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Impact of lattice relaxations on phase transitions in a
high-entropy alloy studied by machine-learning potentials
Tatiana Kostiuchenko1, Fritz Körmann 2,3, Jörg Neugebauer2 and Alexander Shapeev1

Recently, high-entropy alloys (HEAs) have attracted wide attention due to their extraordinary materials properties. A main challenge
in identifying new HEAs is the lack of efficient approaches for exploring their huge compositional space. Ab initio calculations have
emerged as a powerful approach that complements experiment. However, for multicomponent alloys existing approaches suffer
from the chemical complexity involved. In this work we propose a method for studying HEAs computationally. Our approach is
based on the application of machine-learning potentials based on ab initio data in combination with Monte Carlo simulations. The
high efficiency and performance of the approach are demonstrated on the prototype bcc NbMoTaW HEA. The approach is
employed to study phase stability, phase transitions, and chemical short-range order. The importance of including local relaxation
effects is revealed: they significantly stabilize single-phase formation of bcc NbMoTaW down to room temperature. Finally, a so-far
unknown mechanism that drives chemical order due to atomic relaxation at ambient temperatures is discovered.
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INTRODUCTION
High-entropy alloys (HEAs) are multicomponent alloys consisting
of four or more elements in high or even equimolar fractions and
crystallize into surprisingly simple lattice structures with randomly
dispersed atomic species.1,2 Many so far discovered HEAs possess
extraordinary materials properties such as fcc FeCoNiCrMn with
high-cryogenic strength3 or refractory bcc NbMoTaW HEAs, which
reveal auspicious high-temperature mechanical strength.4 This
makes these alloys potential candidates for next-generation
technological applications.
A main feature of HEAs is that they form solid solutions. Since

alloy properties and materials performance are intrinsically linked
to the actual state of chemical ordering, a major part of
experimental and theoretical research is devoted to characterize
the degree of chemical ordering and to identify order–disorder
transitions in these alloys.1,2 As experimental approaches alone are
too time-consuming to cover the vast variety of possible alloy
combinations, parameter-free ab initio simulations, typically
realized by density functional theory (DFT), have gained rapidly
increasing attention as a complementary tool to study various
properties of HEAs (see, e.g., ref. 5 and references therein).
For computing chemical ordering and related transitions, even

for a single HEA, brute-force DFT simulations are, however, usually
limited by the supercell size and number of possible configura-
tions which can be taken into account. Therefore, DFT energetics
are typically mapped on effective interaction models via the
cluster expansion (CE) technique6,7 using, e.g., the structure
inverse method (sometimes also denoted as Connolly–Williams
approach)8 or employing perturbational approaches such as the
generalized perturbation method (GPM).9 The latter can be
combined with the coherent potential approximation (CPA) and
is therefore computationally very efficient. For bcc NbMoTaW, its
application revealed an order–disorder transition at 750 K to a B2

ordered state with mixed (Mo,W) and (Nb,Ta) on the two
sublattices.10 Other perturbational method based approaches
consistently showed such an incipient B2 ordering when the alloy
is cooled down from the solid solution.11 A limitation of such
perturbational approaches is the limited inclusion of local
relaxation effects. Indeed, explicit supercell calculations of a B2
ordered state as well as a disordered solid solution revealed that
the order–disorder transition temperature can be significantly
lower if local lattice relaxations are included in the computa-
tions.12 Recently, Wang et al.13 extended this approach and
considered in total 178 ordered supercell configurations to study
the phase stability of bcc NbMoTaW. The B2 ordered structure has
been included in the pool of structures and it was found to be
stable below 600 K. The limitations of such approaches are,
however, that the considered structures must be anticipated, i.e.,
they must be included in the data pool a priori. Moreover, ideal
mixing of elements is assumed not accounting for possible short-
range order effects.
The CE can include implicitly local lattice relaxations and can be

combined with Monte Carlo (MC) simulations to account for
chemical short-range order. CE, however, becomes computation-
ally demanding when studying systems with a large number of
chemical elements14 due to increased combinatorial complexity of
possible interatomic interactions. Therefore, in practice, for
multicomponent alloys with more than three elements the
amount of interactions is typically limited to a few interactions.
For example, based on nearest-neighbor pair interactions,15 also
found a B2 ordering at ambient temperatures. Due to these
limitations it is, however, not clear whether such an ordering at
ambient temperatures is real or an artifact of the underlying
approximations (e.g., limited range of interaction parameters). The
difficulties of converging a CE for multicomponent alloys has been
also recently pointed out by Widom et al.16 on the example of
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finding the ground state of bcc NbMoTaW17 where a conventional
CE fails.
In the present work, we propose an alternative, highly efficient

approach by fitting an accurate active-learning machine-trained
potential which is used in subsequent MC simulations. Specifically,
we employ a recently proposed “on-lattice” machine-learning
interaction model called low-rank potential (LRP),18 which is
capable of including relaxation effects as well as it is capable of
accurately representing interactions in multicomponent systems.
It is thus well-suited for dealing with a large number of
components. As it was shown recently, the LRP requires fewer
input structures to reach the same accuracy as a CE approach.18

The model has only two adjustable parameters: an interaction
cutoff radius and the approximation rank controlling the number
of free parameters. This allowed us to fit such models
semiautomatically by active-learning techniques. The approach
can take local relaxation effects implicitly into account in a similar
spirit as the CE (by allowing for local relaxations in the DFT
calculations for the input structures, see Section “Methods”). It also
allows for a systematic estimation of errors in the predictions. We
demonstrate the power of this new approach to efficiently and
accurately explore huge configuration spaces by studying the
finite-temperature phase stability of bcc NbMoTaW. Based on
these studies we reveal a hitherto not reported chemical ordering
at ambient temperatures. The impact atomic relaxations have on
the phase stability and short-range order are discussed.

RESULTS
An advantage of the approach based on machine-learning
potentials, which will be introduced below, is that similarly to
the CE formalism the configurations used to fit the potential can
be chosen from static or fully relaxed (i.e., including local
relaxation effects) calculations. In this way one can straightfor-
wardly “switch on” and “off” the impact of local distortions and
study their impact on phase stability and short-range order
parameters.
In order to construct a machine-learning potential, we first

generate a DFT dataset for fitting the potential as shown in the
proposed workflow in Fig. 1. The initial training set consisted of
200 randomly generated configurations for which ground state
DFT calculations were performed, each configuration constructed
from a 2 × 2 × 2 bcc supercell (with 16 atoms) with randomly

distributed atomic species. An initial LRP18 is then fitted on the
initial training set (details given in Section “Methods”). In a
nutshell, the LRP assumes a partitioning of the energy into
contributions of each atomic environment, e.g., for a bcc lattice
each environment is defined by nine atoms, i.e., a central atom
and its eight nearest neighbors. This partitioning is different from
those used in other formalism such as CE, which assumes a
partitioning of the energy into individual two-body, three-body,
etc., clusters.
For a given random 4-component alloy there are, in principle,

49 ≈ 250,000 possible atomic environments, however, a model
with 250,000 free parameters is impractical to fit. In order to
reduce the number of fitting parameters, the LRP makes a specific
low-rank assumption on the representation of the interaction19

(see Section “Methods”). By applying this assumption we find that
only about 500 parameters were eventually required to fit the
potential with an accuracy of 1 meV/atom. Although 250,000
environments are prohibitively too many for the purpose of fitting
the energy contribution of each environment independently, we
can still precompute and store the fitted data for each
environment, which requires eventually only 2 megabytes of
storage. This leads to an extremely fast energy evaluation which
allows us to fit not only one, but an ensemble of ten different
potential models. An advantage of having such an ensemble of
independent potentials is that not only interaction energies can
be predicted, but the ensemble further enables us to estimate the
predictive error (i.e., uncertainty) due to approximation of DFT
energies with LRP in quantities of interest (such as formation
energies) by observing the deviation of the different models. To
be precise, we calculate the 95% confidence interval and call it the
model uncertainty of LRP.
Based on the initial training set we evaluated the accuracy and

performed LRP-based MC simulations employing a larger 4 × 2 ×
2 supercell including 32 atoms. From these simulations 100
additional, low-energy configurations were chosen, recalculated
with DFT and added to the training set. These configurations were
about 40meV lower in energy than the randomly chosen initial
training configurations. This procedure has been repeated until
the trained potential reaches a predictive error of less than 1meV/
atom. Our retraining (active learning) of the potential also ensures
that the configurations span a wide range of compositions, from
binaries to quaternaries as well as from chemically ordered to
disordered configurations.
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Fig. 1 The workflow of the proposed approach of HEA investigation
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We first exemplify the performance of our proposed approach
by training our potentials on a set of static calculations, i.e., with
atoms dispersed on the ideal bcc positions not including the effect
of local lattice relaxations. A set of 10 different potentials are
trained and used in MC simulations for a 12 × 12 × 12 supercell to
compute the configurational contribution to the heat capacity,
CV(T), and the Warren–Cowley short-range order parameters.20 We
have performed quasiharmonic free energy calculations for a
number of selected phases and find that the free energy
difference is only about 0.1 meV for T= 350 K. Hence vibrational
entropy can be safely neglected for the studied phase transitions.
The results for CV are shown in Fig. 2 (blue solid line) and the
predictive error is indicated in orange. First we note that the LRP
model uncertainty is negligible for a large temperature range.
Only close to the two observed phase transitions significant
uncertainty due to the different LRPs is present. Note that we have
chosen the number of MC steps sufficiently large so that the MC
convergence errors are negligible, see Section “Methods”. In order
to evaluate our approach we first compare the results to previous
works which were based on perturbational theories such as the
GPM10 and also employed an ideal lattice approximation. In
agreement with ref. 10 we find two phase transitions that the solid
solution undergoes with decreasing temperature. The first
transition when cooling down corresponds to a transition from
the solid solution to a B2(Mo,W;Ta,Nb) ordered state as sketched
in Fig. 2. We would like to emphasize that this B2-ordering has also
been reported in all previous works so far.10–13,15,17,21,22 Consistent
with ref. 10 a second transition at low temperatures is identified as
a phase decomposition into B2(Mo,Ta) and B32(Nb,W) (also
sketched in Fig. 2).
The 30% decrease in the phase transition temperatures

predicted by LRP as compared to10 might also affect other
properties such as the predicted degree of chemical short-range
order at elevated temperatures. To elucidate this we focus next on

the high-temperature short-range order parameters

αij ¼ 1� pij
cicj

; (1)

where pij is the probability of finding a j-type atom among
neighbors of i-type atoms and ci, cj are the alloy concentrations of
the corresponding elements. The results for the different αij are
shown in Fig. 3. Indeed, the supercell based calculations (dashed
lines) reveal overall a smaller degree of short-range order at a
given temperature as compared to the ones derived from the
perturbation method (open diamonds). We find, however, that the
main deviations are caused by the lower transition temperatures
predicted by the presently used supercell-based approach,
whereas the overall temperature dependencies of the αij’s are
rather similar. We note that the SRO for the Mo–Ta bonds is an
order of magnitude larger than that for the other bonds as also
observed in.10,15 The question remains whether the assumption of
static atomic positions (neglect of lattice relaxations) in these
results causes any further qualitative change in the SRO
predictions.
In order to account for local lattice distortions, we allowed for

ionic relaxations in the configurations entering the training set. As
we focus in the present work on the stability of the solid solution
(homogeneous disordered alloy) we kept the cell volume and
shape fixed to closer mimic the dominant randomized configura-
tions. Note that if our objective was the zero-temperature ground
state search, where phase decomposition and thus strong
macroscopic volume fluctuations are anticipated, it might be
important to consider volume relaxations. As mentioned above,
the advantage of the employed LRPs is that it is straightforward to
include local lattice distortions into the model. We hence fitted a
new ensemble of ten potentials to the DFT data based on relaxed
configurations and recomputed the SRO parameters.
The results for the newly trained LRPs, including relaxation

effects for the SRO are also shown in Fig. 3 (solid lines).
Interestingly, at high temperatures above 600 K—the highest
phase transition temperature—the impact of relaxations does not
strongly affect the SRO parameters, although relaxations decrease
the enthalpy by about 10 meV/atom. This indicates that such a
decrease is uniform for most random local environments and does
not significantly discriminate one local environment against
another one. Based on the exponential-type behavior of the
SRO parameters at high temperatures we further corroborated this
finding by inspecting the dependence of log(1− αij) on 1/T. From
the slope at high temperatures, similar linear dependencies are
found for both, relaxed and unrelaxed scenarios. Within a
simplified isotropic pair-potential picture, this corresponds to

B2(Mo,Ta)+B32(Nb,W) B2(Mo,W;Ta,Nb)

Nb Mo Ta W

Solid Solution

Fig. 2 The dependence of heat capacity on temperature. The blue
line represents the mean heat capacity averaged over the ensemble
of LRPs. The standard deviation of the results is shown as the orange
area. LRPs predict energy of unrelaxed configurations. The results
are presented for the equimolar system with the 12 × 12 × 12 size.
The black line represents the data from ref. 10. The structures
correspond to the low-energy structure at 20 K, the ordered layered
structure at 360 K and solid solution at high temperature from left to
right, respectively

Fig. 3 The dependence of the short-range order (SRO) parameters
on temperature. Dashed lines: LRP using unrelaxed configurations.
Solid lines: LRP using relaxed configurations. The results from the
perturbative approach10 are marked by diamonds
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similar effective pair interaction energies in the alloy at high
temperatures. This implies that perturbation approaches on static
lattices are indeed an accurate and computationally efficient tool
for studying SRO parameters as done in various previous studies
for HEAs.10,11,23–25 The differences between relaxed and unrelaxed
scenarios, however, reveal themselves at lower temperatures.
Specifically we find that, compared to the unrelaxed scenario, the
Ta–Ta and Nb–Mo bonds become stronger, which prevents
segregation of Mo and Ta into a separate phase at low
temperatures: Mo and Ta are now also strongly coupled with Nb
and Ta, respectively.
To further elaborate the impact of relaxations we computed

again the specific heat capacity, now based on the relaxed
calculations as shown in Fig. 4. After we introduce the relaxation
effects, significant changes can be noticed in the dependence of
CV(T). Still two phase transitions are observed, but now at
temperatures of 300 and 200 K, respectively. Relaxation effects
have previously been reported to stabilize the solid solution
compared to the B2 ordered structure by about 200 K.12 Here we
find that the solid solution is also stabilized by about 200 K,
shifting the transition temperature down to 300 K. Note that this is
more than 450 K lower than predicted in ref. 10. The transition
temperature is also 200 K lower than predicted in ref. 12, in which
the transition temperature has been estimated based on the
assumption of ideal mixing and by supercell calculations for the
Gibbs energy cross-over of the B2 structure and the solid solution.
To examine the origin of these differences we further analyze the
structures below the respective transition temperatures.
In our LRP MC simulations below 200 K, an ordered ground-

state structure is formed consisting of 〈100〉 atomic planes
consisting of the same type of atoms. The planes are repeated
with the period of four lattice constants in the following sequence:
Nb–Mo–Ta–W–W–Ta–Mo–Nb as illustrated in Fig. 4. We stress
again that the calculations without relaxations resulted into a

phase decomposition into B2(Mo,Ta)+ B32(Nb,W) as also reported
in ref. 10.
We next analyzed the MC-predicted structures below the first

phase transition temperature. We find that the solid solution turns
not into a B2 ordered structure (as suggested in all previous
works10–13,15,17,21,22 and our unrelaxed scenario) but into a
semiordered layered configuration as sketched in Fig. 4. This
new state, which has not been reported before, can be
characterized by atomic planes along the 〈100〉 direction occupied
predominantly by one type of atoms, see Fig. 4. Atoms of other
types, if present in such a plane tend to clusterize together into
separate islands. A detailed analysis based on large-scale MC
simulations including ~200,000 atoms (see also Fig. 5) shows that
this phase can be qualitatively described as the repetition of
Nb–Mo–Ta–W and W–Ta–Mo–Nb stacks of planes with occasion-
ally appearing W–Ta–Mo–Ta–W and Nb–Mo–Ta–Mo–Nb stacks in
such a way that Nb and W planes do not appear near each other.
The latter is consistent with the fact that the Nb-W SRO
parameters is almost 1 as shown in Fig. 3. This is also consistent
with refs. 10,26 where NbW is found to stabilize in a B32 structure
suggesting that the second pair interaction energies are larger
than the nearest-neighbor ones. This promotes a separation of Nb
and W planes. There is a larger number of Mo- and Ta-dominant
planes, and the equimolarity is preserved due to higher
concentration of Nb and W atoms in the Mo- and Ta-dominant
planes than that of Mo and Ta atoms in the Nb- and W-dominant
planes. Hence there is a long-range order along these planes in
the 〈100〉 direction, but no long-range order perpendicular to the
planes, as the calculation shown in Fig. 5 confirms.
In order to understand the qualitative difference in the results of

calculations with and without taking local lattice distortions into
account, we compared the energies of the predicted structures
before and after relaxation in DFT calculations. For the structures
arising in the unrelaxed scenario, relaxation effects are not
significant: the B2(Mo;Ta) and B32(Nb;W) are already at equili-
brium due to the symmetry, while the energy of B2(MoW;NbTa)
structures decreases by only 0.1 meV/atom after relaxation. On the
contrary, the energy of the random phase decreases by
approximately 13meV/atom, while the energies of the ordered
and semiordered phases predicted in the relaxed scenario
decrease by around 15meV/atom. This illustrates why accounting

Nb-Mo-Ta-W-W-Ta-Mo-Nb

Nb Mo Ta W

Solid SolutionNon-periodic 
atomic planes

Fig. 4 The dependence of heat capacity on temperature. The blue
line corresponds to the average over an ensemble of LRPs, and the
orange area corresponds to the standard deviation. The results are
presented for the equimolar system with the 12 × 12 × 12 size. The
LRPs predict energy of relaxed configurations. The structures
correspond to the low-energy structure at 20 K, the semiordered
structure at 240 K with nonperiodically arranged atomic planes and
solid solution at high temperature from left to right, respectively. In
the semiordered structure, only the Mo atoms are opaque; the other
atoms are transparent and form similar planes in other locations

Fig. 5 Pair correlation for the Mo-Mo pair in the three 〈100〉
directions as a function of distance measured in lattice constants.
The calculation was done at T= 240 K. The planes were formed
perpendicular to the [100] direction. The main computation was
performed in the 48 × 48 × 48 cell, while the “tail” of the pair
correlation function in the [100] direction was computed in the
100 × 20 × 20 cell, as the Monte-Carlo equilibration time grows very
fast with the size of the cell. The dashed lines are the extrapolated
dependencies
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for the lattice relaxation effects is critical for an accurate analysis of
the solid solution stabilization of the NbMoTaW alloy.
Finally, we postanalyzed how accurately the LRP model

reproduces the energy of the predicted phases. To that end, we
have compared with DFT the LRP prediction of the ground state,
the semiordered structures, and large 4 × 4 × 4 disordered
structures. The average LRP errors for these three phases were
0.1, 1.7, and 0.4 meV/atom, respectively. The low error for the
ground state is simply due to the fact that the ground-state
structure is added to our training set by our adaptive training
procedure. The prediction error for the semi-ordered structure is
the highest, but it is still within the 95% confidence interval for
LRP. We explain the low prediction error of LRP to the fact that LRP
still “saw” the relevant atomic environments in the training set,
although the semiordered and large disordered structures were
not a part of the training set.

DISCUSSION
HEAs have emerged as a promising materials class which offers a
large compositional phase space for tuning various materials
properties. Exploring the vast amount of potential alloys cannot
be coped with experiments alone and computational methods are
therefore crucial. The underlying key assumption of HEAs is its
formation of a solid solution. The solid solution stability range is
therefore a critical parameter in processing such alloys and for
interpreting their materials properties and performance. The same
holds true for the degree of short-range order (SRO) to which
many materials properties are intrinsically linked to. To tackle the
challenge of accurate phase stability and SRO predictions we
proposed a new computational approach. It is based on a
combination of density functional theory calculations, machine-
learning potentials and subsequent MC simulations. The main
advantages of this approach are that it can be combined with
supercell calculations including local relaxations as, e.g., the CE,
while being extremely efficient and providing a systematic way of
improving the accuracy.
Application to a prototypical refractory bcc NbMoTaW alloy

revealed the performance of the method. Such refractory alloys
are usually prone to limited diffusion and kinetics due to their
high-melting temperatures. This renders experimental studies of
thermodynamic equilibrium properties at moderate temperatures
extremely challenging, further emphasizing the importance of an
alternative, computation-driven modeling. Ignoring lattice relaxa-
tions, i.e., using a static-lattice approach two phase transitions at
600 and 300 K are observed, namely a B2-ordering at intermediate
temperatures and a phase decomposition into B2(Mo,Ta) and B32
(Nb,W) at low temperatures. The two phase transitions including
the type of observed ordered configurations agree with the ones
observed in previous works where local distortions have been
disregarded.10 The transition temperatures found in the present
work are about 150 K lower as compared to the previous reported
values. We attribute this in particular to the different employed
approximations for mimicking chemical disorder. In the present
work supercell calculations have been used whereas in ref. 10 the
CPA is employed to simulate chemical disorder and chemical
interactions have been extracted by the generalized perturbation
method. Moreover only pair interactions have been considered in
ref. 10 whereas our approach includes, by construction, also many-
body interactions. At high temperatures, the SRO parameters
obtained in the present work and ref. 10 are, however, in a good
agreement suggesting that perturbation-based approaches such
as the GPM or the concentration wave method are powerful tools
to study SRO at elevated temperatures.
If local lattice distortions are included in the calculations, our

1 meV/atom-accurate model predicts a sequence of transitions
which significantly differ from the results by the static-lattice
approach as well as previous simulation results. First, instead of

segregation of different species into sublattices we see that the
solid solution persists until much lower temperatures as so far
suggested, i.e., down to 300 K. Moreover, in contrast to what the
previous GPM-based calculations, concentration wave method,
and CE-based calculations suggested,10–13,15,17,21,22 a B2-ordering
is not the most stable ordering at ambient temperatures. Indeed, a
new, layered semi-ordered phase is found for bcc NbMoTaW.
Calculations show that these layered structures gain about
−20meV/atom to their enthalpy after we have allowed for local
lattice relaxation and become more energetically favorable by
about 5 meV/atom than the phases previously reported as stable
—this shows the significance of taking the local lattice relaxation
into account. Based on our analysis of machine-learning model
uncertainty we suggest that the exact phase transition tempera-
ture is in the interval of 250–350 K. As the layered structure is
rather different from the originally anticipated B2 ordering,
significant impact on various properties such as on the elastic
tensor and mechanical anisotropy behavior could be expected.
We leave this for future investigations.
At very low temperatures, a layered ordered structure, not

reported so far, has been found. Interestingly, Widom has
recently revisited bcc NbMoTaW and performed a very careful
ground state analysis, and suggested a decomposition into a
hR7(Mo2NbTa2W2) and a cI2(Nb) structure.16 According to our
calculations, its formation enthalpy is indeed by about 2 meV/
atom below the low-energy structure we predicted if we allow,
in addition to the ionic relaxations, for volume changes. This
stabilization is mostly driven by pure Nb which has a much
larger equilibrium volume than that of the solid solution. If we
perform local relaxations only while keeping the volume fixed,
the decomposition into hR7(Mo2NbTa2W2) and cI2(Nb) is about
6.5 meV/atom above the here-found, layered ground state. This
also highlights the performance of our approach in predicting
the ground state under given external conditions, e.g., at a fixed
lattice constant. We would like to emphasize that in contrast to
the ground state considerations at zero K, the alloy remains
macroscopically homogeneous under the phase transition
occurring at room temperature. We, therefore, do not expect
that the inclusion of volume fluctuations would qualitatively
alter our results at ambient temperatures.
In summary, we have proposed a new computational

approach for the investigation of thermodynamic properties of
high-entropy alloys. This approach is based on the LRP,18 a
computationally efficient machine-learning interatomic poten-
tial capable of accurately representing interactions in a system
with many chemical components (see Supplementary Informa-
tion, Section “LRP predictive power analysis”). The potentials are
trained on DFT supercell calculations and thus allow to
systematically include the impact of local lattice distortions.
The approach is validated by employing a static-lattice
approximation and comparing the results to existing
ones.10,12,15 By including local atomic relaxations we found that,
contrary to previous works, the solid solution is stable down to
room temperature and transforms into a newly found, layered
semiordered metastable state. This highlights the important role
of local relaxations for the stabilization of the solid-solution
where atomic relaxations are not constraint (limited) by
symmetry as compared to competing ordered configurations
(see Supplementary Information, Section “Analysis of impor-
tance of relaxation effects”). An ensemble of potentials further
enabled us to analyze the uncertainty of the predictions. The
proposed methodology, thus, makes it possible to accurately
model multicomponent alloys (including HEAs) in the entire
temperature range with high-computational efficiency and to
search for new, hitherto unexplored multicomponent ordered
states.
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METHODS
Interatomic potential
In the here-employed approach, the atomic structures are represented by
atoms located on fixed lattice sites. Each atom is assigned one of the four
atomic types {Nb, Mo, Ta, W}. In this representation local relaxations are
allowed, as long as relaxations do not topologically alter the bcc lattice.
In the on-lattice model, LRP,18 the energy of each configuration is

partitioned into contributions of the separate atomic environments of each
atom as

EðσÞ ¼
X

ξ2Ω
V σðξ þ r1Þ; :::; σðξ þ rnÞð Þ;

where Ω is the lattice periodically repeated in space, V is the so-called
interatomic potential defining the contribution of the atom at the lattice
site ξ to the total energy E, σ(ξ+ ri) is the type of ith neighbor of the atom
located at ξ, ri is the vector connecting ξ with its neighbor, and n is the
number of neighbors (including the central atom) that depends on the
cutoff parameter.
V can be thought of as a tensor with mn parameters, where m is the

number of atomic types. In order to reduce the number of parameters, the
low-rank tensor–train assumption is applied.19 The tensor–train decom-
position of V of rank r is simply

Vðσ1; ¼ ; σnÞ ¼
Y

i

AiðσiÞ;

where Ai are matrices of rank r or less that depend on σi2 {Mo, Nb, Ta, W}.
The matrix A1 has the size 1 × r, A2 has the size r × r, etc., and An has the size
r × 1, so that the matrix product results into a scalar. Strictly speaking, it is
sufficient to take the size of A1 as 1 ×min{4, r}, the size of A2 should be min
{4, r} × min{42, r}, etc. The matrix entries of Ai are the parameters found
from data.
The choice of the two adjustable parameters, the number of neighbors n

and rank r, affect the predictive accuracy of the model. We restricted the
interaction to nearest neighbors, n= 9, as we found no advantage of
considering interaction with longer range. We then kept increasing r until
we have reached r= 5 that gave us the accuracy of 1 meV/atom. This
resulted in about 500 independent parameters.
There can only be 4n ≈ 250,000 possible combination of input

parameters (σ1,…, σn) of V. We, therefore, can precompute and store the
values of V for all possible inputs. When this is done, the potential V is
symmetrized over all 48 permutations of (σ1, …, σn) corresponding to the
physical symmetries. This avoids artificial breaking of symmetry in the MC
simulations and slightly improves the accuracy.
In order to find the parameters of V we minimize the following

functional:

1
K

XK

k¼1

EðσðkÞÞ � EqmðσðkÞÞ�� ��2; (2)

where K is the number of the atomic configurations, σ(k), in the training set
(k= 1,…, K), E(σ(k)) is an energy of configuration predicted by the LRP
model, Eqm(σ(k)) is the DFT reference energy.
The optimization functional Eq. (2) is not linear (because V depends

nonlinearly on its tensor–train parameters). Therefore, there are plenty of
local minima (by energy) in the space of the parameters. Thus, the
minimization algorithm can find different local minima, depending on
random initial parameters at the training stage. Therefore, thanks to the
fast evaluation of an ensemble of ten different LRPs were trained. Analysis
of the independent predictions of the LRP ensemble makes it possible to
estimate the uncertainty of the approach.18

The workflow of our calculations is shown in Fig. 1. First, we compose
the training set from 200 randomly generated configurations, each with 16
atoms. Then the ensemble of 10 LRPs is trained. After this, the accuracy of
this ensemble is checked: if the potentials accurately predict the energies
of the configurations sampled by the Monte-Carlo algorithm on 32-atom
structures, then we can proceed with statistical calculations on the large
structures. Otherwise, we add the MC-sampled configurations for different
temperatures to the training set, after computing them with DFT. The
process hence continues until the accuracy stops improving noticeably as
the training set expands. The prediction error (error of the energy
prediction of configurations appearing in MC) in our calculations was
improved from few meV/atom down to 1meV/atom by the inclusion of
new atomic configurations. We note that the training configurations hence
generated contain ordered structures with and without impurity defects,

thus ensuring that we take impurities into account together with how they
locally distort the lattice.
The configurations (with the reference energy) for the training set are

computed with DFT as implemented in VASP 5.4.1. (refs. 27–30). The lattice
constant is set to 3.239 Å which is close to the experimental4 and
theoretical value.12 A cutoff energy of 400 eV, 1.7 times the default energy
cutoff of the PAW pseudopotentials employed, and a dense 8 × 8 × 8 k-
point mesh generated by the Monkhorst–Pack scheme31 (8 × 8 × 4 for the
32-atom configurations) were chosen for the DFT calculations to ensure
that the DFT energies are converged down to the error of the order of
10−4 eV. An additional support grid for the evaluation of the augmentation
charges has been employed. Ionic relaxations are performed with a fixed
cell volume and shape. The convergence criterion for the electronic loop
and the ionic relaxations have been set to 10−7 and 10−6 eV, respectively.

MC method
The canonical MC method is used in the simulations of the equimolar
NbMoTaW bcc alloy. The MC simulations are performed with periodic
boundary conditions. On-lattice LRPs are used as the interatomic
interaction model in the MC scheme.
We studied the temperature range between 20 and 2000 K. Perfect

component mixing is guaranteed at 2000 K and nearly perfect ordering is
observed at temperatures close to 20 K. Two strategies of temperature
changes were considered: (1) starting from 20 K heating the sample by
increasing temperature in 20 K steps; (2) starting from 2000 K and cooling
down by decreasing the temperature by 20 K at each step. We found that
the heating and cooling does not have any significant impact on the
evaluated enthalpy, i.e., no hysteresis is observed and both cases coincide.
This indicates that our MC algorithm “is ergodic”, i.e., explores the full
volume of the configurational space typical for a given temperature,
because otherwise we would have observed the dependence of the results
on the starting configuration through observing hysteresis.
The MC simulations are carried out for a 12 × 12 × 12 supercell based on

the 2-atom primitive bcc cell and contains in total 3456 atoms. We have
adopted an adaptive number of iterations: For temperatures higher than
600 K, 2 × 107 MC iterations are performed for each temperature, whereas
2 × 108 iterations are performed in the temperature range of 400–600 K,
and 2 × 109 iterations are performed for temperatures below 400 K. For the
4 × 2 × 2 cells containing 32 atoms, the number of iterations has been
chosen accordingly by two orders of magnitude smaller.
For unbiased averaging, we employed the so-called burn-in32: we

discard half of the MC iterations, and perform averaging over the second
half. We note that discarding half of the iterations is necessary only near
phase transitions, however, in order to keep our algorithm robust we
always discard half of the iterations.
The most challenging MC simulations, for calculating the long-range pair

correlation function at T= 240 K shown in Fig. 5, were conducted in a 48 ×
48 × 48 cell. About 1012 iterations were required to converge the graphs
for the distance of up to 24 lattice constants, however, this was not enough
to see the lack of long-range order perpendicular to the planes, in the [100]
direction. Calculations in even larger cubic cells, however, are not practical
because of a very fast growth of the equilibration time with the cell size.
Therefore, in order to see the lack of long-range order in the [100] direction
we conducted calculations in a 100 × 20 × 20 cell. Note that these
calculations do not provide any new information about the long-range
order along the planes, but they reveal the long-range decorrelation
perpendicular to the planes.
The atomic structures were visualized with the VESTA software package.33
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