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Deep learning model improves tumor-infiltrating lymphocyte
evaluation and therapeutic response prediction in breast cancer
Sangjoon Choi1,5, Soo Ick Cho 2,5, Wonkyung Jung2,5, Taebum Lee 2, Su Jin Choi3,4, Sanghoon Song2, Gahee Park2,
Seonwook Park 2, Minuk Ma2, Sérgio Pereira2, Donggeun Yoo2, Seunghwan Shin2, Chan-Young Ock2 and Seokhwi Kim 3,4✉

Tumor-infiltrating lymphocytes (TILs) have been recognized as key players in the tumor microenvironment of breast cancer, but
substantial interobserver variability among pathologists has impeded its utility as a biomarker. We developed a deep learning (DL)-
based TIL analyzer to evaluate stromal TILs (sTILs) in breast cancer. Three pathologists evaluated 402 whole slide images of breast
cancer and interpreted the sTIL scores. A standalone performance of the DL model was evaluated in the 210 cases (52.2%)
exhibiting sTIL score differences of less than 10 percentage points, yielding a concordance correlation coefficient of 0.755 (95%
confidence interval [CI], 0.693–0.805) in comparison to the pathologists’ scores. For the 226 slides (56.2%) showing a 10 percentage
points or greater variance between pathologists and the DL model, revisions were made. The number of discordant cases was
reduced to 116 (28.9%) with the DL assistance (p < 0.001). The DL assistance also increased the concordance correlation coefficient
of the sTIL score among every two pathologists. In triple-negative and human epidermal growth factor receptor 2 (HER2)-positive
breast cancer patients who underwent the neoadjuvant chemotherapy, the DL-assisted revision notably accentuated higher sTIL
scores in responders (26.8 ± 19.6 vs. 19.0 ± 16.4, p= 0.003). Furthermore, the DL-assistant revision disclosed the correlation of sTIL-
high tumors (sTIL ≥ 50) with the chemotherapeutic response (odd ratio 1.28 [95% confidence interval, 1.01–1.63], p= 0.039).
Through enhancing inter-pathologist concordance in sTIL interpretation and predicting neoadjuvant chemotherapy response, here
we report the utility of the DL-based tool as a reference for sTIL scoring in breast cancer assessment.
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INTRODUCTION
Tumor-infiltrating lymphocytes (TILs) are mononuclear immune
cells that penetrate into and around solid tumor areas1. TILs are
observed in breast cancer tissue regardless of histologic and
molecular subtypes, but triple-negative breast cancers (TNBC) and
human epidermal growth factor 2 (HER2)-positive breast cancers
tend to show more prominent TIL infiltration compared to
hormone receptor-positive cancers2. The presence of TILs in
breast cancer has been reported to be a prognostic factor and a
predictor of response to chemotherapy and immune checkpoint
inhibitors3–7.
Despite the importance of the TIL, previous studies have

shown substantial interobserver variation among pathologists in
determining TIL scores. To increase the objectivity of the TIL
interpretation, the International Immuno-Oncology Working
Group proposed a guideline that recommends the evaluation
of only stromal TILs (sTILs) rather than the inclusion of
intratumoral TILs (iTILs) and described standardized scoring
methodology8,9. Nevertheless, the concordance rate of the TIL
scoring has not been reported to be sufficiently high among
pathologists10–12, which raises an urgent need for a novel
method that can reduce the interobserver variation of sTIL
scoring in breast cancer and lead to an accurate prediction of
clinical outcomes.
Recently, deep learning (DL) has been increasingly applied in

medical fields13,14. The adoption of digital pathology in the
conventional pathologic workflow allows DL algorithms to be
easily utilized in the analysis of digitalized histologic
images14–18. The DL application in pathology is expected to

reduce interobserver variability, as the International Immuno-
Oncology Working Group suggested a computational assess-
ment of TILs19–21. To be integrated into actual clinical practice,
DL models require thorough validations22. However, clinical
evidence for the role of the DL model to assist pathologists in
evaluating TILs has not been sufficient to date. We previously
developed and demonstrated a DL-based TIL analyzer and a
Programmed death-ligand 1 analyzer that enabled not only an
objective histologic evaluation, leading to the elimination of
interobserver variability, but also better prediction of therapeu-
tic responses23,24.
In this study, we report the utility of a DL-based TIL analyzer in

reducing the interobserver variation in sTIL scoring in breast
cancers. Board-certified pathologists initially evaluated sTIL
scores from whole slide images (WSIs), and concordant cases
were utilized to evaluate the standalone performance of the DL
model. For cases with a discrepancy between the pathologist
and the DL model, each pathologist re-evaluated the cases with
the assistance of a DL-based analyzer. The differences in sTIL
level between responders and non-responders to neoadjuvant
chemotherapy before and after DL assistance, respectively, were
evaluated in TNBC and HER2-positive breast cancer (Fig. 1). With
the aid of the DL-based TIL analyzer, the concordance rate of the
sTIL scoring was significantly improved, and the prediction of
therapeutic responses was enhanced. Our study demonstrates
the value of DL assistance as a complementary tool for objective
pathologic sTIL interpretation in breast cancer.
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RESULTS
Dataset characteristics
A dataset of WSIs (N= 402) was prepared for sTIL evaluation,
consisting of 199 anonymized breast cancer histologic images
obtained from Cureline (Brisbane, CA, USA) and 203 slides
obtained from Ajou University Medical Center (AUMC) (Suwon,
Republic of Korea). All specimens from Cureline were surgically
resected primary breast cancer from treatment-naïve female
patients. The specimens from AUMC were either HER2-positive
breast cancer (N= 148) or TNBC (N= 55), which were core-
biopsied before neoadjuvant chemotherapy between January
2014 and June 2022. The therapeutic response was evaluated in
the surgically resected specimen following the neoadjuvant
chemotherapy. Detailed clinicopathologic characteristics of the
cases are summarized in Table 1.

Initial TIL scoring by pathologists for concordance evaluation
Four pathologists participated in the assessment of the dataset (S.
Choi [A], W. Jung [B], S. Kim [C], and T. Lee [D]) to classify a
concordant set for the evaluation of the standalone performance
of DL (Fig. 1). Each slide in the entire dataset was evaluated by
three pathologists. Specifically, pathologists A and C reviewed all
cases, and pathologists B and D evaluated 256 (all Cureline cases
and 57 AUMC cases) and 146 cases (AUMC cases), respectively.
The average sTIL score (%) of three pathologists for the whole
dataset was 22.7 ± 19.3 (mean ± standard deviation [SD]). The
average sTIL scores of each pathologist were 16.5 ± 16.6 (A),
27.7 ± 23.0 (B), 25.8 ± 24.1 (C), and 22.3 ± 17.5 (D), respectively. Of
402 cases, greater than a 10-percentage point difference in the
sTIL score between at least two pathologists was observed in 192
cases (47.8%), and these were allocated in the discordant set. A
total of 210 cases (52.2%) showed less than a 10-percentage point
difference, which was included in the concordant set and utilized
for evaluation of the standalone performance of the DL model.

Standalone performance validation of the DL model
A standalone performance of the DL-based TIL analyzer was
evaluated in the concordant set (N= 210). The concordance
correlation coefficient (CCC) value between the average sTIL score
among three pathologists and the DL calculated score was 0.755
(95% CI: 0.693–0.805) (Fig. 2a). The performance of the DL model
was acceptable regardless of histologic subtype or histologic
grade of tumors. The CCC value for assessment of non-invasive
ductal carcinoma (non-IDC) (N= 34, 0.933 [95% CI: 0.877–0.965])
was higher than that of IDC (N= 176, 0.728 [95% CI: 0.654–0.788])
(Fig. 2b, c). By histologic grade, the CCC value of
Bloom–Richardson (B–R) grade II tumors was the highest
(N= 117, 0.767 [95% CI: 0.688–0.828]), followed by grade III
(N= 66, 0.711 [95% CI: 0.574–0.810]) and grade I tumors (N= 26,
0.626 [95% CI: 0.382–0.788]) (Supplementary Fig. 1a–c). Data from
AUMC and Cureline showed similar CCC values (N= 123, 0.730
[95% CI: 0.651–0.793], and N= 87, 0.757 [95% CI: 0.687–0.813],
respectively) (Fig. 2d, e). When evaluated in the larger set,
including not only initially concordant cases but also the
concordant cases after the DL-assisted revision (N= 286), a higher
CCC value, 0.911 (95% CI: 0.889–0.928) was noticed (Supplemen-
tary Fig. 2). Supplementary Fig. 3 showed representative images
with pathologists’ consensed sTIL score and DL-interpreted sTIL
score.

Initial concordance of TIL score among pathologists and
comparison to DL interpretation
The overall correlations of the initial sTIL score between two
pathologists based on the CCC were 0.662 (95% CI: 0.604–0.714)
for pathologists A and B, 0.653 (95% CI: 0.605–0.696) for
pathologists A and C, 0.769 (95% CI: 0.698–0.825) for pathologists
A and D, 0.824 (95% CI: 0.782–0.859) for pathologists B and C, and
0.859 (95% CI: 0.810–0.896) for Pathologists C and D (Fig. 3a–e),
which were comparable with scores in previous reports (Supple-
mentary Table 1)10–12,25. The coefficient of variation (COV) of the
initial sTIL evaluation by three pathologists was 0.412 ± 0.254. The

Cureline (N=199) AUMC (N=203)

Breast cancer dataset (N=402)

Concordant cases
in pathologists

(N=210)

DL standalone
performance
evaluation

Pathologist-DL
Discordant cases

(N=226)

DL-assisted revision
by pathologists

By pathologists By DL algorithm
Initial TIL score evaluation

Pathologist-DL
Concordant cases

(N=176)

Neoadjuvant
therapeutic response

prediction
(AUMC dataset)

Fig. 1 Overall workflow of data collection, evaluation of the standalone performance of deep learning (DL) model, DL-assisted
pathologists’ revision, and the neoadjuvant chemotherapy response prediction. DL standalone performance was evaluated in cases that
were concordant among pathologists (N = 210). In cases where there was disagreement between pathologists and DL (N = 226), pathologists
performed the DL-assisted revision. Then the results were applied to neoadjuvant therapeutic response prediction.
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CCC values between the sTIL scores calculated by pathologists and
those calculated by the DL model were 0.729 (for the average of
three pathologists, 95% CI: 0.682–0.771), 0.750 (for pathologist A,
95% CI: 0.705–0.790), 0.621 (for pathologist B, 95% CI:
0.564–0.673), 0.604 (for pathologist C, 95% CI: 0.546–0.657), and
0.726 (for pathologist D, 95% CI: 0.645–0.791) in the whole dataset
(Fig. 4a–e). In 167 (41.5%) cases, the sTIL scores calculated by
the DL model were within the range of scores given by the
pathologists. The scores by the DL model were lower than the
range by the pathologists in 174 (43.3%) cases. Sixty-one (15.2%)
cases had scored by the DL model that exceeded the range of
scores by the pathologists.

DL-assisted revision of the TIL score by pathologists
According to the 10-percentage point difference cutoff from the
DL-interpreted value, 92 (22.9%, Pathologist A), 130 (50.8%,
Pathologist B), 157 (39.1%, Pathologist C), and 40 (27.4%,

Pathologist D) slides were subjected to re-evaluation by each
pathologist (Fig. 5). In all, 226 (56.2%) slides were reviewed by at
least one pathologist (49 slides by three pathologists, 95 slides by
the two pathologists, and 82 slides by one pathologist) (Fig. 1).
The re-examined slides showed lower CCC values among three
pathologists than cases that were not re-examined (Supplemen-
tary Table 2). Among those slides, the pathologists changed their
initial sTIL score in 86 (93.5%, Pathologist A), 91 (70.0%,
Pathologist B), 130 (82.8%, Pathologist C), and 24 (60.0%,
Pathologist D) cases.
In the discrepant cases, the number of slides showing more

than a 10-percentage point difference in the sTIL score between at
least two pathologists was decreased to 116 cases (28.9%;
p < 0.001; McNemar test) after DL-assisted revision. The CCC
values between the two pathologists also consistently increased
(Fig. 3f–j). The CCC values between the pathologists and the DL
model were increased to 0.874 (for all three pathologists, 95% CI:
0.849–0.895), 0.916 (Pathologist A, 95% CI: 0.899–0.931), 0.756
(Pathologist B, 95% CI: 0.711–0.795), 0.809 (Pathologist C, 95% CI:
0.775–0.839), and 0.823 (Pathologist D, 95% CI: 0.766–0.867) in the
whole dataset (Fig. 4f–j). The increases in CCC values were
observed in both the Cureline set (Supplementary Fig. 4a, b) and
the AUMC set (Supplementary Fig. 4c, d). The effect of DL-assisted
revision was profound in the initially discordant set (N= 192,
Supplementary Fig. 5). The COV of the revised sTIL score was
0.325 ± 0.225, which was significantly lower than the initial value
(p < 0.001; paired t-test). The interobserver variances of sTIL
scoring between two pathologists before and after DL assistance
are depicted by Bland–Altman plots in Fig. 6. The initial differences
in mean sTIL score between two pathologists were 13.0 ± 12.6
(Pathologist A and B), 11.6 ± 13.9 (Pathologist A and C), 7.3 ± 8.7
(Pathologist A and D), 9.9 ± 10.9 (Pathologist B and C), and
6.8 ± 6.6 (Pathologist C and D), and consistently improved to
8.8 ± 9.0 (p < 0.001; paired t-test), 6.9 ± 8.6 (p < 0.001), 6.2 ± 6.7
(p < 0.001), 5.7 ± 7.0 (p= 0.115), and 6.1 ± 6.4 (p= 0.238) after DL
assistance.

Potential biases by pathologists and DL model in evaluating
TIL
After the evaluation by the pathologists, the interaction between
the pathologist and the DL model was analyzed post hoc. First, we
reviewed the WSIs of 192 cases in the discordant set, showing the
sTIL score difference greater than 10 percentage points between
pathologists. More than half of the discrepancy stems from a simple
over-/underestimation of lymphoid cells (N= 107, 55.7%). Also, the
spatially heterogeneous distribution of the lymphoid cells turned
out to be a significant cause of the initial discordance (N= 77,
40.1%). In some TNBC cases, the small-sized tumor cells were
difficult to distinguish from lymphoid cells, especially in the slides
with squeezing or cauterization artifacts (N= 8, 4.2%) (Fig. 7a).
The DL-assisted revision could decrease the initial sTIL score
differences to less than 10-percentage points, especially in the
samples showing the heterogeneous distribution of lymphoid cells
(Fig. 7b, c). The cases where the initial discrepancy was resolved by
DL-assisted revision had significantly higher COVs than the other
slides (0.560 ± 0.255 vs. 0.384 ± 0.245; p= 0.001; student t-test).
Next, we analyzed 28 cases in which DL model misinterpreta-

tion was suspected. These cases included those for which (1) there
was a difference of 10 percentage points or more in the sTIL score
between the DL model and all pathologists after re-evaluation, (2)
two or more pathologists revisited but did not change the initial
sTIL score, and (3) pathologists revised the score in the opposite
direction to the value of the DL model (for example, a pathologist
gave the initial sTIL score as 30% and the DL model suggested
10%, but the pathologist revised the sTIL score to be 40%). A
thorough review of these cases revealed that the sTIL score was
underestimated in the majority of the cases (Fig. 7d). The DL

Table 1. Clinicopathologic characteristics of 402 breast cancer
patients in the external validation dataset.

Characteristics All (N= 402) Cureline
(N= 199)

Ajou University
Medical Center
(N= 203)

Age [median, range] 56 [30, 87] 60 [30, 87] 53 [30, 73]

Ethnicity

White patients (%) 160 (39.8%) 160 (80.4%) 0 (0.0%)

Asian patients (%) 242 (60.2%) 39 (19.6%) 203 (100.0%)

Molecular subtype

Human epidermal
growth factor
receptor 2 (HER2)-
positive

169 (42.0%) 21 (10.6%) 148 (72.9%)

Triple negative breast
cancer (TNBC)

70 (17.4%) 15 (7.5%) 55 (27.1%)

Others or not
available (N/A)

163 (40.6%) 163 (81.9%) 0 (0.0%)

Histologic subtype

Invasive ductal
carcinoma (IDC)

350 (87.1%) 163 (81.9%) 187 (92.1%)

Invasive lobular
carcinoma (ILC)

21 (5.2%) 14 (7.0%) 7 (3.4%)

Mixed IDC and ILC 18 (4.5%) 17 (8.5%) 1 (0.5%)

Others 13 (3.2%) 5 (2.5%) 8 (3.9%)

Bloom–Richardson grade

Grade I (well
differentiated)

35 (8.7%) 23 (11.6%) 12 (5.9%)

Grade II (moderately
differentiated)

206 (51.2%) 102 (51.3%) 104 (51.2%)

Grade III (poorly
differentiated)

159 (39.6%) 74 (37.2%) 85 (41.9%)

N/A 2 (0.5%) 0 (0.0%) 2 (1.0%)

Black’s nuclear grade

Grade 1 8 (2.0%) 0 (0.0%) 8 (3.9%)

Grade 2 189 (47.0%) 126 (63.3%) 63 (31.0%)

Grade 3 205 (51.0%) 73 (36.7%) 132 (65.0%)

Cancer stage

I 34 (8.5%) 31 (15.6%) 3 (1.5%)

II 266 (66.2%) 123 (61.8%) 143 (70.4%)

III 88 (21.9%) 32 (16.1%) 56 (27.6%)

N/A 14 (3.5%) 13 (6.5%) 1 (0.5%)
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model misidentified cancer stroma in 14 cases (50.0%), missed
lymphoid cells in one case (3.6%) and misdetected both entities in
13 cases (46.4%), as shown in Fig. 7e–g.

Improved prediction of neoadjuvant chemotherapy response
by DL-assisted TIL scoring
It is well-documented that high sTIL distribution in HER2-positive
and TNBC is a predictor of better response to neoadjuvant

chemotherapy26–32. Consistently, responders (N= 92) to the
neoadjuvant chemotherapy (Miller-Payne grade 4 and 5; reduction
of more than 90% of tumor cells) had higher initial sTIL score
evaluated by three pathologists compared to the non-responder
(N= 111, Miller-Payne grade 1–3) (mean ± standard deviation:
25.4 ± 18.8 vs. 19.0 ± 15.4; p= 0.010; student t-test) (Fig. 8a). The
DL-assisted revision could increase the difference of average sTIL
score between responders and non-responders (26.8 ± 19.6 vs.
19.0 ± 16.4; p= 0.003) (Fig. 8b). The standalone interpretation by

a b

d

c

e

Fig. 2 Evaluation of the standalone performance of the deep learning (DL)-based TIL analyzer. a The concordance correlation coefficient
(CCC) in the initially concordant dataset (N= 210) between average stromal tumor-infiltrating lymphocyte (sTIL) score among the pathologists
and the DL model interpretation. b, c The CCC values between average sTIL score among the pathologists and the DL model interpretation
b in invasive ductal carcinoma cases (IDC) (N= 176) and c in other histologic subtype cases (non-IDC) (N= 34). d, e The CCC values between
average sTIL score among the pathologists and the DL model interpretation d in the Cureline dataset (N= 87) and e in the Ajou University
Medical Center (AUMC) dataset (N= 123).

a

f
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g

c

h

d

i

e

j

Fig. 3 Deep learning (DL)-assisted reduction of interobserver variation in the stromal tumor-infiltrating lymphocyte (sTIL) score between
pathologists. The correlation of the sTIL score between pathologists a–e before and f–j after DL-based TIL analyzer assistance. The degree of
correlation is measured by the concordance correlation coefficient (CCC). The term “revisited” indicates the case that is returned to
pathologists for review with DL assistance, whereas “rescored” refers to the case that is actually revised after DL assistance.
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DL model could also reveal the difference of sTIL score between
the responder and non-responder group at a similar level to the
revised interpretation by pathologists (27.1 ± 22.2 vs. 18.6 ± 18.3;
p= 0.004) (Fig. 8c).
Also, binary logistic regression analysis revealed that the sTIL-

high group (sTIL ≥ 50) was related to the responder compared to
the sTIL-low group (sTIL < 10) as shown in odds ratios (ORs) in
Fig. 8d. The correlation was insignificant with the initial sTIL
scoring by pathologists, however, the revised score with DL-
assistance and the DL standalone interpretation data showed
statistical significance (OR 1.25 [95% CI: 0.98–1.59]; p= 0.076 for
initial pathologists’ reading; OR 1.28 [95% CI: 1.01–1.63]; p= 0.039
for DL-assisted revised reading; OR 1.27 [95% CI: 1.01–1.59];
p= 0.039 for DL standalone interpretation; binary logistic regres-
sion). For the sTIL-intermediate group (sTIL 10–49) compared to
the sTIL-low group, statistical significance was not reached in all
three groups (OR 1.14 [95% CI: 0.98–1.34]; p= 0.095 for initial
pathologists’ reading; OR 1.16 [95% CI: 0.99–1.36]; p= 0.060 for
DL-assisted revised reading; OR 1.13 [95% CI: 0.97–1.31]; p= 0.114
for DL standalone interpretation) when analyzed in the entire
AUMC dataset including both TNBC and HER2-positive tumors
(total N= 203). However, in HER2-positive patients (N= 148),
correlation to neoadjuvant chemotherapeutic response was
identified in the sTIL-intermediate group compared to the sTIL-
low group with initial and DL-assisted sTIL interpretation by
pathologists (OR 1.21 [95% CI: 1.01–1.44]; p= 0.036 for initial
pathologists’ reading; OR 1.22 [95% CI: 1.03–1.45]; p= 0.022 for
DL-assisted revised reading; OR 1.11 [95% CI: 0.94–1.32]; p= 0.229
for DL standalone interpretation). The OR of the sTIL-high group in
HER2-positive tumors was higher with the DL-assisted interpreta-
tion by pathologists in comparison to the result of the entire
dataset (OR 1.43 [95% CI: 1.06–1.93]; p= 0.020). The ORs of the
sTIL-high group in HER2-positive patients were statistically
insignificant for initial pathologists’ interpretation or DL standa-
lone interpretation (OR 1.31 [95% CI: 0.97–1.77]; p= 0.084 for
initial pathologists’ reading; OR 1.25 [95% CI: 0.95–1.65]; p= 0.115
for DL standalone interpretation) (Fig. 8e). In TNBC patients
(N= 55), neither the sTIL-high group nor the sTIL-intermediate
group was correlated to the therapeutic response when compared
to sTIL-low group, in initial pathologists’ interpretation (OR 1.18
[95% CI: 0.71–1.95]; p= 0.518 for sTIL-high group; OR 1.03 [95% CI:

0.67–1.57]; p= 0.907 for sTIL-intermediate group), DL-assisted
revised interpretation (OR 1.13 [95% CI: 0.69–1.85]; p= 0.634 for
sTIL-high group; OR 1.04 [95% CI: 0.67–1.59]; p= 0.873 for sTIL-
intermediate group), and DL standalone interpretation (OR 1.38
[95% CI: 0.93–2.04]; p= 0.116 for sTIL-high group; OR 1.20 [95% CI:
0.89–1.60]; p= 0.235 for sTIL-intermediate group) (Fig. 8f). When
the correlations of five individual Miller–Payne grade categories
and sTIL scores were evaluated, the initial pathologists’ consensus,
revised pathologists’ consensus, and the DL model consistently
showed similarities (Supplementary Fig. 6).

DISCUSSION
Here we report that assistance with a DL-based TIL analyzer can
lead to reduced interobserver variation among pathologists in
evaluating sTILs in breast cancer compared with their interpreta-
tion without DL assistance. Despite the importance of TIL
evaluation in breast cancer, only a few studies report that
lymphocytes can be objectively identified using DL algo-
rithms33–35. Also, whether DL assistance can help pathologists
provide more accurate TIL scores has not yet been investigated.
Several meta-analyses reveal that TIL distribution is associated

with disease prognosis and response to treatment36–39. High TIL
levels are associated with increased pathological complete
response rates to neoadjuvant chemotherapy in TNBC and
HER2-positive breast cancer36. Additionally, accumulating evi-
dence shows that high TIL content in breast cancers is associated
with increased Programmed death-ligand 1 expression and better
responses to immune checkpoint inhibitors2,36,40. Recent studies
report that stratification of breast cancer patients according to the
sTIL level has as much prognostic value as stratification by cancer
stage6,41. Therefore, the sTIL level is now regarded as one of the
most significant findings in the histopathologic examination of
breast cancer and is recommended by international guidelines to
be incorporated into the pathology report42–44.
However, the interobserver variation in sTIL evaluation among

pathologists has long been problematic12,45. An objective calculation
of sTILs is difficult due to its complexity; pathologists should classify
lymphocytes from various cells, segment the stromal area, and then
calculate the sTIL score. Although current guidelines provide
standards of interpretation for pathologists, histomorphologic

a

f
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g

c

h

d

i

e

j

Fig. 4 The correlation between the stromal tumor-infiltrating lymphocyte (sTIL) scores calculated by the deep learning (DL) model and
the scores provided by pathologists. a The concordance correlation coefficient (CCC) between the value of the DL model and the average
value of pathologists before DL-assisted revision. b–e The CCC between the value of the DL model and the value from each pathologist before
DL-assisted revision. f The CCC between the value of the DL model and the average value of pathologists after DL-assisted revision. g–j The
CCC between the value of the DL model and the value from each pathologist after DL-assisted revision.
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evaluation is inevitably subjective25,46. Supplementary Table 1
summarizes the interobserver concordance of breast cancer sTIL
evaluation reported in previous studies10–12,25. The interobserver
variation is especially prominent when general pathologists partici-
pate in the studies compared with when the examinations were
conducted only by specialists in breast pathology.
The role of digital pathology in medicine has grown over time

and has included larger storage for scanned WSIs and an increase
in computational power17,18. DL algorithms are successfully
introduced to analyze WSIs of solid tumors, including breast
cancer21,47, and several studies apply DL algorithms to TIL
evaluation in breast cancer33–35,48–50. Those studies report
comparable TIL estimation by DL models and manual TIL
evaluation by pathologists, although additional validation is
required due to the relatively small number of datasets on which
the models were based33–35. Considering that the pathologist’s
interpretation of the TIL score, not the evaluation by a DL model, is
still the gold standard in TIL analysis, studies on the process of
evaluating TILs more accurately and objectively through the
interaction between a pathologist and a DL model are needed. A
recent report also recommends that a DL model for TILs needs to
be a computer-aided tool for pathologists rather than a fully
automated model that replaces human interpretation20.
In this study, we observed significant variability in sTIL

assessments among pathologists, as previous studies have also
reported10–12,25. The interobserver variability among pathologists
was markedly reduced after DL-assisted revision. In particular, the
concordance among the pathologists in this study—who are not
specialists in breast pathology—was enhanced from the general
pathologist level to the breast specialist level with DL assistance

when referring to the correlation and agreement rates from the
previous studies (Supplementary Table 1). This finding implies that
our DL-based TIL analyzer can play an important role in correcting
misinterpretations by pathologists. A common cause of inter-
observer variation in TIL evaluation is an unequal distribution of
lymphocytes throughout the WSI because pathologists have
difficulty estimating disproportionate cell counts in large fields12.
Our DL model accurately determines the cases that exhibit an
uneven distribution of TILs, as shown in Fig. 7c, implying that the
DL model can practically solve one of the common difficulties in
reading TILs at the WSI level.
In some cases, interobserver variation was still identified despite

assistance from DL and the second chance to revise the interpreta-
tion. The inconsistency was mainly due to poor sample quality, such
as squeezing artifacts and over/under-staining. The discrepant cases
between the DL algorithm and the pathologists also frequently
revealed a low quality of preparation. As shown in Fig. 7f, g, some
lymphoid cells and areas of cancer stroma were missed by the DL
model. Atypical histomorphology of cells and tissue resulting from
preparation artifacts were frequently identified in these cases, which
suggests insufficient training of the DL algorithms with suboptimal
inputs. The performance degradation of the DL model is often
observed when the staining, scanner, sample acquisition site, and
demographics are different18,51, and when tissue artifacts are present
in the training and/or internal validation sets52–56. Suboptimal quality
images are unavoidable and are encountered in daily pathology
practice; however, these errors may not lead to a poor decision if
pathologists can directly verify the erroneous inference result of the
DL model and reflect this finding in their final decision. From this
point of view, DL model development in digital pathology should be

Step 2. The deep learning (DL)-powered model calculated sTIL
score (%) from whole slide image

Step 1. For each case, three pathologists independently evaluated
sTIL (stromal tumor infiltrating lymphocyte) score of breast cancer

35%

60%

75%

Step 3. Pathologist with discrepancy in sTIL score of the
DL-powered model was re-visited to score the cases

35%

60%

75%
56.4%

N = 402

Step 4. Pathologist rescored the discrepant cases with the
DL-powered model assistance

65%

60%

70%
56.4%

Discrepant more than 10 percentage points of sTIL
to the DL-powered model

Not discrepant to the DL-powered model

sTIL score by the DL-powered model

Revised sTIL score with the DL-powered model
assistance

Fig. 5 The detailed workflow of deep-learning (DL)-assisted revision of stromal tumor-infiltrating lymphocyte (sTIL) by pathologists.
Pathologists and DL independently performed the sTIL assessment (Step 1 and 2). If there was more than a 10% difference between each
pathologist and DL results (Step 3), the pathologist performed a reassessment with the DL-powered model assistance (Step 4).
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directed toward the augmentation of decisions made by
pathologists18,57.
It is thus noteworthy that the pathologists’ sTIL evaluation with

DL assistance exhibited better prediction of neoadjuvant che-
motherapy responses in patients compared to the evaluation
without DL assistance, and the tumor response prediction with the
DL standalone evaluation could lead to a comparable result. In our
results, the average sTIL scores evaluated by pathologists or the
DL model were higher in chemotherapy responders compared to
non-responders in TNBCs and HER2-positive breast cancers, which
is in line with the previous studies26–32. A more profound statistical
significance was observed when the result of DL-assisted revision
or that of DL standalone interpretation was utilized in the analysis,
compared to that of initial pathologists’ interpretation. Also, the
fact that the sTIL-high tumor group of initial pathologists’
interpretation had failed to show a significant correlation to the
chemotherapy response, but statistical significance was observed
in the group of DL-assisted revision highlights an ancillary role of
DL in the accurate histologic interpretation. Imposingly, we could
identify a similar level of correlation by the DL-based standalone
reading. The DL-assisted improvement of therapeutic prediction
was more evident in HER2-positive tumors. The DL-assisted
change was insignificant TNBCs, possibly due to the relatively
small number of datasets, because we had validated that our DL
model could well-distinguish tumor cells and lymphoid cells not
only in HER2-positive tumors but also in TNBCs. Further studies
using a larger cohort consisting of multi-center patients with
neoadjuvant chemotherapy information are imperative to demon-
strate the efficacy of our DL-assisted sTIL evaluation.
Interestingly, we observed the better performance of the DL

model on sTIL scoring in non-IDC, which are mostly composed of
invasive lobular carcinoma (ILC), compared to IDC. Since ILC cells are
small, round, monotonous, and discohesive than IDC cells, we first
expected that the DL-based TIL analyzer could possibly misclassify
the tumor cells as lymphocytes or plasma cells20. However, the
superior performance of the DL model in ILC implies that the
algorithm is successfully trained to distinguish the subtle morpho-
logical differences among the cell types. Considering that high sTIL
infiltration is associated with unfavorable clinical outcomes in ILC58,
a reliable sTIL evaluation by using our DL-based TIL analyzer can play
a pivotal role in the enhanced prediction of the prognosis in this
specific histologic subtype. Additionally, the standalone perfor-
mance of the DL model was superior in tumors with histological
grade II/III than in tumors with grade I. It is well-documented that
TNBCs tend to display high histological grades than other molecular
subtypes59. Considering the prognostic impact of sTILs in TNBC, the
better performance of DL assessment in high histologic grade
tumors indicates the usefulness of the DL model on sTIL evaluation
and prediction of the prognosis of the TNBC.
The DL algorithm we developed and validated can help

pathologists further understand the role of TILs in breast cancers
and other types of cancer. For example, iTILs have important clinical
value in breast cancer, but it is difficult to evaluate iTILs objectively
on hematoxylin and eosin (H&E)-stained slides without additional
special stains60–63. By applying a subtle modification, our DL model
enables the detection and calculation of iTILs in addition to sTIL.
Additionally, the distribution patterns of TILs and the TIL density,
which can be accurately evaluated by DL algorithms, are recognized
as important features in relation to molecular signatures45,64–66. DL-
assisted TIL evaluation can explore and analyze unknown or
complex patterns of TILs, which is fastidious, time-consuming, and
associated with interobserver variation.
This study has some limitations. First, we analyzed 402 breast

cancer slides that were evaluated by three pathologists. Although
some previous studies investigate the concordance of breast sTIL
evaluation between two-to-four pathologists10,11,25,34,67, it is

a f

b g

c h

d i

e j

Fig. 6 Bland–Altman plots displaying the changes of interobser-
ver variation on stromal tumor-infiltrating lymphocyte (TIL)
scoring. Before (a–e) and after deep learning assistance (f–j).
Straight blue lines are the average difference between the two
pathologists and dashed red lines indicate the 95% confidence
interval.
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obvious that a large number of participants is important for the
accurate estimation of interobserver variation in the real-world
setting68. Thus, to verify the performance of the model, it may be
necessary to validate the model with a larger number of
pathologists and larger, diverse dataset sources. Second, the DL
model performance can be further improved because the sTIL

evaluation results of the DL model and those of pathologists did not
match well in a few cases, especially when pathologists interpreted
high sTIL scores. In addition to improved cell detection and tissue
segmentation performance of the DL model, it is necessary to
advance the formula for calculating the sTIL score from cell
detection and tissue segmentation results based on the verified
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(N = 23, 82.1%)
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(N = 5, 17.9%)
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Both
(N = 13, 46.4%)

Misdetecting
cancer stroma
(N = 14, 50.0%)

Missing lymphoid cells
(N = 1, 3.6%)

Total N = 28
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Fig. 7 Biases of tumor-infiltrating lymphocyte (TIL) evaluation by pathologists and deep learning (DL)-powered TIL analyzer.
a Classification of the initial discordance cases of TIL interpretation by pathologists. b Degree of achieving concordance by the DL assistance
according to the initial discordance categories. c Example of an uneven stromal TIL (sTIL) distribution. The area in the blue box represents a
low sTIL area, while the area in the red box represents a high sTIL area (scale bar, 250 μm). d Classification of the estimation error by DL-
powered TIL analyzer. e Classification of the DL misinterpretations by causes. f Example of missed lymphoid cells by the DL-powered TIL
analyzer (scale bar, 100 μm). g Example of incorrect cancer stroma segmentation by the DL-powered TIL analyzer (scale bar, 250 μm). Red dot,
lymphocytes detected by DL model; white arrowhead, lymphoid cells missed by DL model; yellow dot: tumor cells detected by DL model;
green region, cancer stroma segmented by DL model; purple region, cancer area segmented by DL model.
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‘gold standard’ in breast cancer datasets. Third, for revisited cases,
pathologists may have tended to rely on the DL model in the
scoring of sTIL and changed their first assessment even if those were
correct estimations. To reduce this error, pathologists should refer to
the score of the DL model after careful examination of whether
there is a considerable misinterpretation of the DL model on tissue
segmentation or lymphocyte labeling. Additionally, comparing each
pathologist’s sTIL scoring with and without DL assistance with an
adequate washout period is required for more reliable results.
In conclusion, for the first time, we demonstrated that a DL-

based TIL analyzer could help pathologists objectively and
accurately evaluate sTILs in breast cancer by reducing interobser-
ver variability. The DL-assisted sTIL evaluation allows better
prediction for neoadjuvant chemotherapy response in patients
with TNBCs and HER2-positive breast cancers. Further verification
of the performance of this analyzer in routine clinical practice will
reveal its potential value as a complementary and effective tool for
objective pathologic interpretation.

METHODS
Development of a DL-based TIL analyzer
A DL-based TIL analyzer, Lunit SCOPE IO (Lunit Inc., Seoul, Republic
of Korea), was developed with data from 2.8 × 109 μm2 H&E-

stained tissue sections and 6.0 × 105 TILs from 3166 WSIs of 25
cancer types annotated by board-certified pathologists, as
previously described23. Among the dataset, 7.6 × 108 μm2 H&E-
stained tissue sections and 1.1 × 105 TILs were from 557 WSIs of
breast cancer (Supplementary Table 3). The pathologists segmen-
ted the cancer area and cancer stroma and annotated cancer cells
and lymphoid cells from slide images to develop the DL model. All
H&E-stained slides were prepared from formalin-fixed paraffin-
embedded samples of surgically resected or biopsied tissue and
were scanned at 40× magnification using a slide scanner
(Pannoramic 1000, 3DHISTECH Ltd., Hungary).
We developed two complementary but separate DL models to

evaluate the sTIL score: one for cell detection and the other for
tissue segmentation, which was described in our previous study23.
The cell detection model was applied to detect lymphoid cells in
all areas, while the tissue segmentation model was applied to
segment the stromal area in this study. Each model was trained
independently, starting from an ImageNet-pre-trained back-
bone69. The models and training routines were implemented in
the Python programming language (Version 3.7) and the PyTorch
framework (Version 1.4)70.
The cell detection model detects the cancer cells and lymphoid

cells on the WSIs and is based on the Faster R-CNN object
detection algorithm71. Due to the large size, WSIs cannot be
directly processed by the model. Therefore, tiles of size

a

d

b

e

c

f

Fig. 8 Enhanced prediction of neoadjuvant chemotherapy response with deep learning (DL)-assisted stromal tumor-infiltrating
lymphocyte (sTIL) evaluation. a, b The average sTIL score in the responder group (Miller–Payne grade 4 and 5) and the non-responder group
(Miller–Payne grade 1–3) was interpreted by pathologists without (a) and with DL-assistance (b). c The DL standalone interpretation of sTIL
score in the responder and the non-responder group (The center lines in the boxplot represent median values; the bounds of the boxplot
represent the interquartile ranges; the whiskers represent the range of the data). d–f The odds ratio (OR) of sTIL high group (sTIL ≥ 50) and
intermediate group (sTIL 1–49) compared to sTIL low group (sTIL < 10) in relation to the neoadjuvant chemotherapeutic response, d in the
entire HER2-positive breast cancer and triple-negative breast cancer (TNBC) dataset, e in the HER2-positive breast cancers, and f in the TNBCs
(error bars, 95% confidence interval). * denotes p < 0.05, and ** denotes p < 0.01. The p-values were calculated using a student’s t-test for (a–c)
and binary logistic regression for (d–f).
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1024 × 1024 pixels (0.04 mm2), extracted from WSIs, are used
instead. The model was trained to predict the location of the cells
of interest, a bounding box surrounding the nucleus of the cells,
and the class of the cell. First, Faster R-CNN computes feature
maps from a given tile through a backbone, which was defined as
a ResNet-34 architecture72. Then, a Region Proposal Network (RPN)
processes the features and predicts cell candidates. Finally, for
each candidate, a Region of Interest (ROI) head regresses the
position of the cell and bounding box. In contrast to the original
Faster R-CNN algorithm, we employed the Dice loss function73 as
the objective for cell classification. Additionally, when training the
RPN network, we sampled positive (cell of interest) and negative
(non-cell) cells with a 9:1 ratio to tackle the class imbalance in the
task of cell detection. The cell detection model was trained by
using the Adam optimizer74, with a learning rate of 0.001, and
mini-batches of 32 samples. A variety of common data
augmentation techniques were applied during training, including
random shearing, random rotations, or random changes in image
appearance (brightness, hue, contrast, and saturation).
The tissue segmentation model is based on a

DeepLabv3 semantic segmentation model75, and a backbone is
based on EfficientNet-B376. The model classifies each pixel on the
WSIs, whether it belongs to the cancer area, cancer stroma, or
other background regions except the cancer area and cancer
stroma. It takes input patches of size 448 × 448 pixels (0.11 mm2)
and outputs prediction maps of size 112 × 112 units. The
prediction maps are then linearly upsampled by a factor of 4 to
match the original input patch size. Therefore, we obtain one
prediction per input pixel. During training, the Dice loss function73

was optimized using Adam optimizer74 with a learning rate of
0.001. The learning rate was decayed by a factor of 0.1 after every
100 epochs. Similarly to the cell model, a variety of common data
augmentation techniques were applied during training, including
random shearing, random rotations, or random changes in image
appearance (brightness, hue, contrast, and saturation).
The performance of the DL-based model on tumor cell and

lymphocyte detection was 79.02% and 76.25% in F1-score,
respectively, and on cancer area and cancer, stroma segmentation
was 75.55% and 67.79% in intersection over union (IoU),
respectively. In breast cancer, F1-score for tumor cell and
lymphocyte detection was 85.61% and 78.87% in each, and IoU
for cancer area and cancer stroma were 81.92% and 66.60%,
respectively. To check the reproducibility of the model, we further
randomly sampled with replacement (the same number of grids)
from the available 1650 tissue and 1611 cell grids from 15 cancer
types and conducted a bootstrapping evaluation repeatedly 100
times. In breast cancer, F1-score for tumor cell and lymphocyte
detection was 85.67% and 77.95% in each, and IoU for cancer area
and cancer stroma were 82.04% and 66.47%, respectively
(Supplementary Fig. 7).
By combining the information, we could calculate the sTIL score

in WSIs based on lymphoid cells only in the cancer stroma as in
Eq. (1). Normalization is inevitable in the sTIL score equation
because the DL model detects the actual area of the cancer
stroma (area), but only identifies the presence of lymphoid cells
and depict them as dots (not detecting the actual area occupied
by the cells). Considering that lymphoid cells in breast cancer are
regular in size (a sphere with a radius of 3 μm), a constant α can be
defined and multiplied by the numerator to mathematically define
the sTIL score. The constant α is determined by the following
patch-level analysis.

stromal tumor� infiltrating lymphocytes score ¼ α X lymphoid cell count
cancer stroma area

(1)

For the development and validation of the sTIL score calculation
algorithm, a total of 249 grids of 1024 × 1024 pixels were

randomly cropped from breast cancer WSIs in The Cancer Genome
Atlas (TCGA) dataset77. Next, the sTIL score was evaluated within
the grid area by three pathologists (S. Choi, W. Jung, and S. Kim),
and 171 of 249 grids were scored for sTIL by all three pathologists.
The remaining 78 grids were excluded and were not evaluated by
all three pathologists due to issues with the sample quality raised
by at least one pathologist. Empirically, we set the α as 6.5, 7.0,
and 7.5 for the algorithm and compared the correlation to the
mean TIL score of pathologists. The α value 6.5 generally showed a
good correlation value to the mean TIL score of pathologists, but it
had a lower correlation value than 7.0 or 7.5 for sTIL scores less
than 15 or 10 in most cases (Supplementary Table 4, Supplemen-
tary Fig. 8). On the other hand, multiplication of 7.5 showed a
relatively good correlation in the sTIL score of less than 20, but the
overall correlation in the entire sTIL range was inferior. Multi-
plication by 7.0 revealed a balanced result between the value of
6.5 and 7.5. Therefore, we utilized 7.0 as a constant α in the sTIL
scoring equation. For the 171 grids, the correlation measured by
CCC between the DL-calculated sTIL score and the average value
obtained by the three pathologists was 0.776 (95% CI:
0.719–0.823). The ICC values between the sTIL scores of the DL
model and those of each pathologist were 0.651 (95% CI:
0.585–0.709), 0.811 (95% CI: 0.765–0.849), and 0.710 (95% CI:
0.629–0.776), respectively.
Additionally, to further validate the selected α value as 7.0, we

randomly selected 50 breast cancer WSIs from TCGA and had
them evaluated by three pathologists, after which their results
were compared with the DL model’s output. The pathologists
evaluated sTIL scores for 48 among the 50 cases, except for the
two cases with poor tissue or scan quality. The CCC between the
DL-calculated sTIL score and the average sTIL score of the three
pathologists’ interpretation was 0.874 (95% CI: 0.799–0.922)
(Supplementary Fig. 9).

Dataset
The Cureline dataset (N= 199) was obtained in WSIs of H&E slides
with 40× magnification by the slide scanner mentioned above.
The H&E slides of the AUMC dataset (N= 203) were scanned in
WSIs by a Aperio AT2 digital whole slide scanner (Leica Biosystems
Imaging, Buffalo Grove, IL, USA) at 40× magnification. The entire
dataset was anonymized not to reveal the patients’ identification.
The ethnic identity was determined by the researchers. The data
were collected and utilized under the permission of the
Institutional Review Boards (IRBs). For the Cureline dataset, the
IRB from Saint Petersburg City Clinical Oncology Hospital
approved the study under the protocol CU-2010 Oncology
12152009, and the IRB from Saint Petersburg Academic University
of the Russian Academy of Sciences approved protocol number
CU-M-07092015-C-INT. For the AUMC dataset, the IRB from Ajou
University Medical Center approved the study under the protocol
AJOUIRB-KS-2022-340. Informed consent was waived by the IRB
because of the retrospective nature of the study and the
anonymized clinical data used in the analysis. The study was
performed in accordance with the Declaration of Helsinki.

Initial evaluation of the TIL by pathologists
Four board-certified, non-breast pathologists evaluated the sTIL
score at the whole slide level in the dataset by using a computer-
based WSI viewer. The sTIL score was assessed based on the
recommendations suggested by the International Immuno-
Oncology working group8. Briefly, mononuclear lymphoid cells
(lymphocytes and plasma cells) were counted as TILs, and
polymorphonuclear leukocytes (neutrophils) were excluded. TILs
in tumor areas with crush artifacts, necrosis, regressive hyaliniza-
tion, and in the previous core biopsy site were excluded. Only TILs
within the invasive tumor borders were scored, whereas TILs
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outside the tumor border and around ductal carcinoma in situ or
normal lobules were excluded.

Evaluation of the standalone performance of DL-based TIL
analyzer
Following the initial assessment of sTIL in the entire dataset
(N= 402) by pathologists, 210 cases (52.2%) showing less than a
10-percentage point difference among the pathologists’ inter-
pretation was utilized to evaluate the standalone performance of
the DL-based TIL analyzer. The CCC value was calculated between
the average sTIL score among the pathologists and the DL
interpretation. The same analyses were performed in the
subgroups according to the datasets (Cureline or AUMC),
histologic subtypes (IDC or non-IDC), and B-R histologic grade
(grade I, II, or III) of tumors. The standalone performance of the DL
model was once again assessed in the dataset including both
initially concordant cases and the concordant cases following the
DL-assisted revision.

DL-assisted revision of the TIL score by pathologists
When the difference between the pathologist’s sTIL score and the
DL model’s sTIL score exceeded a cutoff value of 10 percentage
points, the cases were returned to the pathologists for re-
evaluation (Figs. 1 and 5). These returned cases were defined as
“revisited” cases. The pathologists reviewed the selected cases
with software that provided DL assistance. The software displayed
DL cell detection outputs (cancer cells and lymphoid cells) and
area segmentation outputs (cancer area and cancer stroma)
overlaid on the WSI (Fig. 7). When the pathologists revised their
sTIL score of revisited cases after DL assistance, they were defined
as “revised” cases. The correlation of the sTIL score between the
DL model and the pathologist, as well as those among the
pathologists, were evaluated.

Effect of DL assistance on neoadjuvant chemotherapy
response prediction
The pathological responses to neoadjuvant chemotherapy were
assessed in 203 patients of the AUMC dataset by using the Miller-
Payne grading system, which compares the cancer cellularity
between the core needle biopsy sample and surgical resection
specimen. The grading system is divided into five grades and as
follows: grade 1, no reduction in overall cellularity; grade 2, a minor
loss of tumor cells but overall high cellularity (up to 30% reduction);
grade 3, between an estimated 30% and 90% reduction in
cellularity; grade 4, a marked disappearance of more than 90% of
tumor cells; grade 5, no invasive malignant cells in sections from the
site of the tumor78. Grades 1–3 patients were classified as non-
responders, and Grades 4 and 5 patients were classified as
responders26–28,79,80. In addition, sTIL was divided into three groups,
high sTIL (sTIL ≥ 50), intermediate sTIL (sTIL 10–49), and low sTIL
(sTIL <10) and the binary logistic analysis was performed to figure
out whether there was a difference in responders to chemotherapy
according to the sTIL group. The difference in mean sTIL values
obtained from the DL model and pathologists’ interpretation
between responder and non-responder was also analyzed.

Statistical analysis
Lin’s CCC was applied to evaluate the correlation of the sTIL score
among the pathologists or between the DL model and each
pathologist81. Bland-Altman plots were used to illustrate the changes
in interobserver agreements on sTIL scores between pathologists
before and after DL assistance82. Since the distribution of the sTIL
evaluation results in this study follows a nonparametric, limit of
agreement lines is indicated by 2.5/97.5 percentile. Differences in
means or medians for a continuous variable between two groups
were assessed by Student’s t-test or paired t-test. Categorical variables

were compared using the chi-squared test or McNemar test. The COV
was calculated to measure the dispersion of the distribution in sTIL
evaluation by pathologists83. The result of binary logistic regression
was shown as OR with 95% CI. All statistical analyses were performed
using Python 3.7 and R version 4.0.3 software (R Foundation for
Statistical Computing, Vienna, Austria).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The pathologists’ evaluation results and the inference results of the DL-powered
model on 171 grids and 48 WSIs from TCGA can be accessed from the following link:
https://figshare.com/articles/figure/Supplementary_Material_Inference_zip/
23932503. The visualization and validation of the algorithm are available from the DL-
powered model page, which is available upon request. The other data (Cureline and
AUMC datasets) in this study are also available from the corresponding author for
academic purpose-request.

CODE AVAILABILITY
The software was developed using Python programming language (version 3.7). The
models are implemented using PyTorch v1.4 (available at https://github.com/
pytorch/pytorch). The cell detection model is based on a proprietary implementation
of Faster R-CNN (open-source implementations available online, e.g., at https://
github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py),
with a ResNet-34 backbone architecture pre-trained on ImageNet data (pre-trained
weights available at https://download.pytorch.org/models/resnet34-333f7ec4.pth
and open-source implementation at https://github.com/pytorch/vision/blob/master/
torchvision/models/resnet.py). The tissue segmentation model is based on a
proprietary implementation of DeepLabV3 (open source implementations available
online, e.g., at https://github.com/VainF/DeepLabV3Plus-Pytorch), with an
EfficientNet-B3 backbone architecture pre-trained on ImageNet data (pre-trained
weights available at http://storage.googleapis.com/public-models/efficientnet-b3-
c8376fa2.pth and open-source implementation at https://github.com/lukemelas/
EfficientNet-PyTorch). The data augmentation transformations and image manipula-
tion routines are implemented using TorchVision v0.5.0 (https://github.com/pytorch/
vision), Albumentations v0.4.5 (https://github.com/albumentations-team/
albumentations), OpenCV Python v4.1.2.30 (https://github.com/opencv/opencv-
python), and Scikit-image v0.16.2 (https://github.com/scikit-image/scikit-image).
Mathematical and statistical operations are implemented using Numpy v1.18.1
(https://github.com/numpy/numpy), Pandas v1.0.1 (https://github.com/pandas-dev/
pandas), Scipy v1.3.0 (https://github.com/scipy/scipy), and Scikit-learn v0.22.1
(https://github.com/scikit-learn/scikit-learn). Finally, the WSIs were read and manipu-
lated using OpenSlide v3.4.1 (https://github.com/openslide/openslide) and corre-
sponding Pyhton wrapper v1.1.1 (https://github.com/openslide/openslide-python).
The R code and csv file to create the figures can be found at https://github.com/
SooIckCho/Breast_TIL. For any questions regarding the replication of results, the
corresponding author can be contacted.
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