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Determining dimensionalities and multiplicities of crystal nets
Hao Gao 1, Junjie Wang1, Zhaopeng Guo1 and Jian Sun 1✉

Low-dimensional materials have attracted significant attention over the past decade. To discover new low-dimensional materials,
high-throughput screening methods for structures with target dimensionality have been applied in different materials databases.
For this purpose, the reliability of dimensionality identification is therefore highly important. In this work, we find that the existence
of self-penetrating nets may lead to incorrect results by previous methods. Instead of this, we use the quotient graph to analyse the
topologies of structures and compute their dimensionalities. Based on the quotient graph, we can calculate not only the
dimensionality but also the multiplicity of self-penetrating structures. As a demonstration, we screened the Crystallography Open
Database using the method and find hundreds of structures with different dimensionalities and high multiplicities up to 11. Some
of the self-penetrating materials may have application values in gas storage, selective catalysis or photocatalysis because of their
high gas sorption capacities and various electronic structures.
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INTRODUCTION
The research of low-dimensional materials is an active field in
recent years because of their novel properties and wide
applications. For instance, some quantum phenomena, such as
fractional quantum hall effects1 and Luttinger liquids2, can be
realized in the low-dimensional systems. Due to their novel
electronic properties induced by the geometric limit, low-
dimensional materials have also been widely applied in various
research areas including batteries, catalysis, electronics, and
photonics3,4, etc. One way to design new low-dimensional
materials is the top-down approach, in which the low-
dimensional materials are exfoliated from known bulk phases.
Many recent investigations have focused on searching in large
databases for compounds containing low-dimensional compo-
nents and using high-throughput computational methods to
discover new low-dimensional materials with appealing proper-
ties5–16. For example, previous work has identified thousands of
layered structures from more than 100,000 compounds13, and
about 2000 of them are exfoliable.
Therefore, a correct and efficient identification method of

structure dimensionality is highly desired for high-throughput
mining of low-dimensional materials. Topology-scaling algorithm
(TSA)9 and rank determination algorithm (RDA)13 are widely used
to determine the dimensionality of a crystal structure. In TSA, an
original cluster in the unit cell contains N1 atoms, then the
expanded cluster in an n × n × n supercell has N2 atoms. The
component dimensionality is determined by the scaling factor N2/
N1. The factor is expected to be nd (d= 0, 1, 2, 3), where d is the
dimensionality. Different from TSA, RDA computes the rank of
the set composed by connected and equivalent atoms in the
component to determine the dimensionality. Both methods do
not require prior information like the stacking direction for the
layers and can deal with complex situations where components
with different dimensionalities coexist. However, they require
building supercells to connect periodic images. If the supercell is
not large enough, TSA and RDA will underestimate the
dimensionalities of self-penetrating structures15. To solve the
problem, Larsen et al.15 have proposed a modified RDA method.

Actually, early works17,18 based on quotient graph (QG)19 have
already proposed correct algorithms for dimensionality, which
have been implemented in ToposPro20 and Systre21. Interpenetra-
tion analysis is also available through this approach18,22. QG is a
powerful method and has been applied in many different fields,
such as crystal structure prediction23–26, structure decomposi-
tion27 and machine-learning models for materials property
prediction28–31, etc. Although the algorithms based on QG for
dimensionality and self-penetrating multiplicity have been imple-
mented before, however, the detailed discussions about these
methods are still insufficient. This hinders the understanding and
applying the QG method for computational material scientists.
Here, we revisited QG as a powerful tool to discuss dimension-

alities and multiplicities of crystals including self-penetrating
structures. We demonstrated and discussed a systematical
approach based on the quotient graph to compute correct
dimensionality. We compared the QG method with previous
dimensionality determination algorithms. The QG method can
deal with the multiplicities of self-penetrating structures correctly
as well. Moreover, we mined structures with high multiplicities up
to 11 in the Crystallography Open Database (COD)32 to show the
reliability of the method.

RESULTS
Definition of QG and dimensionality
For screening large materials databases, we used interatomic
distances to identify the bonds. A bond between atom i and j
exists if

dij < kðrcovi þ rcovj Þ; (1)

where dij is the interatomic distance, rcovi and rcovj are the atomic
covalent radii, and k is the bond-length tolerance parameter.
For a crystal structure, the atoms and bonds can be viewed as

nodes and edges, and they compose an infinite, undirected graph,
called a net. Because of the translation symmetry in the crystal, a
net can be described by a finite QG17,19. A QG is a labeled and
directed graph containing Nat nodes, where Nat is the number of
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atoms in the unit cell. To distinguish the translationally equivalent
atoms, we use a notation ni(v) (1 ≤ i ≤ Nat) to represent the ith
atom with a Cartesian position (xi+ v)h, where xi is the fractional
coordination of atom i, h is the cell matrix and v is an integer
vector representing the coordinate of cell. If a bond exists
between niðv0Þ and nj(v″), the corresponding QG has an edge
ni �!v¼v00�v0

nj labeled by v. The edge denotes equivalent bonds
between ni(v0) and nj(v0 + v) with an arbitrary integer vector v0.
Obviously, the edge ni �!v nj is equivalent to nj �!�v

ni with the
opposite direction. Taking graphene as an example, we showed
how to build a QG from a net in Fig. 1.
A connected component X in a crystal might contain multiple

equivalent atoms {ni(0), ni(v1), ni(v2), ni(v3), …} and its

dimensionality is defined by the dimension of the subspace
spanned by these connected and translationally equivalent
atoms13. Let V be a matrix whose rows are v1, v2, v3, …, then
the dimensionality equals to the rank of V:

dimðXÞ ¼ dimðfv1; v2; v3; ¼ gÞ ¼ rankðVÞ: (2)

For an extensive (1D, 2D, 3D) component, the set {v1, v2, v3, …}
is infinite, so we cannot use Eq. (2) to compute the dimensionality
directly. Before identifying the dimensionality, we should find the
basis set. In this work, a systematical approach based on cycles of
QG is used.
In a crystal net, if two equivalent atoms ni1ðuÞ and ni1ðu0Þ are

connected, there must be a path between them. In the relative
QG, the path connecting equivalent atoms is represented by a
closed chain. Suppose a closed chain c is composed by a sequence
of connected nodes:ðni1 ; ni2 ; ni3 ; ¼ ; nik ; nikþ1 ; ¼ ; niM ; ni1Þ, in which
the first and last nodes are same. Because of the equivalent
relation: ni �!v nj � nj �!�v

ni , we can always adjust the direction of
edges in c so that all the edges have the same direction. And the
closed chain can be written as:

c ¼ ni1 �!
v1 ni2 �!

v2 ni3 ¼ nik �!
vk nikþ1 ¼ niM �!

vM ni1 : (3)

The cycle sum17 of the closed chain is defined as s(c)= ∑kvk,
where k runs over all the edges in c. In the closed chain c, the kth
edge connects atoms nik ðukÞ and nikþ1ðukþ1Þ, and the edge vector
is vk = uk+1− uk. Then we obtain:

sðcÞ ¼
X
k

ukþ1 � uk ¼ ðu2 � uÞ þ ðu3 � u2Þ þ � � � þ ðukþ1 � ukÞ

þ � � � þ ðu0 � uMÞ ¼ u0 � u:
(4)

Therefore, the cycle sum s(c) equals to the cell offset between
equivalent atoms ni1ðuÞ and ni1ðu0Þ. The set {v1, v2, v3, … } in
Eq. (2) is exactly the set of cycle sums of all the cycles in QG.
In a finite graph, all the closed chains compose a vector space

called cycle space, and the generating subspace is composed
by finite basic cycles17. Because the cycle sum function is linear:
s(c1+ c2)= s(c1)+ s(c2), all the cycle sums sðcÞf g also compose a
vector space. To compute the dimensionality of component X, we
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Fig. 1 Graphene net and its quotient graph. a Graphene net in 2D
space; b The quotient graph of graphene net. n1, n2 are nodes. e1, e2,
e3 are edges. c1, c2 are the two basic cycles of graphene net.

Fig. 2 Self-penetrating nets and the QG. The crystal structures of Cu2O (a) and Ag(B(CN)4) (b). c The net with multiplicity of 2 shown in a 2 ×
2 × 2 supercell. d The QG of Cu2O. The disconnected networks are colored in red and blue, respectively.

H. Gao et al.

2

npj Computational Materials (2020)   143 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



only need to consider the cycles sums of finite basic cycles:

dimðXÞ ¼ dimð sðcÞjc 2 FðGÞf gÞ ¼ rankðSÞ; (5)

where F(G) is the set of basic cycles of the QG, G and S is a matrix
whose rows are the cycle sums of the basic cycles.
We showed how to compute the dimensionality of graphene in

Fig. 1 as an example. In the QG of graphene, as shown in Fig. 1,
there are two nodes(n1, n2), three edges(e1, e2, e3), and two basic

cycles(c1, c2):

e1 : n1 �!ð1;0Þ n2 � n2 �!ð�1;0Þ
n1

e2 : n1 �!ð0;0Þ n2 � n2 �!ð0;0Þ n1
e3 : n1 �!

ð0;1Þ
n2 � n2 �!ð0;�1Þ

n1

c1 ¼ e1 þ e2 ¼ n1 �!ð1;0Þ n2 �!ð0;0Þ n1
c2 ¼ e2 þ e3 ¼ n1 �!ð0;0Þ n2 �!ð0;1Þ n1
sðc1Þ ¼ ð1; 0Þ þ ð0; 0Þ ¼ ð1; 0Þ
sðc2Þ ¼ ð0; 0Þ þ ð0; 1Þ ¼ ð0; 1Þ:

(6)

We also showed the paths relative to the basic cycles in real
space (Fig. 1a). The c1 path connects equivalent atoms n1(0, 0) and
n1(1, 0). The offset (1, 0) equals to the cycle sum s(c1). All the
connected equivalent atoms can be represented by the basic

cycles. For example, a cycle c3 ¼ e1 þ e3 ¼ n1 �!ð1;0Þ n2 �!ð0;1Þ n1 is
related to the path connecting atoms n1(0, 0) and n1(1, 1). It can be

represented by a combination of the basic cycles: c3 ¼ c1 þ c2 ¼
n1 �!

ð1;0Þ
n2 �!

ð0;0Þ
n1 �!

ð0;0Þ
n2 �!

ð0;1Þ
n1 and the cycle sum s(c3) = s(c1) + s

(c2) = (1, 1) is also a linear combination of basic cycle sums. The

basic cycle sums matrix is S ¼ 1 0
0 1

� �
and the dimensionality of

graphene net equals to the rank of the cycle sum matrix: rank
(S) = 2.

Comparison with previous methods
RDA is based on the correct definition of component dimension-
ality in Eq. (2). However, the original version of RDA13 only
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Fig. 3 A plane self-penetrating net with multiplicity of 2 and
its QG. a A twofold self-penetrating net. The black box is the unit
cell of the square lattice. The red and blue dash lines and points
represent the disconnected subnets. The red solid box is the
basic building block of the red subnet. b The relative
quotient graph.
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Fig. 4 Schematics, quotient graphs, cycle sums and their determinants of 3D nets. a Onefold net. b Twofold net. c threefold net. d Fourfold
net. The black circle in schematics represents a cluster in the original cell. Other colored circles represent the seven images of the cluster for a
2 × 2 × 2 supercell. The dash lines represent edges disconnected from solid lines.
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considers equivalent atoms in a fixed 3 × 3 × 3 supercell, which is
not large enough for complicated structures. In practice, the size
of the required supercell is unknown in advance. In the modified
RDA proposed by Larsen et al.15, a breadth-first-search (BFS) is
used. The search starts from atoms in the original cell and then
visits the nearest neighbors, second nearest neighbors, third
nearest neighbors, …, successively. It terminates when the rank of
the set of visited equivalent atoms does not increase. So the
dimensionality can be determined in a finite number of steps for
those components containing infinite atoms. As shown in the
previous subsection, the offsets between equivalent atoms is the
cycle sums of cycles in the QG. The rank stops increasing only
when all the basic cycles have been considered. Therefore, both
the modified RDA and the QG method aim to consider all the
basic cell offsets(or basic cycle sums), but the latter is more
elegant in theory and easier to understand. Moreover, the QG
method provides an additional approach to calculating multi-
plicity as shown in the following subsection. Actually, the QG
method described in the previous subsection is a type of RDA
because it also starts from the definition Eq. (2).

Multiplicities of self-penetrating nets
Larsen et al.15 have discussed the contrived self-penetrating
helical networks and the improper connections between compo-
nents which lead to incorrect dimensionality by TSA. Here we shall
discuss self-penetrating nets following Thimm’s approach17 which
provides more insights to this problem.
Cuprite with a space group of Pn − 3m is a typical example. As

shown in Fig. 2a, the O atom with fractional coordinations of
(0, 0, 0) in the original cell nO1ð0; 0; 0Þ is connected to the
equivalent atoms nO1ð1; 1; 0Þ, nO1ð0; 1; 1Þ and nO1ð1; 0; 1Þ through

copper and other oxygen atoms. This observation can be
described by the cycle sum matrix from the QG of cuprite (Fig. 2d):

S ¼
0 1 1

1 0 1

1 1 0

2
64

3
75: (7)

We found the O atom nO1ð1; 0; 0Þ is disconnected from
nO1ð0; 0; 0Þ because (1, 0, 0) cannot be represented as a linear
combination of three basic vectors in S if the coefficients are
limited to integers. Actually, cuprite is composed by two
disconnected subnets as shown in Fig. 2c, and they are equivalent
because of the translational symmetry of crystal. Therefore, using
TSA, we find one cluster containing 6 atoms (N1= 6) in the unit
cell and in a 2 × 2 × 2 supercell, the cluster expands to 24 atoms
(N2= 24). The scaling factor N2/N1 is 4 which leads to an incorrect
dimensionality of 2. Another example is Ag(B(CN)4) (Fig. 2b) found
by Larsen et al.15, which has the same topology as cuprite.
The net of cuprite contains two translationally equivalent but

disconnected subnets, so its multiplicity is 2. For cuprite, the
multiplicity m̂ equals to absolute value of the determinant of S
( detðSÞj j ¼ 2)17. However, in general, the cycle sums matrix is not
square. Instead, we should find the basic cycle sums ~S. For a 3D
net, ~S is a 3 × 3 matrix with minimum non-zero absolute value of
determinant among all combinations of cycle sums. Then, the
multiplicity equals to the absolute value of the determinant of ~S:

m̂ ¼ detð~SÞ�� ��: (8)

The definition of basic cycle sums for nets with arbitrary
dimensionality is proposed by Thimm17.
Thimm has proposed Eq. (8) however, he has not provided an

explanation17. Here we demonstrate the relation between

Fig. 5 The contrived examples of three and fourfold nets. Disconnected subnets are marked with different color. a A threefold net in the
unit cell. b The threefold net in a 3 × 3 × 3 supercell. c A fourfold net in the unit cell. d The fourfold net in a 2 × 2 × 2 supercell.
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multiplicity and determinant using a plane self-penetrating net
shown in Fig. 3. The basic self-penetrating cell of the red subnet
(relative to the unit cell) is defined by the basic cycle sums

~S ¼ 1 1
1 �1

� �
:The cell contains two points, O and P. Since P is in

the interior of the cell, its coordinate (1, 0) is not an integer linear
combination of the basic self-penetrating vectors (1, 1) and (1, −
1). So it is disconnected from the red subnet. For an arbitrary self-
penetrating net, we can always find an ~S to build the basic self-
penetrating cell of subnets. Because of the translational symmetry,
for each subnet, there is only one point in the basic self-
penetrating cell. Therefore, the multiplicity of the net equals to the
number of points in the cell, which is the volume/area of the basic
self-penetrating cell and the volume/area is detð~SÞ�� ��. Blatov et al.
have proposed a general algorithm to compute the multiplicities
of interpenetrating nets18,33–35. We found the basic self-
penetrating cell is actually the primitive interpenetration cell

proposed by Blatov et al.18 Actually, the self-penetration discussed
here is a special class of interpenetration with only translations.
In Fig. 4, we have listed examples of 3D net with different

multiplicities. The schematics, QGs and the cycle sums of a usual
3D net are shown in Fig. 4a. The original cluster is connected to
images in (1, 0, 0), (0, 1, 0) and (0, 0, 1) cell and the multiplicity is 1.
In Fig. 4b, the QG contains six edges which are along face
diagonals in the schematic. It describes nets with multiplicity of 2
like cuprite. Although the QG is different from that of cuprite, their
basic cycle sums are similar. Nets with larger multiplicities of 3 and
4 are also possible, as shown in Fig. 4c–d. We can implement
edges in the QGs using carbon atomic chains. Multiple
disconnected and equivalent components in supercells can be
identified, as shown in Fig. 5. For fourfold nets, helical atomic
chains are used to avoid intersections between edges in the
schematic (Fig. 4d).
Usually, the maximum multiplicity of inorganic 3D nets is four17

and it is related to Hadamard’s maximum determinant problem36,
which requires finding the largest determinant for any square
matrix composed by elements from a set. For inorganic crystals,
the elements in basic cycle sums ~S are usually limited in
�1; 0; 1f g, so ~S is a (−1, 0, 1)-matrix37. For n= 1, 2, 3, 4, 5, … ,
the largest possible determinant for an n × n(−1, 0, 1)-matrix37 is 1,
2, 4, 16, 48, … . The sequence is the same to maximum
multiplicities for n-dimensional nets17. If the elements in ~S are
allowed to be larger than 1 or smaller than −1, the maximum
multiplicity becomes higher. Such structures are shown in Fig. 6
and discussed below.

Fig. 6 Examples of self-penetrating 3D nets. The crystal structures, chemical formula, multiplicities, and basic cycle sums are presented for
nets with multiplicities from 3 to 11.

Table 1. Number of nets with different multiplicities and
dimensionalities m̂ in COD.

m̂ 2 3 4 5 6 7 8 9 10 11

N3D 259 105 28 23 3 2 1 1 1 1

N2D 92 33 1 1

N1D 11 3

H. Gao et al.
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Based on the database built by Larsen et al.38, we have found
3D, 2D and 1D nets with high multiplicities in COD using our
method. The QGs of crystals highly depend on the value of
k(Eq. (1)). For instance, if k → ∞, all structures are identified as 3D
and onefold nets. Larsen et al.15 proposed a scoring parameter to
determine the dimensionalities and k intervals and the results are
provided in the database38. In this work, for each crystal, we used
the low bound for the relative k interval to build the QG and
determine the multiplicity. The screening results are shown in
Table 1. Note that some nets are self-penetrating only when k is in
a narrow interval.
The 3D nets with different multiplicities are shown in Fig. 6. The

threefold structure, Ag3[Fe(CN)6] (Fig. 6a), is similar to the
contrived model shown in Fig. 5a since they have the same basic
cycle sums. Ag3[Fe(CN)6] and the isomorphic compound Ag3[Co
(CN)6] have been reported to be colossal thermal expansion
materials39,40.
For 3D nets in the database, as shown in Table 1, the maximum

multiplicity is 11, contrary to the conclusion that the maximum
multiplicity of 3D nets is 4. We found that the crystals with
multiplicities higher than 3 are all coordination complexes. The
long chains allow connections between equivalent atoms in
remote cells. Thus, the elements in the basic cycle sums are not
limited in �1; 0; 1f g and the compounds have high multiplicities.
We have also found low-dimensional self-penetrating structures

shown in Table 1. In a 2D space, we cannot implement a twofold
net since the edges will always intersect (Fig. 3). But in 3D crystals,

atomic chains can curve to form self-penetrating nets. For
example, the 2D twofold complex (Fig. 7a) is similar to the plane
self-penetrating net shown in Fig. 3. There are two 2-fold
monolayers in the unit cell of the complex and they are stacked
along the a axis. In Fig. 7d, we displayed one of the monolayers in
a 1 × 2 × 2 supercells and marked the two components using
different colors. Two-dimensional nets with multiplicity of 3 and 4
also exist and the examples are shown in Fig. 7. We have also
found a 5-fold 2D net but the compound (COD ID: 7216004) is self-
penetrating only when k is in a very narrow interval [1.056, 1.085].
So it is not regarded as a penetrating polymer in the original
reference41. For 1D structures, self-penetrating nets are very rare
and we can only find two and threefold structures in the database,
as shown in Fig. 8. The 1D twofold complex extends along the a
axis and two translationally equivalent components are found to
be entangled (Fig. 8c).

DISCUSSION
Mixed-dimensional materials contain multiple components which
have different dimensionalities. We have done a statistical analysis
on single and mixed dimensionalities in the self-penetrating
structure set, as shown in Table 2. Mixed-dimensional structures
are rare in the whole database15. However, the proportion of self-
penetrating structures in the mix-dimensional set is relatively
higher. For instance, 4.9% of 0D+ 3D structures are self-
penetrating while only 1.4% of "pure" 3D structures are

Fig. 7 Examples of self-penetrating 2D nets. a–c The crystal structures, chemical formula, multiplicities and basic cycle sums of 2D nets with
multiplicities from 2 to 4. d The 2D twofold net in a 1 × 2 × 2 supercell.
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self-penetrating. This phenomenon is related to gas sorption
capacities of penetrating structures. Compared with non-
penetrating nets, self-penetrating nets have less pore size and
pore volume. The small pore size and volume in a self-penetrating
structure usually leads to stronger interactions between the 3D
framework and 0D gas molecules, which improves gas sorption
capacity42. The 0D+ 3D structures usually contain 0D gas
molecules and 3D frameworks, so the proportion of self-
penetrating nets in the structure set with this dimensionality type
is larger.
As shown in Fig. 9, we presented the distribution of crystal

systems for the whole self-penetrating set and 3D twofold
structures, respectively. More than 70% of self-penetrating
structures are triclinic or monoclinic because most of them are
organic polymers which have low symmetries. For 3D twofold
structures, the distribution is roughly similar but the proportion of

cubic crystals is much larger. Actually, there are 19 cubic crystals in
the self-penetrating set and all of them are 3D and twofold. These
structures are isomorphic to Cu2O and Ag(B(CN)4) shown in Fig. 2.
We selected 17 3D twofold compounds to evaluate their band

gaps. There are two selection criteria. One is that the chosen
structures should be distinct self-penetrating. It means they are
self-penetrating in a relatively large k interval. The other is that the
structure contains <30 atoms in the unit cell. After relaxation by
density functional theory (DFT), 16 of the chosen structures
maintain the original nets. Then we calculated the electronic
structures of them using DFT and the results are shown in Table 3.
Among the chosen structures, five compounds are metals or
semimetals, and others have band gaps in a wide range from 0.5
to 6.3 eV. These self-penetrating materials might have application
values in gas storage and selective catalysis because of their high
gas sorption capacities42. Some of them with suitable band gaps
also have potential applications in photocatalysis11. In addition,
we found both Pb2O and Ag2O are topological semimetals,
according to Materiae Database43,44. Pb2O is a high symmetry
point semimetal with band degeneracy at the R point while Ag2O
is a semimetal with band degeneracy on the X-Γ path. Their IDs in
Materiae database are MAT00026156(Pb2O) and MAT00026168
(Ag2O), respectively.
Penetration in materials is usually related to mechanical

properties. For example, interpenetrating polymer network (IPN)
is a type of elastomer(rubber) which is composed by two or more
network polymers45,46. IPNs based on two polymer materials can
improve mechanical properties like tensile and tear strength45.
Thus, IPNs have many applications and some commercial
materials are IPNs. In recent years, researchers have also proposed
new applications of IPNs such as high-performance electroelasto-
mer artificial muscles47. The self-penetrating polymers screened in
this work might have good performances in mechanical properties
and wide potential applications. Because the interactions in
atomic scale is much more complex, penetration in inorganic
atomic networks is highly different from that in polymer materials.
For example, we calculated Vickers hardnesses of inorganic 3D
twofold structures which contain B, N, or C, but the highest

Fig. 8 Example of self-penetrating 1D nets. a, b The crystal structures, chemical formula, multiplicities and basic cycle sums of 1D nets with
multiplicities of 2 and 3. c The 1D twofold net in a 2 × 1 × 1 supercell.

Table 2. Number of self-penetrating structures with different crystal
dimensionality types.

Dimensions 0 1 2 3

0 0

1 8 (0.3%) 6 (0.2%)

2 45 (1.8%) 0 82 (2.3%)

3 112 (4.9%) 0 0 311 (1.4%)

The percentages in the brackets represent the proportions of self-
penetrating structures to all the structures with each dimensionality type.
Items in the diagonal are the numbers of self-penetrating structures with a
single dimension while items in the off-diagonal represent numbers of self-
penetrating structures containing components of two different dimen-
sionalities. Besides these self-penetrating structures with one or two
different dimensional components, a complicated twofold structure
containing 0D, 1D, and 3D components(COD ID: 4311765) can also be
identified by the quotient graph method.
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hardnesses is only 13 GPa. So there are no simple relations
between penetration in inorganic materials and their mechanical
properties.
In summary, we discuss different dimensionality identification

algorithms, such as TSA and RDA. And we find self-penetration in
crystal nets will affect the reliability of previous methods. In this
work, we use a method based on QG theory to determine the
multiplicities of self-penetrating nets by the absolute value of the
determinant of QG’s basic cycle sums. Our approach allows for
screening structures with target dimensionality and multiplicity in
large databases. As a showcase, we have identified 1D, 2D, and 3D
self-penetrating crystals in the COD database. The self-penetrating
structures have various properties, which may lead to potential
applications in different aspects, such as gas storage, selective
catalysis or photocatalysis, etc.

METHODS
Graph theory methods
We have implemented the algorithms of QG based on Python packages
NetworkX48, NumPy49, and ASE50. We also used ToposPro20 to confirm the
results.

Density functional theory details
Structural optimizations and electronic structure calculations are per-
formed by VASP51 using PBE functional52. Elastic properties are computed
by the energy-strain method implemented in VASPKIT53 interfaced with
VASP. We used Tian’s model54 to evaluate Vickers hardnesses of materials.

DATA AVAILABILITY
The code and data in this article are available from the corresponding author upon
request.
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