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Identification of stable adsorption sites and diffusion paths
on nanocluster surfaces: an automated scanning algorithm
Tibor Szilvási1,2, Benjamin W. J. Chen 1,2 and Manos Mavrikakis 1*

The diverse coordination environments on the surfaces of discrete, three-dimensional (3D) nanoclusters contribute significantly to
their unique catalytic properties. Identifying the numerous adsorption sites and diffusion paths on these clusters is however tedious
and time-consuming, especially for large, asymmetric nanoclusters. Here, we present a simple, automated method for constructing
approximate 2D potential energy surfaces for the adsorption of atomic species on the surfaces of 3D nanoclusters with minimal
human intervention. These potential energy surfaces fully characterize the important adsorption sites and diffusion paths on the
nanocluster surfaces with accuracies similar to current approaches and at comparable computational cost. Our method can treat
complex nanoclusters, such as alloy nanoclusters, and accounts for cluster relaxation and adsorbate-induced reconstruction,
important for obtaining accurate energetics. Moreover, its highly parallelizable nature is ideal for modern supercomputer
architectures. We showcase our method using two clusters: Au18 and Pt55. For Au18, diffusion of atomic hydrogen between the most
stable sites occurs via non-intuitive paths, underlining the necessity of exploring the complete potential energy surface. By enabling
the rapid and unbiased assessment of adsorption and diffusion on large, complex nanoclusters, which are particularly difficult to
handle manually, our method will help advance materials discovery and the rational design of catalysts.
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INTRODUCTION
The use of metal nanoclusters in catalytic processes has steadily
increased due to their higher dispersion and often times higher
intrinsic activities compared with larger metal nanoparticles.1–4

This increased catalytic activity is mainly attributed to the presence
of stable low-coordination sites,5,6 although other effects, such as
quantum-size effects,7,8 surface-tension-induced strain,9 and
support-metal interactions10,11 can also be relevant. Due to these
effects, the reactivity of nanoclusters, including their preferred
reaction pathways and intermediates, can vary greatly with small
changes in their size down to the addition or removal of single
atoms.1–4 The variability in the reactivity of nanoclusters hinders
theoretical efforts to rapidly characterize them and screen for the
ones with optimal catalytic properties, whereas similar efforts are
already well under way for extended solid surfaces12,13 and for bulk
materials as part of the Materials Genome Initiative.14–16

To characterize the catalytic properties of nanoclusters, the
computational catalysis community typically performs manual
guess-and-optimize calculations to systematically probe the
reactivity of the unique site types on these clusters. Although
the computational and human workload for manual exploration of
small clusters is manageable, comprehensive investigations of
larger, more complex nanoclusters (e.g., alloy nanoclusters)
requires extensive and tedious human effort. In these situations,
the possibility of missing potentially important adsorption sites
also increases rapidly.
Despite the significant drawbacks of traditional guess-and-

optimize calculations, there are currently few methods to probe
the surface reactivity of clusters in an automated way. One
approximate technique for probing adsorption on cluster surfaces
is the generalized coordination number,17 which can predict
adsorption energies on monometallic surfaces, but cannot be
easily extended to describe alloys. Another recently developed

technique that does treat alloy surfaces is the Orbitalwise
Coordination Number.18 Both techniques however are unable to
account for adsorbate-induced cluster relaxation and reconstruc-
tion, an important phenomenon that can greatly increase the
reactivity of clusters.1,19 Additionally, these techniques are unable
to probe other aspects of surface reactivity such as diffusion of
adsorbed intermediates on nanocluster surfaces. Recently,
machine learning has emerged as another option for studying
nanoclusters,20,21 however, automatic generation of the large
amounts of high-quality required training data remains a
problem.22

Potential energy surfaces (PESs), on the other hand, fully
characterize the reactivity of a surface, from binding strengths of
adsorbates to their barriers for diffusion. They can account for
adsorbate-induced reconstructions, are generalizable to alloy
surfaces, and greatly reduce the possibility of missing potential
adsorption sites and diffusion paths. Furthermore, constructing
PESs requires minimal human intervention and thus reduces the
human workload; generating such PESs can be easily automated
as it involves simply repeating the evaluation of the energy of a
system along multiple points of its PES. Because PESs are rich in
information, researchers increasingly employ them in catalysis-
related problems.23,24 Until now however, PESs have mainly been
used to study two-dimensional (2D) surfaces such as extended
slab models.
Here, we present a simple way to generate PESs for 3D cluster

surfaces, called here forth the Automated Cluster Surface
Scanning (ACSS) method, and demonstrate the accuracy and
efficiency of our method by probing the PES for adsorption of
atomic H on Au18 and Pt55 nanoclusters. We chose these clusters
since previous experimental results showed that small gold and
platinum clusters are active in various catalytic processes involving
adsorbed surface H.25–29 Our contribution is structured as follows:
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first, we demonstrate via comparisons with standard manually
performed (MP) calculations that our ACSS methodology identifies
the most important stable adsorption sites and diffusion paths
connecting any two of these sites on a given metal nanocluster
surface. Second, we quantify the errors introduced by ACSS and
assess the validity of the assumptions in ACSS. Lastly, we compare
the computational cost of the ACSS method with that of MP
calculations.

RESULTS
Scanning algorithm
Computing the PES of an adsorbate binding on a nanocluster
surface requires calculating the total energy of the nanocluster+
adsorbate system at each point on the nanocluster surface.
Figure 1 illustrates the main idea behind the ACSS method, which
we designed to do exactly this. After selecting a well-defined point
within the nanocluster, such as its center of mass (CoM), we can
parameterize any point on its surface (green vectors, Fig. 1) with
three spherical coordinates: (i) α, the azimuthal angle (0° ≤ α ≤
180°); (ii) β, the polar angle (0° ≤ β < 360°); and (iii) R, the radial
distance (R > 0), which is the distance between the adsorbate and
the cluster’s CoM. Placing the adsorbate at a fixed α and β, and
optimizing all other degrees of its freedom (for a monoatomic
adsorbate, this is equivalent to optimizing R only), we can obtain
the energy of the system at any given (α, β) coordinate pair. By
systematically varying α and β, thus “scanning” across the cluster
surface, we can formally construct the 2D PES of the cluster
surface as a function of α and β for any convex structure.
The surface of a concave structure can be considered as a united
surface of multiple convex parts, each of which can be handled as
described below. Thus, for the sake of simplicity, we do not
investigate concave structures in this paper.
Our implementation of the ACSS method involves some

approximations. First, the PES is constructed by sampling a finite
number of points. We use spline interpolation to create a
smoother PES, which introduces errors at points where we did
not explicitly calculate the energy. By increasing the number of

sampled points however, we can systematically reduce this
interpolation error. In this study, we sample the PES using
simple, equidistant meshes with fixed intervals in (α, β). Note
that these equidistant meshes in (α, β) space are not equidistant
in real space and thus lead to oversampling of real space regions
when α is close to 0° or 180°; one may wish to use more complex
meshes that can sample real space uniformly to save on
computational cost.
Secondly, we must fix several degrees of freedom of the

nanocluster to preserve the integrity of our chosen coordinate
system during the constrained optimization of the adsorbate’s
position. If we allow the entire nanocluster to relax while the α and
β coordinates of the adsorbate are fixed, the nanocluster may
rotate or translate relative to the adsorbate to lower the overall
energy of the system. This is ultimately equivalent to an unwanted
shift in the α and β coordinates of the adsorbate. For a Cartesian
coordinate system, at least three atoms have to be fixed to avoid
the relative rotation and translation motion of the cluster. This
introduces a second source of error by neglecting part of the
relaxation energy of the entire cluster.

Example systems
To verify the accuracy of the ACSS method, we used it to study
atomic hydrogen (H) adsorption on two clusters: (i) Pt55, a
medium-sized cluster with two shells of Pt atoms; and (ii) Au18, a
small cluster with just one shell of Au atoms (i.e., all atoms are on
the surface). The structure of the cluster largely determines which
atoms to fix: because relaxation mainly affects atoms close to the
adsorbate, which are the surface atoms of the nanocluster, it is
logical to fix core atoms or atoms far from catalytically interesting
regions of the metal cluster to minimize errors due to the neglect
of relaxation effects. In the case of Pt55, we fixed the 13 core atoms
and relaxed all the 42 outer shell atoms, which is analogous to
relaxing the upper layers of a slab, a common technique to
account for relaxation effects in slab calculations.30 Using this
approach, we expect to capture most relaxation effects. In case of
Au18 we fixed the 4 “core” atoms with the largest coordination
numbers, as they are expected to relax to a smaller extent
compared with the more highly undercoordinated atoms in the
cluster (Fig. 2). Yet, these atoms are still part of the surface and
directly in contact with the adsorbates; we thus expect to capture
less relaxation effects compared with Pt55. Both clusters were first
fully relaxed before any atoms were fixed.
As reference calculations to compare the results from our ACSS

method with, we also explored all local minima and diffusion
paths manually using unconstrained optimization and climbing
image nudged elastic band (CI-NEB) calculations. In these
calculations, all adsorbate and cluster atoms were relaxed. For
brevity, we herein refer to results obtained with these methods as
“Manually-Performed calculations” (MP), and results obtained from
the PESs constructed via the ACSS method as “ACSS calculations”.

Fig. 1 Illustration of the Automated Cluster Surface Scanning (ACSS)
algorithm. Parameterization of the a Pt55 and b Au18 nanocluster
surfaces in the ACSS method, using the center of mass (black dot) as
the origin. Color code: gold – Au, blue – Pt, red – H. α and β run
between 0–180° and 0–360°, respectively

Fig. 2 Atom types in Au18. Fixed (blue) and relaxed atoms (gold) of
Au18 for the Automated Cluster Surface Scanning (ACSS) method.
Side view 2 is rotated by 90° with respect to side view 1. Pink
triangles mark two triangular ensembles of Au atoms, which may
provide a useful reference frame for the reader

T. Szilvási et al.

2

npj Computational Materials (2019)   101 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



Potential energy surfaces
By leveraging the symmetry of the clusters, only a portion of the
cluster surfaces needs to be sampled to construct the full PESs. For
Pt55, we sampled from α= 0–90° and β= 0–44° with a mesh grid
of 2° intervals, and for Au18, we sampled from α= 0–180° and β=
0–87° with a mesh grid of 3° intervals. These intervals correspond
to a maximum real space distance of ~0.2 Å between points; the
axes of reference for α= 0° and β= 0° are shown in Fig. 1. The full
PES was then generated by applying the relevant symmetry
operations, and finally spline interpolation onto a finer mesh grid
with 0.5° intervals to obtain a relatively continuous PES. Our
choices of a symmetric origin—the center of mass, and a
symmetric arrangement of the fixed metal atoms, were instru-
mental in fully utilizing the symmetry of the cluster.
Our PESs are well-converged with respect to the sampling

mesh: coarser grids with 1/4 and 1/16 the mesh points of the
original grids resulted in interpolation errors of just 0.01 and
0.04 eV, respectively, for both Au18 and Pt55 (See Supplementary
Discussion).
The PESs obtained from the ACSS method can be represented

in multiple formats, the most common of which is a contour plot,
shown in Fig. 3a, b for Pt55 and Au18, respectively. Due to space
constraints, we only show a portion of the PESs, enough to
capture all unique high-symmetry sites; the full PESs can be found
in Supplementary Figs. 3 and 4. To focus on the relative stability of
various adsorption sites, all energies reported are relative to the
global minimum for each system: the most stable adsorption site
has an energy of 0 eV and less stable sites have positive energies.
Definitions of the various site types can be found in Supplemen-
tary Tables 4 and 7 for Au18 and Pt55, respectively.
The benefits of using PESs to study adsorption on cluster

surfaces are apparent from the contour plots (Fig. 3a, b). One can
readily assess the positions of stable adsorption sites (local minima
on the PES), and view the minimum energy diffusion paths and
associated transition states (first order saddle points on the PES),
which may not be easily found with manually performed
calculations. For example, on Au18 (Fig. 3b) two transition states
exist between the b2 (α= 45°, β= 110°) and b1 (α= 0°, β=
0–180°; all β values are equivalent at α= 0°) site types. The
existence of these multiple diffusion pathways is easy to overlook:
we did not find them while performing the MP calculations, only
realizing their existence after we generated and analyzed the PESs.
Although the PESs in Fig. 3 are largely smooth and continuous,

there are areas of relatively steep energy changes, identifiable by
the areas shaded in black in the PESs, which are due to the
overlapping of multiple contour lines in a small region. One such
area is close to the bottom of the f5 site type on Au18 (α= 80°, β=
180°; near the middle of Fig. 3b). These areas are caused by
adsorbate-induced reconstruction of the cluster, and are especially
prominent for Au18 as it is smaller and is thus more prone to
reconstruction compared with the larger Pt55 cluster.
As the structure of nanoclusters can be complex, the 2D contour

plots of their PESs can be difficult to interpret. We thus present an
alternative representation of the PESs of Au18+ H and Pt55+ H
systems by “projecting” it directly onto the surface of the
corresponding metal cluster: the cluster-projected representation
(Fig. 3c–f). The cluster-projected representation serves as a “heat
map”, providing immediate and intuitive information regarding
the locations of reactive regions on the cluster. For example, one
can immediately tell that the areas marked with pink triangles in
Fig. 3d–f bind H much more strongly than other parts of the Au18
cluster. Additionally, diffusion paths are also readily visualized on
the cluster.

Accuracy of the ACSS method
We quantified the accuracy of the data obtained from our method
with respect to standard MP calculations in terms of two metrics

(Table 1): (i) the number of stationary points (minima and
transition states) found; and (ii) the errors in the energies of the
stationary points and diffusion barriers. A parity plot of the
energies of the stationary points from ACSS versus MP calculations
is also shown in Fig. 4 (numbers in Supplementary Tables 2 and 3
for Au18 and Supplementary Tables 5 and 6 for Pt55).
For Pt55, all 29 minima and transition states found with MP

calculations were also found with ACSS calculations. The relative
site stability is well-preserved; ACSS calculations predict b1 as the
most stable site, and f as the least stable site (Supplementary
Table 5), identical to MP calculations.
Quantitatively, for Pt55, there is also excellent agreement

between MP and ACSS calculations in terms of the energies of
stationary points (Table 1). Both transition states and minima are
accurately described by the ACSS calculations, with a small root
mean squared error (RMSE) of 0.02 eV. Diffusion barriers are
slightly better described, with RMSEs of just 0.01 eV, likely due to
error cancellation as barriers are differences in energies between
transition states and minima. A linear least-squares fit on the MP
versus ACSS results (Fig. 4a) shows an excellent correlation with a
slope of nearly one, and an intercept of close to zero,
demonstrating that the systematic errors from the ACSS method
are almost negligible when the surface atoms are relaxed,
allowing us to capture most of the relaxation energy.
For Au18, ACSS calculations again preserve the relative site

stability of the different sites well: both MP and ACSS calculations
predict the b3 as the most stable site, and h6 as the least stable
site (Supplementary Table 2). The ACSS calculations, however,
failed to locate one minimum (site b13, Supplementary Table 4),
and one of its associated transition states, which we know to exist
from the MP calculations. This site was created by adsorbate-
induced reconstructions of the cluster that were not captured by
the ACSS calculations as they occurred near the four fixed Au
atoms. This minimum is however shallow; the barrier for diffusion
to a neighboring site (h4) is <0.01 eV (b13-h4, Supplementary
Table 3; note that the value in the table (0.03 eV) is the barrier with
h4 as the initial state, whereas the barrier with b13 as the initial
state is <0.01 eV). Therefore, we believe this site is of limited
importance for understanding realistic experimental processes,
especially after considering zero-point vibrational and finite-
temperature effects. Overall, the ACSS method performed
remarkably well, capturing 96% (45 out of 47) of the stationary
points on Au18.
The RMSE for the ACSS-calculated energies of stationary points

on Au18 is 0.05 eV, higher than those for Pt55 (0.02 eV) (Table 1).
This is because of the larger neglect of relaxation effects in the
case of Au18, as all the fixed atoms are on the surface of the
cluster. The larger RMSE is also reflected in the weaker linear
correlation between the MP and the ACSS results for Au18, which
has a slope less than unity, although the intercept remains close to
zero (Fig. 4b). Errors in two transition state energies (b6-t4 and b5-
t4, Supplementary Table 3) contribute largely to this weaker
correlation; the RMSE for transition states is 0.06 eV, double that
the RMSE of 0.03 eV for minima. Excluding these two outlier TSs,
the accuracy of ACSS improves greatly: the slope increases to
0.94 ± 0.04, the R2 value rises to 0.98, and the RMSE of TSs drops to
0.03 eV.

Computational cost
To evaluate the practical applicability of the ACSS method, we
compared the computational cost (in terms of number of
geometric optimization iterations) of ACSS calculations (ACSS;
Fig. 5) with that of MP calculations (MP Relaxed; Fig. 5) for both
the Au18+ H and Pt55+ H systems. As fixing atoms reduces the
number of degrees of freedom, thereby potentially reducing the
computational cost involved and biasing our results in favor
of the ACSS calculations, we additionally evaluated the
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computational cost of MP calculations with the same fixed atoms
as used in the ACSS calculations (MP Fixed; Fig. 5) to ensure a fair
comparison. Details regarding calculations of the computational
costs and, for MP calculations, their breakdown into costs of
geometry optimization and NEB calculations, can be found in
Supplementary Discussion.
Surprisingly, the ACSS calculations for Au18 cost more than that

for Pt55, even though Au18 has fewer degrees of freedom with just
14 relaxed atoms whereas Pt55 has 42 relaxed atoms. This is
because Au18 has lower symmetry (C2v) than Pt55 (D4h), thus more
mesh points are required to map the cluster surface. The cost of
the MP calculations for Au18 is, however, less than that for Pt55,
due mainly to the lower cost for NEB calculations (Supplementary
Table 1), which are known to converge slowly especially with

standard optimizers.31,32 Au18, with fewer degrees of freedom, is
easier for NEB calculations to handle than Pt55. The benefits of
reducing the number of degrees of freedom on the cost of NEB
calculations are also reflected in the much lower computational
cost for the MP Fixed versus MP Relaxed calculations for Pt55
(Fig. 5).
For both Au18 and Pt55, however, the ACSS calculations were

less costly than both the MP Relaxed and MP Fixed calculations
(Fig. 5). The savings in computational cost were especially large for
Pt55—the ACSS calculations were almost 5 (7) times less costly
than the MP Fixed (MP Relaxed) calculations—but less for Au18,
where the ACSS calculations cost almost as much as the MP Fixed
calculations and were only ~1.5 times less costly than the MP
Relaxed calculations.

Fig. 3 Representations of potential energy surfaces constructed via the Automated Cluster Surface Scanning (ACSS) method. a, b Contour
plots and c–f cluster-projected representations for the (a, c) Pt55+ H and (b, d–f) Au18+H systems. Energies are relative to the most stable site
for each system. White and red lines are the minimum energy paths connecting transition states (white triangles, contour plots only) and
minima (white circles and site names). Red lines on the contour plots and the corresponding cluster-projected representations indicate
diffusion paths that serve as a frame of reference for the reader. For clarity, only limited ranges of the PESs large enough to show all
symmetrically unique sites are shown. Site types are defined in Supplementary Tables 4 and 7 for Au18 and Pt55, respectively. Dotted pink
triangles mark the two triangular ensembles of Au atoms in Au18, identical to those in Fig. 2
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Several thousand independent E(α, β) calculations are usually
required to compute a PES, which may feel computationally
prohibitive. The ACSS method, however, ends up being less costly
than MP calculations due to its ability to locate transition states
without performing explicit NEB calculations, which are much less

efficient than geometric optimizations: for our systems, ~96–98%
of the computational cost of MP calculations come from NEB
calculations (Supplementary Table 1).
The computational cost of the ACSS method can be lowered

even further by using a coarser sampling mesh initially and
gradually refining the mesh in regions of interest, such as where
energies change rapidly, so that the high accuracy required in
these regions is preserved. This requires some human intervention
but may reduce the computational workload by up to an order of
magnitude. For a discussion of the accuracy of coarser meshes,
see Supplementary Discussion.

DISCUSSION
Our results show that the ACSS calculations are of similar accuracy
to the MP calculations in terms of finding minima and transition
states, and in terms of their description of the energetic landscape.
Overall, the ACSS method found 97% (74 out 76) of stationary
points, with errors of ~0.05 eV—much smaller than those normally
associated with DFT calculations (~0.2 eV).33 We also demon-
strated that the computational cost of ACSS calculations is much
less than that of MP calculations for Pt55 and similar to that of MP
calculations for Au18.
With only a slight sacrifice in accuracy (~0.05 eV), the ACSS

method brings several significant advantages over the MP
calculations. Firstly, it does not depend on the intuition of the

Table 1. Comparison of results from Automated Cluster Surface Scanning (ACSS) calculations and manually-performed (MP) calculations

Number of stationary pointsa Root mean squared errors [eV]

Stationary points Diffusion barriers

Minima Transition states Overall Minima Transition states Overall

Pt55 13 (13) 16 (16) 29 (29) 0.02 0.02 0.02 0.01

Au18 17 (18) 28 (29) 45 (47) 0.03 0.06 0.05 0.05

aNumbers outside parentheses are from ACSS calculations whereas numbers in parentheses are from MP calculations

Fig. 4 Accuracy of the Automated Cluster Surface Scanning (ACSS)
method. Parity plots of the energies of minima and transition states,
relative to the global minimum for each system, derived from ACSS
and manually performed (MP) calculations for the (a) Pt55+ H and
(b) Au18+H systems. Full lines represent linear fits to the data, and
gray regions represent the 95% confidence intervals for the fits

Fig. 5 Computational cost analysis for the Automated Cluster
Surface Scanning (ACSS) method. Total computational cost, in terms
of geometric optimization iteration steps, of identifying all minima
and transition states for manually performed (MP) and Automated
Cluster Surface Scanning (ACSS) calculations for the Au18+H and
Pt55+H systems. For MP Relaxed calculations, all atoms were
relaxed during optimization. For MP Fixed calculations, the same
atoms that were fixed in ACSS calculations were fixed
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researcher and is thus unbiased and reproducible. This is desirable
especially for cluster systems that are highly complex. For such
systems, it is easy to miss possible adsorption sites or diffusion
pathways (as we experienced in the case of Au18; see Results) and
tempting to focus only on certain site types, for example, those on
the most undercoordinated atoms as they are usually thought to
be more reactive. With the ACSS method however, all sites and
diffusion pathways can be captured, within the accuracy of
our PES.
The Au18+ H system is one example of a system with non-

intuitive diffusion paths. For example, consider the diffusion of H
between the two most stable b3 sites on Au18. Based on
intuition alone, it is tempting to think that the shortest diffusion
path (red arrow; Fig. 6) is also the most energetically favorable.
This path entails a maximum barrier of 0.52 eV with respect to
the global minimum (as calculated by the MP method), and
involves seven sites going directly over the top of the cluster.
The most energetically favorable pathway, however, with a
maximum barrier of 0.41 eV with respect to the global minimum,
involves 13 sites going around the cluster (green arrow; Fig. 6),
and was found easily using our ACSS-constructed PES. The full
pathway on the contour-plot representation is shown in
Supplementary Fig. 3. This result underlines that diffusion can
be a complex process even for a small cluster such as Au18.
Trying to elucidate minimum energy diffusion pathways on
large nanoclusters by hand is not only tedious but can also lead
to missing complicated but energetically relevant diffusion
paths. For completeness, the minimum energy diffusion path-
ways between the most stable sites on Pt55 are included in
Supplementary Figs. 4 and 5.
Secondly, calculations of each point on the PES are completely

independent of each other, making them highly parallelizable and
efficiently executable on supercomputers by distributing the
workload among as many nodes or cores as needed. By exploiting
the massively parallel nature of the ACSS method on super-
computers, the timeframe of a project—from preparing the first
calculation to completing the last—can be greatly reduced.
Anecdotally, we required less than 1 day to finish all ACSS
calculations for the Au18+ H system (1800 grid points) on the
National Energy Research Scientific Computing Center’s (NERSC)
Cori supercomputer by parallelizing our calculations across 200
Knights Landing (KNL) nodes. Each node was responsible for the
evaluation of a single grid point at a time and was repurposed to
evaluate the next uncalculated grid point when the previous
calculation finished. The MP calculations, however, required
several weeks to complete on the same supercomputer, mainly

due to the large number of calculations that had to be manually
checked and resubmitted if they did not converge or failed.
Small clusters are however a limitation of the ACSS method. As a

large fraction of the atoms in these clusters must be fixed in order to
prevent rotation and translation of the cluster, a significant portion of
the relaxation effects, such as adsorbate-induced reconstruction of
the cluster, may be neglected. Such relaxation effects can be
important as they affect adsorption energies and may create local
minima, as evident from our results showing that Au18 is described
less accurately than Pt55. We note, however, that fixing the center of
mass in the calculations, combined with larger unit cells and tighter
convergence criteria to reduce the drift present in the calculated
forces, would help inhibit translation and rotation of the cluster. This
may allow for decreasing the fraction of fixed atoms needed for the
ACSS methodology, in turn increasing the accuracy of our approach
for smaller clusters.
Given the above strengths and limitations of the ACSS method,

we expect it to be highly suited for studying large, non-symmetric
clusters. Such clusters are frequently found to be very stable
despite their low symmetry.34–36 Their non-trivial geometries
however make them challenging targets for traditional MP
computational strategies, which depend heavily on symmetry to
reduce the complexity of the system and to keep the mental and
computational burden tractable. For large clusters we can also
relax multiple shells of atoms, thus allowing us to accurately
capture most of the relaxation effects.
Yet, we believe that even for small clusters where the ACSS

method is less accurate, or even when very high levels of accuracy
are desired, the ACSS method can still be useful as a prescreening
approach to quickly identify important minima and diffusion
pathways that standard chemical intuition may miss. The
geometries from the ACSS method can also be used as excellent
initial guesses for follow-up calculations to save computational
time; for example, good initial guesses of diffusion pathways,
essential for fast convergence of NEB calculations, can be obtained
from the minimum energy paths of the PES constructed from the
ACSS method.37

In the future, we envision that all tasks involved in ACSS
calculations and the analysis of the resulting PESs, such as the
determination of minima and the initialization of the string
method for locating diffusion pathways, can be fully automated.
Our method may also be extended to probe recombination
reactions and eventually full mechanisms by fixing an adsorbate
on the cluster and scanning across the cluster with a second
adsorbate. Entropies, vibrational frequencies, and pre-exponential
factors for diffusion events may also be obtainable from the PES.23

The automated collection of all thermodynamic and kinetic data,
when interfaced with codes to perform kinetic modeling, can then
enable high-throughput screening of both monometallic and alloy
clusters for catalysis and materials science
In summary, we presented an automated, highly parallelizable

approach—the ACSS method—to generate approximate 2D PESs
of 3D nanocluster surfaces. These PESs fully characterize the stable
adsorption sites and diffusion paths of adsorbates on the surfaces
of nanoclusters with minimal human workload. Using the test
cases of atomic H adsorption and diffusion on Au18 and Pt55, the
ACSS method qualitatively and quantitatively reproduced results
obtained by traditional MP calculations at similar or reduced
computational cost. Importantly, the realized gains in computa-
tional cost increase dramatically with cluster size, a regime exactly
where human intuition and detailed accounting of sites and paths
would be more likely to fail.
The ACSS method eliminates tedious, repetitive tasks, such as

the probing of stable adsorption sites and diffusion barriers.
Additionally, they remove user biases and reduce the likelihood of
missed potentially important adsorption sites or diffusion paths.
Due to the generalizability of our method, we envision that it will
serve as a foundation for enabling the automated exploration of

Fig. 6 Diffusion paths of atomic H on Au18. Red arrows indicate the
spatially shortest diffusion path between the two most stable b3
sites, which has an overall barrier of 0.52 eV with respect to the
global minimum. Green arrows indicate the most energetically
favorable diffusion path, which has an overall barrier of 0.41 eV with
respect to the global minimum. Blue and black spheres represent
stable H adsorption sites on the green and red diffusion paths,
respectively; gold spheres represent Au atoms. Side view 2 is rotated
by 90° with respect to side view 1. Dotted pink triangles mark the
two triangular ensembles of Au atoms in Au18, identical to those in
Fig. 2
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complex surfaces of large model nanoclusters. Such nanoclusters
have technological applications not only in catalysis, as showcased
in this work, but also in chemistry and materials science, for
example, for analyzing the diffusion of adsorbates on the surfaces
and grain boundaries of complex battery cathode materials. In
doing so, we hope that our method will greatly accelerate the
discovery of new materials and the rational design of catalysts.

METHODS
All calculations were performed using the PW91 exchange-correlation
functional38 with projector augmented wave (PAW) pseudopotentials,39,40

as implemented in the Vienna Ab initio Simulation Package (VASP).41,42 The
valence electron wave functions were expanded using a plane wave basis
set with an energy cutoff of 400 eV. The Brillouin zone was sampled at the
Gamma point only. To accelerate electronic convergence, the Fermi
surface was treated with Gaussian smearing with a width of 0.1 eV. The
resulting energies were extrapolated to zero width. To avoid interactions
with periodic images, at least 15 Å of vacuum was introduced between
images in all three directions.
The truncated tetrahedron and cuboctahedron structures were used to

model Au18 (Supplementary Fig. 1) and Pt55 (Supplementary Fig. 2),
respectively. These geometries are highly stable and commonly used in
theoretical studies.43,44 All structures were relaxed until the
Hellmann–Feynman forces acting on each atom were <0.02 eV Å−1. The
optimized coordinates of the naked Au18 and Pt55 clusters are given in
Supplementary Tables 8 and 9, respectively. Transition states were
obtained with the Climbing-Image Nudged Elastic Band (CI-NEB) method
for manually performed calculations using the force criterion mentioned
earlier.45 All stationary points were confirmed by a normal-mode analysis.
Minimum energy pathways and their associated saddle points, as well as

minima on our constructed PESs were identified using the zero-
temperature String (ZTS) method.46,47
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