion 1.

Molecular simulation details
Adsorption simulations were performed at 300 K with a combined GCMC
and MD technique; sometimes referred to as the sorption-relaxation
approach. This method has been previously applied to study sorption-
induced polymer rearrangement in PIMs23,50,66 and is appropriate for
evaluating adsorption performance under swelling/plasticizing conditions.
It is shown above that an approach that incorporates structural
rearrangement (such as sorption-relaxation) is essential for the PIMs we
consider at relatively high loadings; there are many state points evaluated
that would be significantly misrepresented, generally as an underpredic-
tion of adsorption loading, without accounting for adsorbent restructuring.
This paper reports the utilization of a computational technique that
accounts for framework flexibility for a study of appreciable size, which
required >300 µs of MD simulations and 3 × 109 MC cycles (roughly
equivalent to 6 months of wall time with 2500 CPUs on the University of
Florida’s HiPerGator 2.0 system).
Adsorption–relaxation is carried out in multiple iterations where GCMC

simulations are used to predict adsorbate loading and MD simulations are
employed to account for system rearrangement. The simulated adsorption
isotherms were produced up to the vapor pressure of each adsorbate
species (Supplementary Table 7), unless excessive swelling is observed; in
other words, samples displaying uncontrolled dilation (continuous volume
expansion that tears apart the polymer chains). This excessive swelling was
generally observed only for species with a high solubility at a P/Po of
0.5–1.0. Each GCMC portion of the sorption-relaxation approach was
performed using RASPA67 for 105 cycles, where a cycle is the number of
MC steps equal to the greater value of 20 and the number of adsorbate
species present. MD simulations were carried out with the LAMMPS
software package (version 3Mar2020)68 for 1 ns with barostat conditions
corresponding to the adsorbate’s bulk phase pressure. For adsorbates
modeled with united atoms the 1 ns MD simulation was split in two parts
for the purpose of efficiency; the first 100 ps used a 1 fs timestep and the

remaining 900 ps used a 2 fs timestep. For adsorbates that were modeled
with explicit hydrogens (thiol and alcohol containing molecules) we used a
1 fs timestep for the full MD trajectory. An assumption in this sorption-
relaxation approach is related to adsorbate kinetic accessibility. In
traditional MC simulations, such as the GCMC simulations we used, the
entire simulation cell is considered sampleable and thus all pores are
assumed to be accessible. It is possible in some polymer conformations,
however, that a portion of pores may in reality be kinetically isolated. We
elected to not block any pores to account for this effect during the
sorption-relaxation simulations.

Statistical analysis
Polymer models were built with five distinct replicates, and thus all data
reported are averaged over the independent simulations of each system
with error bars denoting a 95% confidence interval. After every GCMC-MD
iteration the system is checked for convergence based on the observed
averages for volume, energy, and adsorbate loading. The number of
iterations to reach convergence varied among the examples we
considered, but on average a single pressure point required ~25 iterations
(i.e., 25 ns of MD and 2.5 × 106 GCMC cycles). The number of GCMC-MD
iterations needed for convergence at a defined state point is not known a
priori. To address this important issue in an automated way the number of
GCMC/MD iterations is controlled by adopting MC convergence statistics
as described previously50,66 based on the work of Gelman and Rubin69. A
Gelman–Rubin factor (R) is calculated using

R ¼ n� 1
n

þmþ 1
m

B
W

(9)

by considering statistics of the last m GCMC/MD iterations (m = 5 in this
work) that contain a number of data points n. The defining feature of
Eq. (9) is the last ratio that compares the mean variance of each iteration
(B) to the variance of the means between the iterations (W). Conceptually,
R approaches 1 for a completely converged system (i.e., simulations of
infinite length). In practice R is larger than 1 and decreases as the system
approaches convergence. We continued our simulations until R < 1.5. In
test calculations, this threshold meant that symmetric fluctuations around
average loading values were observed and increasing simulation duration
would mainly serve to narrow confidence intervals.
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Dual sorption model
The DMS model treats the adsorbate concentration in a glassy polymer (C)
as the sum of two types of adsorption behavior as follows:

Q ¼ CH þ CD: (10)

These two adsorption mechanisms are the dissolution in the condensed
phase (CD) and the filling of non-equilibrium holes within the glassy
polymer (CH). The dissolved phase is defined by Henry’s law:

CD ¼ kdp (11)

where kd is the Henry’s law coefficient. The microvoid-filling adsorbate
concentration is described using a Langmuir isotherm, which has the form

CH ¼ C0
Hbp

1þ bp
: (12)

The Langmuir constants represent the microvoid saturation capacity (C0
H)

and hole affinity (b). Combining Eqs. (10)–(12) gives:

Q ¼ Kdpþ C0
Hbp

1þ bp
(13)

where this is the functional form applied in our fitting. Although the DMS
model can be derived from a microscopic basis as outlined above, we
emphasize that we used the model only as an empirical fitting function, so
its use does not suggest that the assumptions underlying the original
model are valid.
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