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Body-centered-cubic structure and weak anharmonic phonon
scattering in tungsten
Yani Chen1,2, Jinlong Ma1, Shihao Wen1 and Wu Li1*

It was recently found that the anharmonic phonon–phonon scattering in tungsten is extremely weak at high frequencies, leading to
a predominance of electron–phonon scattering and consequently anomalous phonon transport behaviors. In this work, we
calculate the phonon linewidths of W along high-symmetry directions from first principles. We find that the weak phonon–phonon
scattering can be traced back to two factors. The first is the triple degeneracy of the phonon branches at the P and H points, a
universal property of elemental body-centered-cubic (bcc) structures. The second is a relatively isotropic character of the phonon
dispersions. When both are met, phonon–phonon scattering rates must vanish at the P and H points. The weak phonon–phonon
scattering feature is also applicable to Mo and Cr. However, in other elemental bcc substances like Na, the isotropy condition is
violated due to the unusually soft character of the lower transverse acoustic phonon branch along the Γ-N direction, opening
emission channels and leading to much stronger phonon–phonon scattering. We also look into the distributions of electron mean-
free paths (MFPs) at room temperature in tungsten, which can help engineer the resistivity of nanostructured W for applications
such as interconnects.
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INTRODUCTION
It is widely accepted that, around and above room temperature,
electron–phonon coupling in metals has a much weaker effect on
phonon scattering than anharmonic phonon–phonon interactions.1

This has been verified for some common metals (Al, Ag, Au, Cu, Pt,
and Ni) using first-principles techniques.2,3 However, NbC and W
have been identified as exceptions by very recent calculations.4,5 In
those materials, electron–phonon scattering is comparable to or
stronger than phonon–phonon scattering, leading to an anom-
alously weak temperature dependence of the lattice thermal
conductivity (κph). Likewise, the unusual temperature dependence
of κph in NbSe3 nanowires below the charge-density-wave transition
temperature was found to be related to electron–phonon coupling.6

A common feature of these systems is a significant κph; specifically,
κph reaches as much as 46 W/m-K inW.5 The situation is reminiscent
of heavily doped Si, where electron–phonon scattering can also be
comparable to phonon–phonon scattering. When the carrier density
reaches 1 × 1021 cm−3, electron–phonon scattering can lead to a
reduction of κph by 45% in Si.7

It is difficult, without assuming a value for the Lorenz number,
to decouple the lattice and electronic contributions to the thermal
conductivity in experimental measurements. The phonon line-
widths are the most critical intermediate physical quantities of
determining κph. These linewidths are accessible to measurement
techniques, such as inelastic neutron scattering or X-ray scattering,
and can therefore provide direct verification of theoretical
calculations. Other related quantities include the electron–phonon
enhancement of electron mass, the electron–phonon spectral
function α2F, the electrical conductivity (σ), the electronic thermal
conductivity, and the superconducting transition temperature.
In this paper, we quantify the contributions to the phonon

linewidths of W due to electron–phonon and phonon–phonon
interactions from first principles. We attribute the weak
phonon–phonon scattering at high frequencies, crucial for its

anomalous phonon transport properties,5 to the elemental body-
centered-cubic (bcc) structure, in which phonon frequencies are
triply degenerated at the high-symmetry P and H points. We
further use the example of Na, of which the phonon dispersions
display unusually strong anisotropy, to illustrate that the bcc
structure is a necessary but not sufficient condition to guarantee
the weak phonon–phonon scattering. We also study α2F and the
mean-free path (MFP) distributions of electrons and phonons for
W, relevant to size effects in applications such as nano-
interconnects.8–11 Furthermore, we assess the accuracy of Allen’s
approximation to calculate the resistivity.

RESULTS AND DISCUSSION
W and Mo
The calculated phonon dispersions and the contributions to the
phonon full-width at half maximum (FWHM) forW from anharmonic
phonon–phonon scattering at T= 0 K and T= 300 K, from
electron–phonon interactions and from isotope scattering, along
the same high-symmetry path, are plotted in Fig. 1. Note that the
longitudinal acoustic (LA) branch comprises the lowest-frequency
modes along the P-H segment. The two transverse acoustic (TA)
branches are degenerate along Γ-P-H-Γ. At the P and H points, all
three branches are degenerate as a result of the space-group
symmetry of elemental bcc structures, a point that we will explain in
more detail in Section “Symmetry analysis for the triple degeneracy
at the P and H points”. The linewidths are also the same for these
degenerate branches. Isotope scattering is negligible compared to
phonon–phonon and electron–phonon scattering.
As expressed in Eq. (2), the contribution to the FWHM from

anharmonic phonon-phonon scattering Γpp is determined by the
equilibrium phonon occupancies, the phase space available for
scattering, and the scattering matrix elements V. For the three-
phonon scattering processes λþ λ0 Ð λ00, where a phonon mode
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is denoted by a composite index λ comprising both a wavevector
q and a branch index p), conservation of energy and quasi-
momentum requires that the phase velocity of λ″ be greater than
at least of one of those for λ and λ′.1 Therefore, for typical
elemental materials in which the phonon dispersions are nearly
isotropic and tend to a horizontal tangent at the zone boundary,
λ″ must lie in a branch higher than λ or λ′.1 The lowest-lying
branch phonons are prevented from emission, while the highest-
lying branch phonons are prevented from absorption.
At 0 K, all lattice modes are unexcited. Since the contributions to

Γpp from absorption processes are proportional to n0
λ0 � n0

λ00 , they are
all zero in this 0 K limit, and the only nonzero contributions come
from emission processes. Since the phonon dispersions ofW can be
described as typical with respect to the features mentioned in the
previous paragraph, phonons lying on the lowest-lying branch
throughout the whole Brillouin zone, including the Γ-P-H-Γ-N path,
have vanishing Γpp at 0 K. The frequency differences between LA
and TA modes are small along the P-H segment, and only a small
number of emission processes are allowed for TA modes. The
corresponding Γpp for the TA branches at 0 K are very small, but not
strictly zero. The degeneracy of the TA modes is slightly lifted along
the Γ-N segment. For similar reasons, the higher-lying TA branch
along the Γ-N path has small but nonzero linewidths. There are
many more emission channels for the LA modes, including LA →
TA+ TA and LA → TA+ LA processes. The LA linewidth can
therefore reach as high as 0.0045 THz at the N point [Fig. 1b].
An important feature of Γpp is that it always vanishes at the

high-symmetry P and H points regardless of the temperature

[Fig. 1b, c]. Although the phonon frequencies do not reach
maxima at the P and H boundary points, the group velocities at
those points are smaller than those of any branch in the
neighborhood of the Γ point. As a result, absorption channels
are still prevented by the restriction of energy and quasi-
momentum conservation. At any other point different from P or
H, a phonon lying on a lower branch can be always scattered to a
higher branch by absorbing a phonon. For instance, at the N point,
TA+ TA/LA → LA channels are always allowed.
Electron–phonon scattering is much weaker than anharmonic

phonon–phonon scattering at the zone center. However, it
dominates over the latter close to the zone boundary, mainly
due to the weakness of phonon–phonon scattering, which
vanishes at the P and H points. The contribution to the FWHM
from electron-phonon scattering Γel reaches a maximum value of
over 0.08 THz around the H point. This unusual predominance of
Γel at high frequencies leads to anomalous phonon transport
behaviors.4,5 Γel is temperature independent, whereas above room
temperature Γph is approximately proportional to T. This is easy to
understand since the Debye temperature of W (383 K) is only
slightly higher than room temperature.12 Note that anharmonic
phonon–phonon scattering, as calculated here, is limited to three-
phonon processes. Considering higher orders would increase the
FWHM slightly.13 Additionally, the total FWHMs at P and H points
will display weak temperature dependence.
The feature of weak phonon–phonon scattering is not unique

to the individual bcc substance W. We have also studied another
elemental bcc system Mo. The phonon dispersions of Mo are
plotted in Fig. 2a. The phonon dispersion shape of Mo looks rather
similar to that of W. Γpp is also zero at P and H points [Fig. 2b, c].
Furthermore, the frequency differences between the LA and TA
modes along the P-H path are even smaller than in W. As a result,
the phonon scattering rates between P and H are smaller and
almost vanishing even at T= 300 K. Considering that chromium
also has similar phonon dispersions,14 it can be expected to also
share this feature.
Just like the vanishing Γpp at P and H, the exponent of the

power-law dependence of the acoustic phonon lifetimes on q at
low temperatures and close to the zone center depends on the
crystal structure, as pointed out by Herring.15 However, as
demonstrated recently for the cases of GaAs16 and Si,17 this
asymptotic power-law dependence can and does break down
further away from the zone center, due to the interplay between
Herring and non-Herring phonon–phonon processes. Note that

Fig. 1 Phonon dispersions (a) and contributions to the phonon full
widths at half maximum for W along a high-symmetry path from
anharmonic phonon–phonon scattering at T= 0 K (b) and T= 300 K
(c), electron–phonon scattering (d) and isotope scattering (e). TA1, TA2,
and LA denote the lower transverse acoustic, the higher transverse
acoustic and the longitudinal acoustic branches, respectively

Fig. 2 Phonon dispersions (a) and contributions to the phonon full
widths at half maximum for Mo along a high-symmetry path from
anharmonic phonon–phonon scattering at T= 0 K (b), and T= 300 K
(c). TA1, TA2, and LA follow the same notations as in Fig. 1
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the present work focuses on a phenomenon at the P and H points,
which are located at the zone boundary, and is thus not directly
connected to that universal behavior at the zone center.

Symmetry analysis for the triple degeneracy at the P and H points
As discussed above, the triple degeneracy of phonon frequencies
at the P and H points is a crucial ingredient for the vanishing Γpp.
This degeneracy is inherent in elemental bcc structures, which
belong to the space-group Im3m (No. 229), so it is worth
explaining its origin in more detail.
As shown in Fig. 3, there are six symmetry equivalent H points

in the Brillouin zone, located along the three Cartesian axes in the
figure. All those points are identical up to a translation by a certain
reciprocal lattice vector. For any phonon wavevector q along a
given Γ-H direction, a rotation of 90° around Γ-H leaves both the
structure and q invariant; therefore, the two TA branches must be
degenerate along the Γ-H direction. To show that LA is also
degenerate with those two TA modes at H, we take the example
of H1, a point at which the LA mode vibrates along the x-axis. The
symmetry operation of rotating around the z-axis by 90° maps this
LA mode to a vibration along the y-axis at H3. Since H1 and H3 are
identical, the y direction vibration at H3 is actually one TA mode at
H1. This proves that the LA and TA branches must be degenerate
at H1, and thus at each H point.
The case of P points is similar. There are eight symmetry

equivalent P points in the Brillouin zone. If we restrict ourselves to
translations by a reciprocal lattice vector, there are two
equivalence classes, namely {P1, P4, P6, P7} and {P2, P3, P5, P8},
following the notation of of Fig. 3. For any q along a particular Γ-P
direction, the symmetry operation of rotating around this axis by
120° can mix up the two TA modes. Those are thus required to be
degenerate along the Γ-P direction. At P1 the LA mode vibrates
along the x̂þ ŷþ ẑ direction. The symmetry operation of rotating

around the z-axis by 180° will transform this mode into a vibration
along the �x̂� ŷþ ẑ direction at P4. The latter actually
corresponds to a certain superposition of the TA and LA modes
at P1, since P1 and P4 are identical. Therefore, the LA and TA modes
should be degenerate at P1 and any P point.

Systems with soft phonons: the case of Na
In spite of its importance as a necessary condition, the triple
degeneracy of phonon frequencies at the P and H points shared
by all elemental bcc systems is not sufficient to guarantee that Γpp

vanishes there. We illustrate this by studying the case of Na. The
phonon dispersions of Na are plotted in Fig. 4a, and display strong
anisotropy, particularly for the TA modes. The lower TA branches
are unusually soft along the Γ-N direction as compared to other
directions, consistent with a bcc-hcp structural phase transition.18

This makes a huge difference in terms of phase space for three-
phonon scattering: in contrast to the cases of W and Mo, where
the emission channels for the lowest-lying branches are com-
pletely forbidden, the lowest-lying phonons with wavevectors
from other directions of the Brillouin zone can easily emit a
phonon lying in the lower TA branch along the Γ-N direction. As a
result [see Fig. 4b], Γpp at 0 K, which only involves contributions
from emission processes, has large nonzero values for the lowest-
lying branches everywhere except along the Γ-N path. At 300 K,
Γpp is very large for the lowest-lying branch along the Γ-N path
[Fig. 4c], due to numerous allowed absorption processes, each one
the inverse of an emission process. Given the fact that the group
velocities at P are larger than those for the lower-lying TA branch
along the Γ-N direction, the absorption channels are also opened
at P. However, absorption processes are forbidden at H. We note
that many other bcc elemental substances, including Li, K, Rb,
Cs,19 Ba20, and Ta21 also possess soft phonons along the Γ-N
direction, and therefore Γpp is excepted to be similarly strong in
those systems.

Electrical transport and MFPs of electrons and phonons in W
Moving on to electrical transport, our calculated Eliashberg
electron–phonon spectral function α2F and its transport variant
α2Ftr are plotted in Fig. 5 and lead to values of 0.29 and 0.28 for
total electron-phonon coupling constant λ and its transport
counterpart λtr, respectively. Our value of λ is slightly larger than
the literature value of 0.28, which was obtained based on

Fig. 3 The Brillouin zone of a body-centered-cubic structure with
some high-symmetry points labeled. Only a single representative N
point is labeled. The Cartesian coordinates of these points in units of
2π/a are N= (0.5, 0.5, 0), H1= (1, 0, 0), H2= (−1, 0, 0), H3= (0, 1, 0),
H4= (0, −1, 0), H5= (0, 0, 1), H6= (0, 0, −1), P1= (0.5, 0.5, 0.5), P2=
(−0.5, 0.5, 0.5), P3= (0.5, −0.5, 0.5), P4= (−0.5, −0.5, 0.5)., P5= (0.5,
0.5, −0.5), P6= (−0.5, 0.5, −0.5), P7= (0.5, −0.5, −0.5), P8= (−0.5,
−0.5, −0.5)

Fig. 4 Phonon dispersions (a) and contributions to the phonon full
widths at half maximum for Na along a high-symmetry path from
anharmonic -phonon scattering at T= 0 K (b) and T= 300 K (c). TA1,
TA2, and LA follow the same notations as in Fig. 1
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estimates22,23 or first-principles calculations.24 The resistivity
afforded by Eq. (7) is plotted in Fig. 6. It slightly overestimates
the exact solution, which was obtained by solving the BTE
iteratively,5,25 only by up to 5% at 500 K. Both Allen’s approxima-
tion and the exact solution to the BTE underestimate the
measured resistivity, especially at higher temperatures.5

When the temperature is higher than the Debye temperature,
the average scattering rate of electrons can be obtained from
Allen’s approximation26

τ�1 ¼ 2π
�h
kBTλ: (1)

Its value at room temperature for W is 72 ps−1, which falls in the
middle of the actual distribution of scattering rates5 [Fig. 7] and in
consistent with the lifetime (16 fs) estimated from the measured ρ
and the calculated band structure in ref. 8. The scattering rates

span a factor of 2, which renders some support to the constant
lifetime assumed in ref. 8.
Because of the boundary contribution to scattering, the ρ of

metal wires is higher than the bulk value once entering the
nanoscale. Moreover, the relative increase is material-dependent,
so it is possible to find a metal that is more resistive than copper in
the bulk, but whose wires have lower ρ than copper wires of the
same size. In fact, finding such metal nanowires to replace copper
nanowires as interconnect material is a major issue for the
semiconductor industry.8 Likewise, grain boundary scattering is
another source of size effects in polycrystals.27,28 A qualitative way
to understand those size effects for a particular material is to look
at the distribution of electron MFPs and their contributions to the
conductivity.5 As shown in Fig. 7, the largest MFP is 24 nm at the
Fermi level. According to the cumulative σ presented in Fig. 8a,
the MFPs are distributed in the range from 5 nm to 24 nm at room
temperature, and half of σ is contributed by electrons with MFPs
shorter than 18 nm. The reported average MFP in the literature
ranges from 254 nm.8,10,29–33 Specifically, our calculations are in
consistent with ref. 8, which estimated an average of 15.5 nm from
the measured ρ and calculated band structure.
In contrast, phonons have longer MFPs than electrons in W.

Ninety-percent of the κph
5 is contributed by phonons with MFPs

between 5 and 130 nm [Fig. 8b]. W has smaller electron MFPs and
larger phonon MFPs than Al, Ag, and Au, which possess larger σ
but much smaller κph than W.2 In those three metals, phonons
with MFPs between 1 and 10 nm are the predominant con-
tributors to κph.

2 However, it should be noted that longer MFPs do
not always imply higher conductivity: for instance, Al has almost
the same σ as Au, but its average electron MFP is only half of that
for Au.8 When the size is comparable to the characteristic MFPs,
the transport properties are affected by the system size. In that
regard, and since in W the MFPs of phonons are several times
longer than those of electrons, size effects will result in a reduction
of κph for significantly larger sizes than needed to cause a
reduction in σ. Therefore W nanostructures can be expected to
show reduced values of the Lorenz number.5

In summary, we report the phonon linewidths of tungsten
contributed from electron–phonon and phonon–phonon interac-
tions along high-symmetry paths, calculated through first-principles
techniques. The electron–phonon scattering dominates except in a
neighborhood of the zone center. The unusually weak
phonon–phonon scattering, and in particular its vanishing strength
at the triply degenerate P and H points, can be traced back to the
elemental bcc structure. Although this feature is also applicable to
Mo and Cr, it is not a universal phenomenon common to all

Fig. 5 Eliashberg electron–phonon spectral function α2F and its
transport variant α2Ftr for W

Fig. 6 Resistivity of W calculated from the exact solution5 (solid
line), and Allen’s approximation (dotted line) to the BTE. The symbols
denote experimental electrical resistivity values taken from ref. 46

Fig. 7 Room-temperature electron scattering rates and mean-free
paths vs. energy (relative to Ef) for W

Fig. 8 Cumulative electrical conductivity vs. electron mean-free
path a and cumulative lattice thermal conductivity vs. phonon
mean-free path b at room temperature for W
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elemental bcc substances. We find that in other systems like Na, the
phonon–phonon scattering is strong due to the unusually soft
transverse acoustic phonon along the Γ-N direction.
The electrical resistivity of W obtained with Allen’s approxima-

tion agrees well with the accurate solution to the linearized
Boltzmann transport equation. The room temperature mean-free
paths of electrons contributing to the conductivity range from 5 to
24 nm, much shorter than those of phonons, suggesting reduced
Lorenz numbers in W nanostructures.

METHODS
The phonon FWHM corresponds to the scattering rate (inverse of the
lifetime) divided by 2π. For a given mode denoted by λ (a composite index
comprising both a wavevector q and a branch index p) the FWHM due to
anharmonic phonon–phonon scattering can be calculated as34,35

Γppλ ¼ �h
8Nq

P

λ0p00
ðn0

λ0 � n0
λ00 Þ

δðωλþωλ0 �ωλ00 Þ
ωλωλ0ωλ00

jVþ
λλ0λ00 j

2

"

þ 1
2

P

λ0p00
ðn0

λ0 þ n0
λ00 þ 1Þ δðωλ�ωλ0 �ωλ00 Þ

ωλωλ0ωλ00
jV�

λλ0λ00 j2
#

;

(2)

where Nq is the number of uniformly sampled q points in the Brillouin
zone, and n0λ is the Bose–Einstein occupancy for phonon frequency ωλ.
There are two types of three-phonon processes: absorption (+) and
emission (−) processes. The phonon of interest λ is scattered into
phonon λ″ by absorbing/emitting phonon λ′ in the absorption/emission
process, also termed as coalescence/decay process in the literature.17

The conservation of quasi-momentum requires that q″ =
q ± q′ up to a certain reciprocal lattice vector for the absorption and
emission processes. The scattering matrix elements V ±

λλ0λ00 are deter-
mined by the third-order interatomic force constants (IFCs).34,35

The phonon FWHM due to isotopic mass disorder is given by36

Γisoλ ¼ ω2
λ

12
g2D ωλð Þ; (3)

where D(ω) is phonon density of states per unit cell, and g2 is the Pearson
deviation coefficient of the atomic masses of isotopes. The natural isotopic
distribution of W yields a value of g2 of 6.9668 × 10−5.
The contribution to the phonon FWHM from electron–phonon interac-

tions is almost temperature independent, and can be well estimated as1,25

Γelλ ¼ ωqp
2
Nk

X

mnk

jgmkþq
nk;qp j2δðEmkþq � Ef ÞδðEnk � Ef Þ; (4)

where gmkþq
nk;qp is the electron–phonon coupling matrix element for the

electron state with band index n and wavevector k, the phonon mode (q,
p), and the electron state with band index m and wavevector k+ q. Enk
and Ef are the corresponding electronic and Fermi energy, respectively. Nk

is the number of uniformly sampled k points in the Brillouin zone. The
factor of 2 in 2/Nk accounts for the spin degeneracy in non-spin-polarized
calculations.
Γel is closely related to σ. Allen obtained an approximated solution to the

Boltzmann transport equation (BTE) in metals, and related the electrical
resistivity ρ to the transport spectral function α2Ftr’

26 which is a variant of
the Eliashberg electron–phonon spectral function α2F. The latter can be
written as37

α2FðωÞ ¼ 1
2NqNF

X

qp

Γelqp
ωqp

δðω� ωqpÞ; (5)

where NF is the electronic density of states per unit cell and per spin at the
Fermi level EF. The total coupling constant can be obtained as

λ ¼ 1
Nq

X

qp

Γelqp
NFω2

qp
¼ 2

Z

dω
α2FðωÞ

ω
: (6)

For transport properties, the contributions to scattering also depend on
the effective change in velocity. Defining the efficiency factor α as

α ¼ 1� vmkþq � vnk
jvnkj2

; (7)

and multiplying the term in the sum of Eq. (4) by α, one can obtain the
transport analog of the spectral function α2Ftr and consequently the total

transport coupling constant λtr. The ρ of metals can be approximately
obtained as:26

ρðTÞ ¼ 2πVkBT

e2�hNF v2z
� �

Z1

0

dω
ω

x2

sinh2x
α2FtrðωÞ; (8)

where V is the volume of the unit cell, x= ℏω/(2kBT), and v2z
� �

is the
average square of the Fermi velocity along the transport direction,
denoted here as z.
The electronic band structure, phonon dispersions and electron–phonon

interactions were calculated using the QUANTUM ESPRESSO package,38

combining density functional theory (DFT), and density functional
perturbation theory (DFPT).39 The Perdew–Zunger parametrization40 of
the local density approximation (LDA) and Bachelet–Hamann–Schlueter
type norm-conserving pseudopotentials41 were used for W. The
Perdew–Burke–Ernzerhof parametrization42 of the generalized gradient
approximation (GGA) and Trouiller-Martins type norm-conserving Pseudo-
potientials were used for Mo and Na. The thirdorder.py script from the
ShengBTE package35 was used to generate the third-order IFCs43 using 5 ×
5 × 5 supercells. The Γppλ and Γisoλ . were obtained on a 48 × 48 × 48 q grid by
using the ShengBTE package.35 Furthermore, the EPW package44 was
employed to perform Wannier function interpolation from initial 8 × 8 × 8 k
and q grids for the electron–phonon coupling matrix elements of W. The
Γelλ were then obtained on 36 × 36 × 36 k and q grids. The phonon and
electron MFP analysis for W were carried out by solving the corresponding
BTEs5 accurately with 36 × 36 × 36 q and 108 × 108 × 108 k grids,
respectively. The δ-functions involved in Eqs. (2)–(5) are represented by
Gaussian functions with physically motivated adaptive broadening
parameters,25,45 eliminating the need for any adjustable parameters.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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