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Ab initio electron-defect interactions using Wannier functions
I-Te Lu1, Jinsoo Park1, Jin-Jian Zhou1 and Marco Bernardi1✉

Computing electron–defect (e–d) interactions from first principles has remained impractical due to computational cost. Here we
develop an interpolation scheme based on maximally localized Wannier functions (WFs) to efficiently compute e–d interaction
matrix elements. The interpolated matrix elements can accurately reproduce those computed directly without interpolation and the
approach can significantly speed up calculations of e–d relaxation times and defect-limited charge transport. We show example
calculations of neutral vacancy defects in silicon and copper, for which we compute the e–d relaxation times on fine uniform and
random Brillouin zone grids (and for copper, directly on the Fermi surface), as well as the defect-limited resistivity at low
temperature. Our interpolation approach opens doors for atomistic calculations of charge carrier dynamics in the presence of
defects.
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INTRODUCTION
The interactions between electrons and defects control charge
and spin transport at low temperature, and give rise to a range of
quantum transport phenomena1–5. Understanding such
electron–defect (e–d) interactions from first principles can provide
microscopic insight into carrier dynamics in materials in the
presence of point and extended defects, and accelerate materials
discovery. Currently, e–d interactions can be computed ab initio
mainly through the all-electron Korringa–Kohn–Rostoker Green’s
function method6, which is based on multiple-scattering theory.
Several properties have been computed with this approach,
including the magnetoresistance due to impurity scattering7, the
residual resistivity of metals and alloys8, and spin relaxation9–12

and the spin Hall effect13–15. In contrast, ab initio e–d calculations
using pseudopotentials or projector augmented waves16–18 have
progressed more slowly, mainly due to the high computational
cost of obtaining the e–d interaction matrix elements needed for
perturbative calculations19.
We recently developed an ab initio method18 to compute

efficiently the e–d interactions and the associated matrix
elements. Our approach uses only the wave functions of the
primitive cell, thus significantly reducing computational cost
compared to e–d calculations that use supercell wave func-
tions16,17. As our method uses a plane-wave (PW) basis set and
pseudopotentials, it is compatible with widely used density
functional theory (DFT) codes. A different method developed by
Kaasbjerg et al.20 uses an atomic orbital (AO) basis to compute the
e–d matrix elements; its advantage is that one can compute the
e–d matrix elements using only a small set of AOs, although one is
limited by the quality and completeness of the AO basis set21.
To benefit from both the completeness and accuracy of the PW

basis and the versatility of a small localized basis set, approaches
combining PWs and AOs22 or Wannier functions (WFs)23,24 have
been developed for electron–phonon (e–ph) interactions. They
have enabled efficient interpolation of the e–ph matrix elements
and have been instrumental to advancing carrier dynamics
calculations25–27. To date, such an interpolation scheme does
not exist for e–d interactions to our knowledge; thus, performing
demanding Brillouin zone (BZ) integrals needed to compute e–d
relaxation times (RTs) and defect-limited charge transport remains

an open problem. Interpolating the interaction matrix elements to
uniform, random, or importance-sampling fine BZ grids is key to
systematically converging the RTs and transport properties25,28,
and it has been an important development in first-principles
calculations of e–ph interactions and phonon-limited charge
transport.
In this work, we develop a method for interpolating the e–d

interaction matrix elements using WFs. Through a generalized
double-Fourier transform, our approach can efficiently transform
the matrix elements from a Bloch representation on a coarse BZ
grid to a localized WF representation and ultimately to a Bloch
representation on an arbitrary fine BZ grid. We show the rapid
spatial decay of the e–d interactions in the WF basis, which is
crucial to the accuracy and efficiency of the method. Using our
approach, we investigate e–d interactions due to charge-neutral
vacancies in silicon and copper. In both cases, we can accurately
interpolate the e–d matrix elements and converge the e–d
scattering rates and defect-limited carrier mobility or resistivity.
In copper, we map the e–d RTs directly on the Fermi surface and
show their dependence on electronic state. We demonstrate
computations of e–d matrix elements on random and uniform BZ
grids as dense as 600 × 600 × 600 points, whose computational
cost would be prohibitive for direct computation. We expect that
our efficient e–d computation and interpolation approaches will
enable a wide range of studies of e–d interactions in materials
ranging from metals to semiconductors and insulators, and for
applications such as electronics, nanodevices, spintronics, and
quantum technologies.

RESULTS
Theory
The perturbation potential ΔVe−d introduced by a point defect in a
crystal couples different Bloch eigenstates of the unpertured
(defect-free) crystal. The matrix elements associated with this e–d
interaction are defined as

Mmnðk0; kÞ ¼ mk0 jΔVe�dj nkh i; (1)

where nkj i is the Bloch state with band index n and crystal
momentum k. To handle these e–d interactions, one needs to
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store and manipulate a matrix Mmn of size N2
b (Nb is the number of

bands) for each pair of crystal momenta k0 and k in the BZ. Within
DFT, the perturbation potential ΔVe−d can be computed as the
difference between the Kohn–Sham potential of a defect-
containing supercell and that of a pristine supercell with no
defect18.
We compute the e–d matrix elements in Eq. (1) with the method

we developed in ref. 18, which uses only the Bloch wave functions
of the primitive cell and does not require computing or
manipulating the wave functions of the supercell, thus signifi-
cantly reducing computational cost. The Bloch states can be
expressed in terms of maximally localized WFs using

nkj i ¼
X
jR

eik�RUy
jn;k jRj i; (2)

where jRj i is the WF with index j centered at the Bravais lattice
vector R. The unitary matrices U in Eq. (2) maximize the spatial
localization of the WFs29

jRj i ¼ 1
Nk

X
nk

e�ik�RUnj;k nkj i; (3)

where Nk is the number of k-points in the BZ. The e–d matrix
element MijðR0; RÞ between two WFs centered at the lattice
vectors R0 and R in the Wannier representation is defined as

MijðR0;RÞ ¼ iR0 jΔVe�dj jRh i: (4)

If the center of the perturbation potential lies in the unit cell at the
origin, the absolute value of the e–d matrix elements, jMijðR0; RÞj,
decays rapidly (within a few lattice constants) for increasing values
of the lattice vectors R0 and R due to the short-ranged nature of
the perturbation potential from the defect, which is assumed to be
charge-neutral in this work. As a result, only a small number of
lattice vectors R, which we arrange in a Wigner–Seitz (WS)
supercell centered at the origin, is needed to compute the e–d
matrix elements in the Wannier representation.
Using Eqs. (1)–(4), the e–d matrix elements in the Wannier

representation can be written as a generalized double-Fourier
transform of the matrix elements in the Bloch representation,
which are first computed on a coarse BZ grid with points kc:

MðR0;RÞ ¼ 1
Nkc

� �2X
k0ckc

eiðk
0
c�R0�kc�RÞUy

k0c
Mðk0c; kcÞUkc : (5)

Here and below, we omit all band indices for clarity. Through the
inverse transform, we can interpolate the e–d matrix elements to
any desired pair of fine BZ grid points k0

f and kf, using

Mðk0
f; kfÞ ¼

X
R0R

e�iðk0f �R0�kf �RÞUk0f
MðR0;RÞUy

kf
: (6)

Although Ukc in Eq. (5) is the coarse-grid unitary matrix used to
construct the WFs [see Eq. (3)], the unitary matrix on the fine grid,
Ukf in Eq. (6), is obtained by diagonalizing the fine-grid
Hamiltonian,

HðkfÞ ¼
X
R

eikf �RHðRÞ; (7)

where H(R) is the electronic Hamiltonian in the Wannier basis.
These equations are analogous to those used for interpolating the
e–ph matrix elements22–24, except that here the lattice vectors R0

and R are both associated with electronic states. The lattice
vectors R0 and R in the WS supercell are determined—through the
periodic boundary conditions—by the k0

c and kc coarse grids,
respectively. In practice, we choose a uniform coarse BZ grid and
the size of the WS supercell is equal to the size of this coarse grid.
It is noteworthy that our e–d matrix elements in the Wannier
representation require WFs only for the primitive cell, whereas a
method developed in ref. 30 requires WFs for the defect-
containing supercells.

Similar to the e–ph case22, the rapid spatial decay of the e–d
matrix elements in the WF basis is crucial to reducing the
computational cost, as it puts an upper bound to the number of
lattice sites R0 and R at which MðR0;RÞ needs to be computed. In
particular, computing Mðk0

f ; kfÞ at small k0
f and kf vectors would in

principle require summing the Fourier transform in Eq. (6) up to
correspondingly large lattice vectors of length jR0j ¼ 2π=jk0

fj and
∣R∣= 2π∕∣kf∣; in practice, this is not needed due to the rapid spatial
decay. The choice of a WS supercell and its relation to the DFT
supercell are discussed in detail in the Supplementary Information.

Interpolation workflow and validation
The workflow for interpolating the e–d matrix elements to a fine
grid with points kf consists of several steps (see Fig. 1) as follows:
(i) compute the e–d matrix elements in the Bloch representation
on a coarse BZ grid with points kc using Eq. (1); (ii) obtain the e–d
matrix elements in the Wannier representation using Eq. (5); (iii)
interpolate the Hamiltonian using Eq. (7) and diagonalize it to
obtain the fine-grid unitary matrices Ukf ; (iv) interpolate the e–d
matrix elements to any desired pair of fine-grid points k0

f and kf
using the matrix elements in the Wannier representation and the
fine-grid unitary matrices [see Eq. (6)].
We validate our WF-based interpolation method using vacancy

defects in silicon as an example (see Methods). The relaxed
symmetry of the vacancy in our calculation is Td, whereas previous
work and experiment find a D2d symmetry31. The reason for this
inconsistency is that we do not randomly displace the atoms
before relaxation, which is needed to break the symmetry and
obtain the lower-energy D2d vacancy structure. Although our
calculations use a vacancy with Td rather than D2d symmetry, the
results we present are not affected by this choice. Figure 2a
compares the e–d matrix elements calculated directly using Eq. (1)
with the same matrix elements obtained by interpolation starting
from two different coarse BZ grids with respectively 43 and 103

points kc (here and below, we denote an N × N × N uniform grid as
N3). The interpolated results can qualitatively reproduce the direct
computation for both coarse grids, but the results from the 103

coarse grid achieve a superior quantitative accuracy as the
interpolated matrix elements agree with the directly computed
ones within 1% over the entire BZ. The accuracy can be
systematically improved by increasing the size of the coarse kc-
grid (see Table 1). This trend implies that the e–d perturbation
potential decays to a negligible value over >4 but <10 lattice
constants.
The spatial decay of the matrix elements in the WF basis is

essential for the accuracy of our approach. To analyze the spatial
behavior of the matrix elements in the WF basis, we define for
each pair of lattice vectors R0 and R the maximum absolute value
of the e–d matrix elements as jjMðR0;RÞjj ¼ maxijjMijðR0; RÞj.
Figure 2b, c show the spatial behavior of jjMðR0; RÞjj for a vacancy
defect in silicon as a function of jR0j while keeping R= 0 and as a
function of ∣R∣ while keeping R0 ¼ 0, respectively. Note that
jMðR0; 0Þj and ∣M(0, R)∣ in Fig. 2b, c are identical, because the
defect perturbation potential is centered at the origin of the WS
supercell. This result does not hold in general for an arbitrary
position of the defect in the WS supercell. We find that the matrix
elements in the WF basis decay exponentially over a few unit cells,
thus confirming that the WFs are a suitable basis set for
interpolating the e–d matrix elements.

Relaxation times and defect-limited transport
The e–d RTs and the defect-limited carrier mobility are key to
characterizing carrier dynamics at low temperatures and also near
room temperature in highly doped or disordered materials. We
compute the e–d RTs, τnk, associated with elastic carrier-defect
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Fig. 2 Matrix elements and their spatial decay. a Absolute value of the e–d matrix elements, computed along high-symmetry BZ lines. The
initial state is set to the lowest valence band at Γ, whereas the final states span all four valence bands and possess crystal momenta chosen
along the high-symmetry lines shown in figure. Panels b and c show the spatial decay of the e–d matrix elements in the Wannier basis,
jjMðR0;RÞjj, which are plotted in b as a function of jR0j for R= 0 and in c as a function of ∣R∣ for R0 ¼ 0. The highest value of jjMðR0;RÞjj is
normalized to 1 in both cases and the plots use a logarithmic scale.

Fig. 1 Workflow for interpolating the e–d matrix elements using WFs. The steps are numbered as in the text.
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scattering using the lowest-order Born approximation3,18:

τ�1
nk ¼ 2π

_

natCd

Nk0

X
mk0

Mmnðk0; kÞj j2δðεmk0 � εnkÞ; (8)

where ℏ is the reduced Planck constant, nat the number of atoms
in a primitive cell, Cd the (dimensionless) defect concentration
(defined as the number of defects divided by the number of
atoms), Nk0 the number of k-points used in the summation, and
εnk the unperturbed energy of the Bloch state nkj i in the primitive
cell. The delta function is implemented as a normalized Gaussian
with a small broadening η, δηðxÞ ¼ e�x2=2η2=

ffiffiffiffiffiffi
2π

p
η. The e–d RTs are

proportional to the defect concentration because our approach

assumes that the scattering events are independent and
uncorrelated18.
For defect-limited carrier transport, we first compute the

conductivity tensor σ(T) at temperature T using25

σαβðTÞ ¼ e2
Z þ1

�1
dE �∂f ðT ; EÞ=∂E½ � ´ Σαβ Eð Þ; (9)

where e is the electron charge and E the electron energy, f(T, E) the
Fermi-Dirac distribution, and Σ Eð Þ the transport distribution
function (TDF) at energy E, defined as

Σαβ Eð Þ ¼ 2
Ωuc

X
nk

τnkvαnkv
β
nkδ E � εnkð Þ; (10)

where α and β are Cartesian directions, and Ωuc the volume of the
primitive cell. The TDF is computed with a tetrahedron integration
method25, using our calculated e–d RTs and Wannier-interpolated
band velocities vnk

32,33. The mobility is obtained as μ= σ∕nce,
where nc is the carrier concentration, whereas the resistivity is
obtained by inverting the conductivity tensor.
We first study the e–d RTs and hole carrier mobility in silicon

with vacancy defects (see Methods). We use interpolated e–d
matrix elements and focus on the accuracy and convergence of
our interpolation method. The results given here assume a defect
concentration of one vacancy in 106 silicon atoms (1 p.p.m.
concentration), but results for different defect concentrations can
be obtained by rescaling these reference RTs to a different defect
concentration [using Eq. (8)]; this approach is valid only within the
concentration range in which the Born approximation holds.
Figure 3a compares the RTs obtained from directly computed and
interpolated e–d matrix elements. The two sets of RTs are in close
agreement with each other for both electrons and holes,
confirming the accuracy of our interpolation method. Figure 3b
shows the convergence of the defect-limited hole mobility with
respect to the size of the fine BZ grids, for BZ grids ranging from
403 to 6003 points; the convergence is studied at two
temperatures (10 K and 100 K) and for two types of grids, random
and uniform. At 10 K, the mobilities are fully converged for fine
grids with 2003 points, for both random and uniform grids. We
observe a similar trend at 100 K. The converged values of the
mobility are consistent with our previous calculations using
directly computed (rather than interpolated) matrix elements18.
The interpolation method allows us to use extremely dense BZ

grids with up to 6003 points due to its superior computational
efficiency. Let us briefly analyze the overall speed-up of the
interpolation method for a carrier mobility calculation. To
converge the mobility at low temperature, one needs to consider
only fine BZ grid points in a small energy window, roughly within
100meV of the band edges in semiconductors18,25 or of the Fermi
energy in metals; these are the only states contributing to the
conductivity in Eq. (9). In this small energy window, the number of
k-points is a small fraction α of the total number of points Nkf in
the entire fine BZ grid. In the direct computation, one computes
the e–d matrix elements Mðk0

f; kfÞ between all crystal momentum
pairs and thus a number of matrix elements of order ðαNkf Þ2. In
the interpolation approach, the most time-consuming step is
directly computing the N2

kce-d matrix elements on the coarse grid
[step (i) in Fig. 1], whereas interpolating the matrix elements per se
is orders of magnitude less computationally expensive. In our
machine, the average central processing unit (CPU) time to
directly compute one matrix element is ~0.2 s for silicon (with an
electronic kinetic energy cutoff of 40 Ry), whereas the same
calculation done with our interpolation method requires only
~80 μs. The speed-up of the interpolation scheme for computing
matrix elements is thus around three orders of magnitude. As a
result, the overall speed-up of the interpolation approach over the
direct computation is �ðαNkf Þ2=N2

kc . The typical value of Nkf is
around 103 – 104Nkc . For our silicon calculations, the value of α is

Fig. 3 Carrier relaxation times and the hole mobility for vacancy
defects in silicon. a Electron–defect RTs obtained from directly
computed and interpolated e–d matrix elements. Here, εc is the
conduction band minimum and εv the valence band maximum. b
Convergence of the hole mobility with respect to the size of the fine
BZ grid used for interpolation, shown for both uniform and random
grids. The computed hole mobilities at 10 K and 100 K from ref. 18

are also shown. A reference vacancy concentration of 1 p.p.m. is
used in all calculations.

Table 1. The mean and maximum difference between the
interpolated and directly computed e–d matrix elements, given for
several coarse kc-grids.

kc-grids Mean deviation (eV) Max deviation (eV)

4 × 4 × 4 0.2074 1.2414

6 × 6 × 6 0.0820 0.7184

8 × 8 × 8 0.0300 0.3531

10 × 10 × 10 0.0095 0.1521

The data are for a neutral vacancy in silicon, with e–d matrix elements
computed for the four lowest valence bands and along high-symmetry BZ
lines L–Γ–X–K–Γ shown in Fig. 2.
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of order 10−2, so the interpolation approach speeds up the
mobility calculation by at least two to four orders of magnitude.
The method for directly computing the e–d matrix elements we

developed in ref. 18 and the interpolation method shown here are
general, and can be applied to metals, semiconductors, and
insulators. As an example, we show a calculation on a metal,
copper, containing vacancy defects (see Methods). In metals, the
fine grids required to compute the e–d RTs near the Fermi energy
and the resistivity are a major challenge for direct e–d calculations
without interpolation. Figure 4a shows the e–d RTs computed at k-
points on the Fermi surface of copper, using interpolated e–d
matrix elements obtained from a moderate size (8 × 8 × 8) coarse
kc-grid. The e–d RTs for a reference vacancy concentration of 1 p.p.m.
are between 0.3 and 1.4 ps. Interestingly, these e–d RTs are orders
of magnitude shorter than the electron RTs in silicon for the same
vacancy concentration, which suggests that scattering due to
vacancy defects in copper is significantly stronger than in silicon
(see the Supplementary Information). The e–d RTs in copper are
strongly state-dependent—we find values of order 0.3 ps on the
majority of the Fermi surface and values as large as 1.4 ps near the
regions of the Fermi surface close to the X points of the BZ. Similar
state-dependent RTs due to impurity scattering in copper have
been predicted using the all-electron Korringa–Kohn–Rostoker
Green’s function method9,10. These results show that our first-
principles approach can access microscopic details of the e–d
scattering processes.

Figure 4b shows the calculated defect-limited resistivity for
vacancy defects in copper, at low temperatures between 2 and
50 K (see Methods). The calculated resistivity is independent of
temperature, in agreement with experimental results34,35, even
though the conductivity formula we use [Eq. (9)] depends on
temperature via the Fermi-Dirac distribution. The low-temperature
defect-limited resistivity for a reference 1 p.p.m. vacancy concen-
tration is ~10−9Ω⋅m. However, the equilibrium vacancy concen-
tration (see Methods) of copper at 50 K is negligible (of order
10−119), and the corresponding resistivity is of order 10−122Ω⋅m.
This value is negligible in comparison with the measured
resistivity of ~10−12Ω⋅m in a highly pure copper Cu(7N) sample
at low temperature, where 7N means 99.99999% purity (see Fig. 4b).
We conclude that the resistivity of real copper samples at low
temperature is not limited by intrinsic vacancy defects, but rather
is controlled by impurities. This is a well-known result36–40 and our
calculations are consistent with it.
Our method can predict a lower bound of the residual resistivity

due to intrinsic defects in an ideally pure material. Alternatively, if
the main type of defect or impurity is known from experiment, our
approach can estimate the defect concentration present in the
sample. The so-called residual resistivity ratio (RRR) between the
low temperature and room temperature resistivities is used as a
figure of merit for sample quality, and a large collection of data
exists41 for RRR in metals. As at room temperature the resistivity is
usually phonon-limited, combined with e–ph calculations25,42, our
approach allows one to compute RRR for a wide range of materials
and defect types. Taken together, these capabilities expand the
tool box of first-principles methods for investigating carrier
dynamics in complex materials.

DISCUSSION
Our e–d interpolation method can be extended to charged
defects, for which the long-range Coulomb interactions can be
added in reciprocal space similar to what is done for e–ph
interactions25,43. By including spin–orbit coupling, our approach
can also be extended to study spin-flip processes and e–d
interactions in magnetic and topological materials. Future work
will also attempt to include multiple e–d scattering events and
higher-order e–d interactions, e.g., using the T-matrix formal-
ism20,44. Other applications include investigating carrier scattering
due to extended defects such as dislocations and grain
boundaries, a topic of prime relevance to materials science. In
summary, the applications of the method discussed in this work
are broad and so are its possible future extensions.
In conclusion, we developed a WF-based interpolation

approach to efficiently compute e–d interactions and the
associated matrix elements on fine BZ grids. We have shown that
the interpolation method is accurate and that it can effectively
compute demanding BZ integrals requiring up to 108–109 k-
points. The ability to efficiently interpolate e–d matrix elements
starting from moderate BZ coarse grids is a stepping stone toward
perturbative calculations of defect-limited charge and spin
transport, and to investigate quantum transport regimes gov-
erned by e–d interactions.

METHODS
DFT calculations
The ground state of a primitive cell and of supercells with size N × N × N
(where N is the number of primitive cells along each lattice vector) are
computed using DFT within the local density approximation. We use a PW
basis set and norm-conserving pseudopotentials45 with the QUANTUM
ESPRESSO code46. The total energy is converged to within 10meV/atom in
all structures. In the defect-containing supercells, the atomic forces are
relaxed to within 25meV/Å to account for structural changes induced by
the defect. For silicon, we use an experimental lattice constant of 5.43Å

Fig. 4 Relaxation times and the defect-limited resistivity for
vacancy defects in copper. a RTs mapped on the Fermi surface,
obtained using interpolated e–d matrix elements for a reference
vacancy concentration of 1 p.p.m. b Defect-limited resistivity as a
function of temperature for an assumed reference vacancy
concentration of 1 p.p.m., compared with experimental data from
ref. 34.
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and a PW kinetic energy cutoff of 40 Ry. For copper, we use an experimental
lattice constant of 3.61Å and a PW kinetic energy cutoff of 90 Ry. We
employ a 12 × 12 × 12 k-point grid47 for the primitive cells of both materials
to converge the charge density and total energy, and interpolate their band
structures using maximally localized WFs29 with the Wannier90 code32,33.
Coarse kc-grids between 4 × 4 × 4 and 10 × 10 × 10, as given in the text, are
used in the non-self-consistent DFT calculations and in the wannierization
procedure. The dense kf-grid used in the matrix element interpolation or
relaxation time (RT) calculations is unrelated to the WF generation. In
silicon, we wannierize the four highest valence and four lowest conduction
bands together, using sp3 orbitals centered on the silicon atoms as the
initial guess, to compute the e–d matrix elements used for electron and
hole RTs. A different wannierization is employed to compute the e–d matrix
elements along high-symmetry BZ lines in Fig. 2; in this case, we wannierize
only the four highest valence bands, using four s orbitals centered at the
fractional coordinates (−1/8, 3/8, −1/8), (−1/8, −1/8, −1/8), (3/8, −1/8, −1/
8), and (−1/8, −1/8, 3/8). In copper, we exclude the four lowest (core) 3sp-
bands and wannierize the next seven bands using five d orbitals centered
at the copper atom and two s orbitals centered at the fractional
coordinates (1/4, 1/4, 1/4) and (−1/4, −1/4, −1/4) as the initial guess.

Electron–defect matrix elements, RTs, and resistivity calculations
The methods to directly compute the e–d matrix elements and from them
obtain the RTs, mobility, and conductivity (or resistivity) are described in
detail in ref. 18. Briefly, we compute the coarse-grid e–d matrix elements
using the wave functions of the primitive cell and obtain the perturbation
potential due to a vacancy defect using a 6 × 6 × 6 supercell with a 2 × 2 ×
2 k-point grid. The atomic positions around the vacancy are relaxed up to
the third nearest-neighbor shell in both silicon and copper. The potential
alignment for the supercell containing the relaxed vacancy is chosen as the
core-averaged potential of the farthest atom from the vacancy in the same
(but unrelaxed) supercell. In Fig. 3a, the directly computed matrix elements
are calculated using the wave functions obtained from non-self-consistent
calculations on a dense grid with 3003 kf-points, whereas the interpolated
matrix elements are calculated on the same dense grid starting from a
coarse grid with 103 kc-points. In the e–d RT and defect-limited mobility
calculations in silicon, we use only electronic states in a small (~100meV)
energy window near the band edges, as these are the only states
contributing to the mobility25; similarly, in copper we use only states within
100meV of the Fermi energy. In silicon, we use a broadening value η=
5meV to compute the delta function in Eq. (8) and a uniform BZ grid with
3003 points for the RTs; for the mobility, we use a 1meV broadening and
e–d matrix elements interpolated from a 103 coarse BZ grid. In copper, we
compute the RTs and resistivity on a fine BZ grid with 2403 points, using a
1meV broadening and e–d matrix elements interpolated from a coarse 83

BZ grid. The equilibrium vacancy concentration at temperature T in copper
is estimated using48

CvðTÞ ¼ e�ðΔHv�TΔSvÞ=kBT ; (11)

where ΔHv and ΔSv are the vacancy formation enthalpy and entropy,
respectively, and kB the Boltzmann constant. In copper, ΔSv= 3.0 kB and
ΔHv= 1.19 eV48.
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