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The development of the gut microbiome occurs mainly during the first years of life; however, little is known on the role of
environmental and socioeconomic exposures, particularly within the household, in shaping the microbial ecology through
childhood. We characterized differences in the gut microbiome of school-age healthy children, in association with socioeconomic
disparities and household crowding. Stool samples were analyzed from 176 Israeli Arab children aged six to nine years from three
villages of different socioeconomic status (SES). Sociodemographic data were collected through interviews with the mothers. We
used 16 S rRNA gene sequencing to characterize the gut microbiome, including an inferred analysis of metabolic pathways.
Differential analysis was performed using the analysis of the composition of microbiomes (ANCOM), with adjustment for covariates.
An analysis of inferred metagenome functions was performed implementing PICRUSt2. Gut microbiome composition differed
across the villages, with the largest difference attributed to socioeconomic disparities, with household crowding index being a
significant explanatory variable. Living in a low SES village and high household crowding were associated with increased bacterial
richness and compositional differences, including an over-representation of Prevotella copri and depleted Bifidobacterium.
Secondary bile acid synthesis, d-glutamine and d-glutamate metabolism and Biotin metabolism were decreased in the lower SES
village. In summary, residential SES is a strong determinant of the gut microbiome in healthy school-age children, mediated by
household crowding and characterized by increased bacterial richness and substantial taxonomic and metabolic differences.
Further research is necessary to explore possible implications of SES-related microbiome differences on children’s health and

development.
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INTRODUCTION

The colonization of the human gut with microorganisms begins at
birth and is characterized by a succession of microbial consortia,
which is influenced by changes in diet and life events'. During the
first few years of life, the gut microbiome gradually develops its
structure and function, driven by genetic disposition and
environmental exposures. In contrast to the common belief that
the gut microbiome approaches adult (and relatively stable) levels
in early childhood? recent findings demonstrated substantial
functional and taxonomic bacterial differences in the gut
microbiota of healthy children with respect to those of adults,
suggesting that the gut microbiome may develop more slowly
than previously thought3=8,

While the association between early life determinants and the
development of the gut microbiome in infancy has been
investigated, the potential persistent influence of environmental
factors on the gut microbial community at later childhood remains
largely unknown®. Moreover, recent cross-sectional studies high-
lighted the importance of environmental features in shaping the
microbiome throughout the life cycle’® '3, Individual-level deter-
minants of the microbiome are not necessarily identical to those
that explain differences across populations, especially those living
within homogeneous environments with respect to geography,
culture, and nutrition'. Social contexts including living conditions,
income, and education, are emerging both as fundamental
determinants of the microbiome' and as possible modifiers of
the existing microbiome-health associations across the life
course'. A better understanding of the separate influences of

socioeconomic indicators on the gut microbiome is essential given
the growing evidence on the importance of the microbiome in
human health and disease, and the role of social determinants in
health disparities.

Emerging socioeconomic indicators in the context of the
microbiome include socioeconomic status (SES) and household
composition. A recent review'* identified two studies that linked
various socioeconomic conditions to differences in the gut
microbiome'®'”. Bowyer et al.'®, showed associations between
individual and area-level income to the gut microbial diversity and
composition, while Miller et al."” showed a higher a-diversity with
increased neighborhood SES. Lane et al.’®, revealed that house-
hold composition of breastfed infants is associated with variation
in the gut microbiome, suggesting that a higher diversity of
cohabitants may facilitate social bacterial transmission to the
infant’s gastrointestinal tract, via shared environment or direct
physical and social contact between the maternal-infant dyad and
other household members.

These findings demonstrate the influence of the social
environment on the gut microbiome; however, evidence on this
association during childhood years remains elusive. Childhood is a
crucial period for physical and cognitive development'®, thus
environmental exposures during this period may have a key role
in the child’s health and wellbeing as an adult. Our study aimed to
explore the relationships between individual-level and residential
SES indicators and the fecal microbiome diversity and composi-
tion of healthy school-age children from villages of different SES.
The study was conducted in three Arab villages located in the
same geographic region in northern Israel. We hypothesized that
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Table 1. Demographic characteristics of the study participants by village of residence.

Village A N =47 Village B N =59 Village C N=70 p-value

Age, years, mean (SD) 8.6 (0.6) 7.2 (0.6) 7.5 (0.8) <0.001¢
Sex, females, N (%) 19 (40.4%) 21 (35.6%) 31 (44.3%) 0.604
Household crowding index? mean (SD) 1.3 (0.5) 1.6 (0.7) 2.5 (1.3) <0.001¢
Household income®, N (%) <0.001f

Above average 10 (28.6%) 5 (8.8%) 2 (2.9%)

Average 11 (31.4%) 17 (29.8%) 19 (27.5%)

Below average 4 (11.4%) 18 (31.6%) 11 (15.9%)

Much below average 0 (28.6%) 17 (29.8%) 7 (53.6%)
Number of siblings, median (IQR) 3(2) 2 (1.5) 4 (3) <0.0019
Father’s schooling years, mean (SD) 11.8 (3.7) 10.6 (3) 6 (3.3) <0.001"
Mother’s schooling years, mean (SD) 11.7 (3.7) 10.7 (3.4) 5(3.8) <0.0017
BMIZ score, mean (SD) 0.37 (1.0) 0.02 (1.1) 0.82 (0.9) <0.001)
Breastfeeding, yes, N (%) 45 (95.7%) 57 (96.6%) 1 (87.1%) 0.08
Age (months) of introducing solid foods, mean (SD) 6.1 (2.9) 5.9 (2.9) 8 (2.6) 0.827
Daycare center in early life, N (%) 11 (23.4%) 10 (17.0%) 3 (18.6%) 0.697

BMIZ body mass index Z score, IQR interquartile range, SD standard deviation.

PHousehold income: Household income as compared to the national average.

®Household crowding: Number of people living in the household/Number of rooms in the household.

“Participants missing BMIZ scores (n = 4) imputed with the median value of the cohort.

dpost-hoc pairwise comparison resulted in significant difference between all 3 villages in the mean age.

¢Post-hoc pairwise comparisons: village C vs. village A (p < 0.001); village C vs. village B (p <0.001); and village B vs. village A p = 0.825.

fPost-hoc pairwise comparisons: village C vs. village A (p < 0.001); village C vs. village B (p = 0.03); and village B vs. village A (p = 0.157).

9Post-hoc pairwise comparisons: village C vs. village A (p < 0.001); village C vs. village B (p <0.001); and village B vs. village A (p =0.9).

hipost-hoc pairwise comparison: the mean father’s and mother’s schooling years village C vs. village B p = 0.002; p < 0.001, respectively); village C vs. village A
(p < 0.001 for both), and village B vs. village A (p =0.163; p = 0.550, respectively).

JPost-hoc pairwise comparisons: village C vs. village B (p < 0.001), no significant difference between the other villages.

despite shared ethnicity, geographic location and cultural dietary
habits, SES disparities across the villages, and particularly the
household crowding, will be associated with microbial differences.

RESULTS
Demographic characteristics of the participants

Overall 192 children provided fecal specimens, of these 186
(96.9%) had a sufficient amount of fecal material for genomic DNA
extraction. After initial quality control, 176 (91.7%) were included
in the analysis. The participants’ age ranged from 6.0 to 9.9 years
(mean=7.7, SD=0.9 years), 40.3% of the participants were
females. The household crowding index ranged from 0.6 to 7.0
(mean 1.9 [SD = 1.1]). The study included 47 (26.7%) children from
village A, 59 (33.5%) from village B, and 70 children (39.8%) from
village C (Table 1). Significant differences were found between the
villages in socioeconomic factors (Table 1). The mean household
crowding index was significantly higher in village C compared to
village B (p <0.001), and village A (p <0.001), but no significant
difference was found between villages A and B (p=0.825;
Supplementary Fig. 1a). The median number of siblings was
significantly higher in village C compared to the other two villages
(p <0.001 for both comparisons). Household monthly income was
significantly lower in village C compared to villages B (p = 0.03),
and A (p < 0.001), but no significant difference was found between
villages A and B (p=0.157). The mean number of maternal
schooling years was lower in village C compared to the other two
villages (p<0.001 for both comparisons), but no significant
difference was found between villages A and B (p=0.550;
Supplementary Fig. 1b). There were significant differences in the
mean body mass index (BMI) Z score of children from villages A
and B (p <0.001). There were no significant differences between
the villages in sex distribution, breastfeeding in infancy

npj Biofilms and Microbiomes (2022) 10

(Supplementary Fig. 2a) and daycare attendance in early life
(Table 1). Given the differences between village C compared to
villages A and B, in the subsequent analyses we combined data of
participants from villages A and B that represented the
intermediate/higher SES villages, while village C represented low
SES village.

Qualitative information on diet was collected at age three to
five years for 92 participants via maternal interviews. There were
no significant differences in the consumption of vegetables (p =
0.06), fruit (p = 0.06), red meat (p = 0.532), and poultry (p = 0.601)
by village of residence, with the majority of participants reporting
regular consumption of the aforementioned food groups (Sup-
plementary Fig. 2b-e).

Bacterial diversity and composition across villages
Bacterial a-diversity was significantly different in participants from
village C compared to those from villages A and B, measured by
the higher number of observed “sub” operational taxonomic units
(s-OTUs) (p = 0.03; Fig. 1a), the decreased Pielou’s evenness index
(p = 0.005; Fig. 1b) and increased Faith’s PD index (p = 0.019; Fig.
1c). Shannon'’s diversity index was decreased in the lower SES
compared to the higher SES villages, but this association was not
statistically significant (p =0.08; Fig. 1d). There were significant
differences in both the dispersion and centroids between the
villages. Beta dispersion test was significant (F=7.4, p =0.01) and
the fecal bacterial composition was different, as measured by the
Jensen-Shannon divergence (JSD) index (R>=0.11, p = 0.001) and
by the Weighted UniFrac distance (R*> = 0.107, p = 0.001), adjusted
for sex, age, and household crowding index (Fig. 1e, f). Sex and
age were not significantly associated with the microbial differ-
ences; however, a significant difference was found according to
household crowding (JSD R?=0.018, p = 0.002; Weighted UniFrac
=0.015, p=0.004) (Supplementary Table 1a and b). The fully
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Fig. 1 Divergent socioeconomic villages and the gut microbiome diversity and composition. a Box-violin plots of microbial richness,
measured by the number of observed s-OTUs. b Box-violin plots of microbial a-diversity, measured by Pielou’s evenness index. ¢ Box-violin
plots of microbial a-diversity, measured by the phylogenetic-based metric Faith's PD. d Box-violin plots of microbial a-diversity, measured by
the Shannon'’s diversity index. P-value for the differences between villages A and B vs. village C: p = 0.005 for Pielou’s evenness index, p = 0.03
for the number of observed s-OTUs, p = 0.019 for Faith’s PD, and p = 0.08 for Shannon’s diversity. e Principal coordinate analysis of the JSD
notably different among children villages A and B vs. village C (PERMANOVA R2 = 0.11, p = 0.001). f Box-violin plots of the mean JSD distances
across villages. Within the study population, villages A and B represent the intermediate/high SES villages, while village C represents the lower
SES village. The sample size in each village was 47, 59, and 70, respectively. In the box-violin plots (panels a, b, ¢, d, f), the centre line
represents the median, the lower bound of the box represents the 25th percentile, the upper bound of the box represents the 75th percentile,
the lowest point of the lower whisker represents the minimum value and the highest point of the upper whisker represents the maximum
value. The violin plot implements a rotated kernel density plot on each side, adding information regarding the full distribution of the

measured data; the width of the violin indicates the frequency.

adjusted model resulted in similar significant composition
differences and highest variance attributed to the diverging SES
villages (JSD R?=0.113, p = 0.001; Weighted UniFrac distance R?
=0.104, p=0.001) (Supplementary Table 2a and b). Crowding
index remained a significant covariate explaining a large amount
of variance in the fully adjusted model based on both the JSD and
the Weighted UniFrac distance (R>=0.018, p=0.004 and R?>=
0.015, p = 0.006, respectively).

Taxonomic differences across villages

An analysis of the composition of microbiomes (ANCOM)
comparing the fecal microbiome of children from village C to
those from villages A and B resulted in 72 significant features
discriminating the villages, adjusted for age, sex, and household
crowding (i.e., reduced model; Fig. 2a, Supplementary Table 3). At
the highest detection level of 0.9, we observed significantly
increased abundances of the family Ruminococcaceae and the
genera Prevotella copri, Dialister, Eubacterium biforme, Ruminococ-
caceae Oscillospira and Sutterella, and depleted abundance of
Bifidobacterium, Faecalibacterium prausnitzii, Alistipes putredinis,
Alistipes onderdonkii, Clostridium, and Ruminococcus in village C
compared to villages A and B (Fig. 2c—m). At detection level 0.8,
we observed decreased abundances of Bacteroides ovatus,
Bacteroides uniformis, Parabacteroides distasonis and an over-
representation of Prevotellaceae, including Prevotella stercorea.

The fully adjusted model detected similar taxa at the detection
level of 0.9 (Fig. 2b, Supplementary Table 4), except Sutterella,
Alistipes onderdonkii, Clostridium, and Ruminococcaceae, which
were detected at a lower level of 0.8. Bacteroides ovatus,
Mogibacteriaceae were unaffected by the adjustments. Parabac-
teroides distasonis, Prevotella, were detected at 0.7 compared to
0.8 in the reduced model, whereas no significant difference was
found in Bacteroides uniformis, Catenibacterium, and Prevotella
stercorea in the fully adjusted model.

Published in partnership with Nanyang Technological University

Household crowding and microbial diversity

There was a strong association between household crowding and
fecal a-diversity, as measured by the number of observed s-OTUs
(p=0.017, Fig. 3a), Pielou’s evenness index (p =0.037, Fig. 3b),
and increased Faith’s PD index (p=0.028, Fig. 3c). Pairwise
comparisons of household crowding index (represented as
tertiles), resulted in substantial differences between the lower
and highest tertiles, as measured by the number of observed
s-OTUs (p = 0.024). Pielou’s evenness index differed significantly
between the lowest vs. middle tertiles and between the middle vs.
highest tertile (p =0.039 for both comparisons). Similarly, there
was a positive correlation between bacterial richness and house-
hold crowding index (Spearman’s r coefficient = 0.22, p = 0.004)
(Fig. 3d).

We found significant compositional differences of the fecal
microbiome in association to crowding index, as measured by the
JSD (R?=0.07, p=0.001; Fig. 3e). There was a significant
difference in bacterial dispersion between the lowest tertile of
crowding index compared to middle and highest household
crowding tertiles, suggesting a less variable microbiome with
increased household crowding (p <0.001) (Fig. 3f). The model
showed a significant association between the participants’ age
and village with the microbial composition (Supplementary Table
5A); however, most variance was explained by crowding index (F
= 14.4, R = 0.072), followed by village of residence (F = 6.6, R =
0.065), while age explained less variance (F=22, R>=0.011)
(Supplementary Table 5A). The analysis of the phylogenetic
Weighted UniFrac distance showed a similar trend of significant
bacterial differences between the lowest compared to middle and
highest household crowding tertiles (R?>=0.052, p=0.001).
Additionally, associations were found with the participants’ age
(R?=0.012, p=0.01) and village of residence (R?=0.047, p=
0.001) (Supplementary Table 5B).
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while village C represents the lower SES village. The sample size in each village was 47, 59, and 70, respectively.

Taxonomic differences associated with household crowding
index

An ANCOM analysis, adjusted for age, sex, and village, resulted in
significantly differentially abundant bacteria associated with
household crowding index (Fig. 4a). At the highest detection
level, we observed different relative abundance of Alistipes
onderdonkii, Bacteroides uniformis, Prevotella stercorea, Phascolarc-
tobacterium, and Alistipes putredinis at detection level 0.9, and
Faecalibacterium prausnitzii, Lachnospiraceae, Prevotella copri,
Parabacteroides, and Bacteroides at detection level 0.8 (Supple-
mentary Table 6). A stratified analysis by village showed significant
compositional differences associated with household crowding in
children from villages A and B and village C (Fig. 4b, ¢
Supplementary Table 7). Interestingly, the relative abundance of
Bacteroides uniformis and Alistipes onderdonkii was inversely
associated with household crowding index in all villages. In the
villages A and B higher household crowding was associated with
an increased abundance of Prevotella stercorea, Paraprevotella,
Prevotella copri, and Phascolarctobacterium (Fig. 4d). Moreover, in
village C, an increase in household crowding index was associated
with an over-representation of Ruminococcaceae, while Bacter-
oides caccae, Parabacteroides, Lachnospiraceae, and Sutterella were
depleted (Fig. 4e).

Village SES, household crowding, and inferred metabolic
pathways

An analysis of metabolic pathways inferred from bacterial 16 S
rRNA marker gene resulted in significantly different composition
(Bray-Curtis dissimilarity distance p=0.001; Fig. 5a). We then
performed an exploratory ANCOM analysis, that detected

npj Biofilms and Microbiomes (2022) 10

differentially abundant pathways between village C compared to
villages A and B, including increased d-glutamine and d-glutamate
metabolism (W = 208), secondary bile acid biosynthesis (W = 188),
and Biotin metabolism (W = 188) in villages A and B compared to
village C (Fig. 5b-d).

Sensitivity analyses

Differences in microbial B-diversity. Since Beta dispersion test was
statistically significant, we performed ANOSIM (analysis of
similarities) test, to further confirm our findings regarding
microbial B-diversity. Consistent with the permutational multi-
variate analysis of variance (PERMANOVA) results, ANOSIM test
showed significant difference between the study villages (r? =
0.28, p = 0.001) and according to household crowding (r? = 0.064,
p=0.016). The null hypothesis can be rejected for both
comparisons; the magnitude of the difference was stronger by
village of residence than household crowding conditions.
Collectively these results show statistically significant differences
in the microbial communities between the study groups.

Re-analysis using a random sub-sampling approach. Since the
sample size differed across the study villages, we reanalysed the
data using random and equal subsamples in the three villages, so
each village included 47 random samples (the lowest sample size).
The sociodemographic characteristics of the subsamples were
similar to the original study groups, and the significant SES
differences between the villages were also maintained in the
subsamples (Supplementary Fig. 3). The analysis addressing the
associations of the village of residence and household crowding
with microbial associations (alpha diversity, microbial composi-
tion, and taxonomic differences) using the subsamples showed

Published in partnership with Nanyang Technological University
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consistent results with findings obtained using the entire study
sample and original groups, despite the smaller sample sizes
(Supplementary Figs. 4-9, Supplementary Tables 8-11).

Antibiotic use and diarrheal diseases. Information was obtained
on antibiotic use during the 6 months preceding enrollment and
sample collection and was available for 163 (92.6%) participants,
which was reported among 54% of them. There were no
significant differences in bacterial alpha diversity according to
antibiotic use (Supplementary Fig. 10). We added the variable
antibiotic use as a covariate to our model of Weighted UniFrac,
which showed a nonsignificant association (R% = 0.008, p = 0.148).
The JSD detected significant differences (R?=0.01, p=0.031);
however, the effect was weaker compared to the village of
residence and the household crowding. Differential abundance
analysis using ANCOM revealed small differences including
Erysipelotrichaceae, Coprococcus, and Clostridiales. These taxo-
nomic differences were significantly more delicate compared to
the taxonomic differential abundance analysis in association with
village of residence and household crowding, which, in line with
the high effect size for the analysis of the latter variables
(Supplementary Fig. 10g).

No significant differences were found between diarrheal
diseases in the past year and intestinal microbiome (Supplemen-
tary Fig. 11a-c).

DISCUSSION

We examined the relationships between socioeconomic dispa-
rities, household crowding index and the gut microbiome of
healthy school-age children. We demonstrated that the

Published in partnership with Nanyang Technological University

environmental and social exposures are notably associated with
differences in gut microbial ecology, despite the shared ethnicity,
cultural, dietary, and geographic characteristics of this cohort.
Moreover, we showed significant associations between environ-
mental exposures and children’s intestinal microbiome during an
important period for physical growth and development.

We demonstrated that both residential and household SES,
including household living crowding conditions, are related to the
gut microbiome of healthy school-age children. The results were
consistent using multiple analytical methods, both when analyz-
ing the full dataset and using random subsamples of the study
groups, thus strengthening our original findings that lower SES
and higher household crowding are significantly associated with
increased alpha diversity, different bacterial composition and
taxonomic variations among school-age children. Additionally, our
model reduces possible confounders, since all participants were
from the same ethnicity, live in the same geographic location and
share the same health care system. Membership of an ethnic
group defines shared cultural heritage, including cuisine and
dietary habits, lifestyle and practices of childcare. For example, in
the current cohort, breastfeeding was highly common, and the
utilization of daycare was relatively low and occurred late. Beyond
SES variation and household crowding conditions that play an
important role in shaping the gut microbiome, within-population
differences in the consumption quality of macro and micronu-
trients favorable for the gut microbiota likely contribute to the
observed microbial-SES differences in our study population.

We observed a significant association between the intestinal
bacterial diversity amongst the villages. There was a significant
increase in fecal bacterial richness, increased phylogenetic
diversity, and complementary depleted microbial evenness amid
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Fig. 4 Differentially abundant taxa by village of residence and socioeconomic status. a-c Volcano plots showing differentially abundant
s-OTUs as detected by ANCOM, in all three study villages (a) and stratified by village; villages A and B [higher SES] (b), and village C [low SES]
(c). The x-axis represents the difference in mean centered log ratio (cIr)-transformed abundance between groups and the y-axis represents the
ANCOM W Statistic. s-OTU points are colored by level of ANCOM significance, with 0.9 being the highest level; s-OTUs in gray were not
significant. d, e Boxplots of clr-transformed abundance of s-OTUs significantly associated with the household crowding index in villages A and
B [higher SES] (d) and in village C [low SES] (e), adjusted for sex, age, and village of residence. Tertiles of crowding index were categorized as
low, middle and high household crowding tertiles. In the boxplots (panles d, e), the centre line represents the median, the lower bound of the
box represents the 25th percentile, the upper bound of the box represents the 75th percentile, the lowest point of the lower whisker
represents the minimum value and the highest point of the upper whisker represents the maximum value. Within the study population,
villages A and B represent the intermediate/high SES villages, while village C represents the lower SES village. The sample size in each village

was 47, 59, and 70, respectively.

participants from a lower SES village (village C). We found a similar
trend with an increased household crowding index, a measure-
ment that is highly correlated with SES. This unique observation
can be linked to Rook’s “old friends” hypothesis?®, a revised
version of Strachan’s “hygiene hypothesis”?', proposing that larger
family size, and having siblings might confer benefits to the
immune system, possibly via the modulation of the microbiome.
An alternative hypothesis might be that several bacterial taxa
require extended contact to invade family members. This could
explain the profound increase in bacterial richness combined with
depleted evenness, suggesting dominant colonization of selected
bacterial species. These species could be associated with higher
household crowding and thus, extended contact with more family
members. Nevertheless, currently there are significant gaps in
understanding of how the household and social environments
differentially facilitate the horizontal transmission of microbiota in
children, emphasizing the need for large-scale longitudinal
studies.

We demonstrate that a higher household crowding index,
which reflects exposure to caregivers and siblings, is associated
with higher microbial diversity and richness. Interestingly,
associations were demonstrated between various diseases affect-
ing westernized countries with dysbiosis and loss of microbial
diversity in the gut microbiota?2. This cohort focuses on healthy
children, thus a significant decrease in microbial biodiversity was
not expected. Higher household crowding index is closely
associated with lower SES, which is in turn linked to lifestyle
patterns and health outcomes in adulthood?*=2°. As such, SES
disparities, traditionally measured through education, income,
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and/or occupation, are considered as the most fundamental cause
of health disparities?>2°. Since lower SES is often correlated with
excess morbidity and mortality worldwide and locally in Israel?’2%,
and simultaneously strongly associated with microbial differ-
ences'®"7, large-scale longitudinal studies are needed to explore
the development of the child’s microbiome, including the possible
fluctuations of bacterial diversity and long term health-related
outcomes.

We also observed differences in microbial composition asso-
ciated with SES, detected both by the Weighted UniFrac and by
the JSD and consistent by the implementation of both PERMA-
NOVA and ANOSIM. Moreover, it appears that the low SES village
(village C) was the most divergent compared to the higher SES
villages. The results were similar in a fully adjusted permutation-
based analysis of the variance model. Our fully adjusted
PERMANOVA model explained 14.7% (JSD) of the microbial
variation in this cohort, with the village of residence explaining
the largest amount of variance (11.4%), followed by household
crowding. The examined covariates had significant associations,
albeit they explained a relatively low percentage of variance in this
cohort. Notably, although the village of residence and household
crowding retained the strongest effect, still they did not account
for all the variance, suggesting additional contributors from
unidentified influences, stochastic effects, or biotic interactions.
These findings are in line with updated literature, emphasizing the
gap in the understanding of microbiome variance and the need
for further exploration of unknown covariates as well as intrinsic
microbial ecological processes such as founder effects, species
interactions, and dynamics®.

Published in partnership with Nanyang Technological University



Axis 2 (12.62 %)
[ viagesaes
L] [Dlvitagec
°
o % )
° 0d o
° ° Q@J )
°
X Bm%ugo
° 8, SpbR e
rid @ O °
R O§Q%98@ %
00| ©° @o O% ‘y)%%oowo e
o R o0,
e 9 0° @
—o0 °° e
Axis 3 (1007%) O s 143041 %)
[+
20000
£
2
T © 150004
ca
L&
20
g £
@ 100004
s
2E
es
o=
) 5000 7 N
(=]
04 . :
Villages A & B Village C

Y. Lapidot et al.

npj

30000 4

20000

10000 4

Secondary bile acid
biosynthesis

Villages A & B Village C

30000

20000

10000 4

Biotin metabolism

Villages A & B Village C

Fig. 5 Differentially abundant inferred metabolic functions by village of residence and socioeconomic status. a Principal coordinate
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inferred metabolic pathways detected by ANCOM in association with village (SES) and with household crowding. Within the study population,
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The village of residence was also associated with taxonomic
differences, after partial and full adjustment for potential
confounders. The strongest consistent effect was observed for
Prevotella copri, Alistipes putredinis, Eubacterium biforme, Dialister,
Faecalibacterium prausnitzii, Bifidobacterium, Oscillospira, Rumino-
coccus, and Sutterella. Prevotella copri is considered an important
yet enigmatic member of the gut microbiome, being a common
human gut microbe that has been both positively and negatively
associated with human health, including an association with
inflammatory diseases°~3?, insulin resistance and glucose intoler-
ance3, While other studies linked between Prevotella copri and
improved glucose and insulin tolerance in association with dietary
fiber3*35, suggesting that the beneficial effects could be diet-
dependent. Additionally, a higher prevalence of xylan-degrading
Prevotella®® has been consistently reported in non-Westernized
populations®”3® that typically consume diets rich in fresh, plant-
based and unprocessed food. Indeed, although Westernization
encompasses more factors and lifestyle modifications than
diet alone, Prevotella copri was strongly associated with consump-
tion of high fiber, low fat and low animal protein diets than typical
Western diets>4°,

Interestingly, the microbial signature found in village C included
taxonomic differences in line with global studies of rural
communities*!*?, including an overall increased bacterial diver-
sity, an over-representation of Prevotella copri, Dialister, and
Eubacterium and correspondingly depletion in Bifidobacterium
and Faecalibacterium and Clostridium. Village C is characterized by
lower education levels, lower monthly income, and considerably
fewer Westernized exposures as compared to the higher SES
villages. Although the traditional diet in Arab population
integrates patterns of the traditional Mediterranean diet, in recent
years consumption of processed carbohydrates has increased*>*4,
Correspondingly, the dietary patterns of Arab children in Israel are
characterized by higher consumption of plant-based food, yet also
an increased intake of savory sweets and soft drinks*’. Albeit the
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growing exposure to processed carbohydrates in the Arab
community, the diverging microbial signatures between the
villages, and the over-representation of bacteria associated with
rural communities in the lower SES village, might be affected by
home cooking practices, the type and amounts of protein and the
ability to purchase more processed food items.

Furthermore, there was a significant increase in the relative
abundance of Oscillospira and Sutterella in association with lower
SES. Oscillospira is considered an enigmatic bacterial genus that
has never been cultured, however, was strongly associated with
the production of butyrate, leanness and the utilization of
mammalian-derived glycans, originating either from the host or
from a diet rich in animal glycoproteins*®#’. Similarly, although
Sutterella is a commonly abundant genus in both children and
adults, results concerning its association with human health and
disease are controversial*®='. Given the strong evidence linking
these genera to human health, further exploration is essential,
given their association with low SES as demonstrated herein, and
the pivotal role of social disparities in health and disease.

An analysis of the microbial differences in relation to household
crowding revealed that Alistipes onderdonkii, Bacteroides uniformis,
Prevotella stercorea, Phascolarctobacterium, and Alistipes putredinis
were the taxa most strongly associated with household crowding,
with a slightly lower detection level for Faecalibacterium prausnitzii
and Prevotella copri. In the lower SES village, Bacteroides uniformis
was mostly associated with household crowding, while the most
dominant taxa in the higher SES villages were Prevotella stercorea
and Phascolarctobacterium. The stratified analysis by residential
village suggests that the disparities in SES were independently
associated with the different relative abundance of Alistipes
putredinis, Eubacterium biforme, Dialister, Bifidobacterium, Oscillos-
pira, Ruminococcus, and Sutterella, regardless of the homogenous
geographic location, ethnic, and dietary habits.

An inferred analysis of functional predictions identified three
significantly differentially abundant metabolic pathways in
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association with village SES. D-Glutamine and D-glutamate
metabolism, secondary bile acid biosynthesis and Biotin metabo-
lism were depleted among participants from the lower SES than
the higher SES villages. Children from the higher SES villages had
an over-representation of secondary bile acid biosynthesis. Bile
acid conversion is an important metabolic feature of the gut
microbiota that affects the host metabolism, by regulation of
metabolic and inflammatory signaling pathways®? and potent
antimicrobial properties®3.

Participants from the higher SES villages had increased
glutamate and glutamine metabolism. Glutamine is a beneficial
amino acid, which is utilized by the intestinal endothelium and
plays a pivotal role in gut integrity>**°. Depleted glutamine levels
were observed in inflammatory bowel diseaseS, obesity and
adipose inflammation®”8, and gut-brain axis disorders®®. Gluta-
mate metabolized by gut microbiota was shown to be associated
with human health, including decreased abundance in obesity®°
insulin resistance®!, and neurological disorders such as autism
spectrum disorder®?, seizures®?, and Alzheimer's disease®*.

Biotin metabolism was greater in the higher SES villages than
the low SES village. Biotin (vitamin B7) is an indispensable cofactor
for several carboxylases important for glucose, amino acid, and
fatty acid metabolism®. Biotin is available from food; however,
several microbial species in the gut microbiome can synthesize
biotin®®, Biotin metabolism genes are found across different phyla
suggesting that they have a core function in gut microbiome
metabolism. Indeed, metagenomic analyses suggested an associa-
tion between vitamin metabolism-related pathways and intestinal
dysbiosis®’, type 2 diabetes or inflammatory bowel disease®®8,
Collectively these findings support the notion that the gut
microbiome plays an important role in children’s health, likely
through microbial and functional metabolic features that vary
according to community SES and household crowding conditions.
Our findings provide a basis for large scale, metagenomic and
metabolomic longitudinal studies, to explore the clinical relevance
of the observed metabolic differences according to SES.

Our study consisted of healthy children, which might explain
the weak association between antibiotic use and the gut
microbiome compared to SES and household crowding.

The current study has several strengths. First, this is a
population-based study to explore the association between
residential and household SES and the intestinal microbiome of
school-age children, revealing that the microbiome is continu-
ously influenced by environmental exposures in later childhood.
This is specifically important since the childhood period is crucial
for physical and cognitive development®®. Second, data collection
was performed using validated and standard tools, and the
analysis included interpersonal covariates, using a model adjusted
for age, sex, and household crowding index. Third, this study
excluded the potential effect of ethnicity and geography on the
microbial ecology, since all participants share these features.
Although we did not include an analysis of dietary habits, the
participants in this cohort share relatively similar cultural dietary
patterns. Moreover, the villages included shared similar patterns of
early life practices, including a near-universal breastfeeding and
daycare attendance at a relatively late age (most participants
enrolled on kindergartens at ages 3-5 years, the ages of pre-
obligatory education in Israel). This in addition to the large sample
size with SES gradient, minimizing the effects of possible
microbiome determinants.

Our study has some limitations. First, this is a cross-sectional
analysis that cannot provide answers on how SES affects the
development and trajectories in the gut microbiome diversity and
composition. However, SES and living conditions are pre-
determined for children who depend on their parents, thus the
directionality of the associations in our study is that SES affects the
gut microbiome in childhood and not vice versa. These findings
provide solid evidence and stimulate further longitudinal studies
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to explore the influence of SES disparities on the development
and maturation of the gut microbiome. Second, we focused on
SES factors, with the assumption that dietary habits are relatively
alike in terms of cultural habits. Nevertheless, dietary habits might
vary across the villages and households. While we revealed
relative similarities in early life exposures, including a high
prevalence of breastfeeding, late entrance to daycare, and the
qualitative diet assessment showing similar consumption of main
food groups (e.g., fruit, vegetables, meat, poultry) at ages 3-5
years, the lack of dietary intake information at age 6-9 years, is a
limitation of our study. Thus, there is a need for an in-depth
understanding of the development of these children’s nutrition
prospectively during later childhood and the possible effect on
the growing child’s microbiome. Third, in this analysis we used
16 S rRNA gene sequencing for inferences on microbial functional
ecology. This broad-brush approach has limitations for drawing
conclusions about changes in functional ecology. Nevertheless,
our results add insight into the relationship between SES,
intestinal microbiome and metabolic pathways in childhood,
encouraging further examination in large-scale metagenomic
studies. Finally, the inclusion of participants from a shared ethnic
group and geographic location is a double-edged sword, since
while minimizing the effect of these confounders, the role of SES
disparities on the gut microbiome needs to be confirmed in other
populations. Interestingly, even with focusing on a specific ethnic
group, we observed significant associations with the “rural”
microbiome, in line with existing studies’’.

In  conclusion, we demonstrated significant associations
between SES disparities and intestinal microbiome differences in
school-age healthy children. Importantly, our findings are in line
with recent evidence’'”? showing that the microbiome continues
to be strongly associated with environmental exposures through
later childhood. These findings add new evidence to the emerging
body of knowledge showing that both household and community
levels characteristics are important determinants of the gut
microbiome diversity and composition in healthy children,
suggesting that the development of the gut microbiome might
differ across and within populations. These continuous and
persistent environmental exposures may be of great importance
in the child’s development and health outcomes in adulthood.
Since SES is associated with health disparities, further research is
necessary to explore possible implications of SES-related micro-
biome differences on children’s health and development. A clearer
understanding of the relationship between SES, the developing
microbiome and the child’s health and wellbeing may possibly
lead to more “population” or “neighborhood” personalized
interventions for the promotion of health in more vulnerable
communities.

METHODS

Study population and design

The study included healthy Arab children aged 6 to 9 years, who
participated in a study on enteric infections in Israel?>”3=77, Briefly, in
2003-2004, a cohort of 289 healthy children aged 3-5 years from three
neighboring Arab villages in Hadera sub-district in the northern region of
Israel was followed for the incidence of diarrheal diseases and H. pylori
infection prevalence?*’4, In 2007-2009, a follow-up study was conducted
at age 6-9 years, in which stool samples were obtained from 192 children.
Inclusion criteria were birth at a gestational age of 34 weeks or more and
birth weight of two kilograms (kg) or more”>7>-77,

The Arab population is the main indigenous minority in Israel,
comprising 20% of the population in Israel, while the Jewish population
comprises 75% of the population and the rest belong to other ethnic
groups®®78, It is in a positive transition with continuous improvement in
infrastructure and educational levels. Despite this progress, the Arab
population is of lower SES compared to the Jewish population?®78, All
Israeli citizens have health insurance according to the national health
insurance law implemented in Israel since 19957°.
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During the study period, two of the study villages had ~12,000 residents
each while the third village had ~17,000 residents. The villages were
specifically selected to represent various socioeconomic conditions.
According to the Central Bureau of Statistics during the study period the
SES ranks of the villages ranged from 2 to 4 on a scale of 1-10; the highest
rank is 10, i.e., a higher rank represents a better SES®°. Village A belonged
to cluster 4 SES rank, village B belonged to cluster 3 SES rank and village C
belonged to cluster 2 SES rank. At the national levels these villages
represent low-intermediate SES, however, within the Israeli Arab popula-
tion the villages represent high SES (village A), intermediate SES village
(village B), and low SES (village C)®°. This classification is supported by the
fact that at the national level 71 (93%) out of 76 Arab towns/villages had
SES ranks of 1-4, while four towns/villages had 5 SES ranks and only one
town in the Galilee had 6 SES rank®. Moreover, all Arab towns/villages in
the study district had SES ranks between 2 and 4 during the study period.
Knowing this a-priori, we purposefully selected the study villages to
provide representativeness of different SES strata within the Arab
population and region?73~77,

The villages are connected to piped water and sanitation infrastructure,
have connections to telephone, internet, and cable television networks.
The villages have primary care clinics managed by the health maintenance
originations, maternal and children health clinics of the Ministry of Health
provide preventive services, including childhood immunizations. School-
age immunizations and pediatric screening tests are also provided.

Israeli Arabs are historically agrarian, whose dietary habits were shaped
by the traditionally self-produced foods (e.g., wheat, olives, legumes,
vegetables, fruit). Although this population group is undergoing an
urbanization process, still a high proportion of Arabs adhere to ethnic
dietary traditions, including a high intake of the foods historically
produced by the rural Arab population, characterized by Mediterranean
elements**, including olive oil, wheat-based whole grains, such as burgul,
legumes, and wild and cultivated non-starchy vegetables. Nowadays, the
traditional Arab diet assimilates Westernized modifications (e.g., replace-
ment of whole grains with refined grains, increased consumption of meat
dishes/animal fat). This process is driven by the loss of the traditional
agricultural lifestyle, rapid urbanization, access to subsidized refined grains
and, growing exposure and mixing outside the Arab community®'. A
national survey of the dietary patterns of Israeli school-age children found
that Arab children tend to consume more fruit and vegetables, but also
more savory sweets, including soft drinks, containing high amounts of
sugar compared to Jewish children*344,

Subject characteristics and household composition
Information on household and socioeconomic characteristics was obtained
by personal interviews held with the mothers by trained Arabic-speaking
interviewers. The questionnaire included information on age, sex, place of
residence, monthly family income (below, around, or above the national
average), parental number of schooling years, number of siblings, number
of persons living in the household, and number of rooms in the household
(including living room, but not including kitchen). The household crowding
index was calculated as the number of people living in a household
divided by the number of rooms in the household; higher values represent
higher household crowding living conditions. This variable was analyzed
both as a continuous variable and as a categorical variable categorized by
tertiles as follows: lowest tertile (0.6-1.25), middle tertile (1.26-2.0), and
highest tertile (2.1-7.0) representing low, medium, and high household
crowding, respectively. Information was also obtained on the child’s health
status including antibiotic use during the six months prior to enrollment
and diarrheal disease in the past year. Information was collected on early
life exposures, such as breastfeeding, age of introducing solid foods, and
attendance of daycare center. At age three to five years, a qualitative
assessment of consumption of fruit, vegetables, poultry, and red meat was
undertaken based on maternal reports via interviews. Mothers were asked
whether the child regularly eats these items. The replies were yes or no.
At age six to nine years, measurements of the children’s weight (in kg)
and standing height (in c¢cm) were performed by the study-trained
registered nurses. Bodyweight was measured to the nearest 0.1 kg using
an analogue scale (calibrated before use), and height (to the nearest
0.1 cm) with a mobile stadiometer. BMI was calculated according to the
formula (weight [kgl/ height [meter]?). BMI for age Z-score (BMIZ) was
calculated using the 2000 reference population of the US Centers for
Disease Control and Prevention (CDC)®? using Epi/Info software.
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Samples collection, DNA extraction, and bacterial DNA
amplification

Mothers were instructed to collect stool samples from the participating
child while the child was healthy and not during an acute illness. Stool
samples were collected using collection plastic cups and transferred on ice
to the study laboratory at Tel Aviv University. Samples were divided into
two aliquots and stored at —80 °C until testing. All samples underwent a
single thaw prior to DNA extraction.

Genomic DNA was extracted from 180 to 220 mg of fecal material from
each sample using the QIAamp® Fast DNA Stool Mini Kit (Qiagen, Valencia,
CA) according to the manufacturer’s instructions®® and stored at —20°C
until shipment to the Sequencing Core at the University of lllinois.

Genomic DNA was prepared for sequencing using a two-stage amplicon
sequencing workflow®*, Initially, genomic DNA was amplified via PCR using
primers targeting the V4 region of microbial 16 S ribosomal RNA (rRNA)
genes. The primers, 515F modified and 806 R modified®, contained 5’
linker sequences compatible with Access Array primers for lllumina
sequencers (Fluidigm, South San Francisco, CA). The PCR assays were
performed in a total volume of 10 pyL using MyTag™ HS 2X Mix (Bioline)
with primer concentrations at 500 nM. Thermocycling conditions were as
follows: 95 °C for 5 min (initial denaturation), followed by 28 cycles of 95 °C
for 30 sec, 55 °C for 45 sec, and 72 °C for 30 sec. One microliter of the PCR
product from each reaction was transferred to the second-stage PCR assay.
Each second-stage reaction was conducted in a final volume of 10 pL using
MyTaq™ HS 2X Mix, and each well contained a unique pair of Access Array
primers containing Illlumina sequencing adapters, single index sample-
specific barcode, and linker sequences. Thermocycling conditions were as
follows: 95 °C for 5 min (initial denaturation), followed by 8 cycles of 95 °C
for 30 sec, 60 °C for 30 sec, and 72 °C for 30 sec. Libraries were pooled and
purified using 0.6x concentration of AMPure XP beads to remove short
fragments below 300 bp. Pooled libraries were loaded onto a MiniSeq
sequencer (lllumina, San Diego, CA) with 15% phiX spike-in and paired-end
2 x 153 base sequencing reads.

Negative no-template controls were included at every step of the library
preparation. Gel electrophoresis of first and second step PCR products, as
well as the more sensitive PicoGreen DNA quantification assay, were
employed to verify successful amplification in the study samples, and lack
of amplification in the negative control samples.

Statistical analyses

Quality control analysis of demultiplexed pair-end joined reads was
performed using the native Deblur®® workflow, following the construction
of a phylogenetic tree (mafft-fasttree) and taxonomy assignment with
QIIME2%. The quality process with Deblur uses sequence error profiles to
obtain putative error-free sequences, referred to as s-OTU. Taxonomic
composition was assigned to the s-OTUs using a pre-trained Naive Bayes
classifier, trained on the Greengenes®® 13_8 99% OTUs. Downstream
analysis was conducted using R version 3.6.2. Diversity analysis was
calculated at a rarefaction depth of 7479. Bacterial o-diversity was
estimated using the number of observed s-OTUs, Pielou’s evenness,
Shannon’s diversity and the Faith’s phylogenetic diversity (Faith’s PD)
indexes and compared across independent variables using the Kruskal-
Wallis test. B-diversity was calculated using the JSD and the phylogenetic
Weighted Unifrac distances. PERMANOVA was used to test differences in
overall microbiome composition (vegan; adonis®®), implementing a multi-
variate model with the following covariates: age, sex, household crowding
index, number of maternal schooling years, BMI (“full model”), and a
“reduced model” that included age, sex, and household crowding index.
Pairwise comparisons were calculated using Dunn test, and controlled for
false discovery rate (FDR) with the Benjamini-Hochberg method (p < 0.05).
Beta dispersion was estimated using “betadisper” function (vegan) and the
Permutation test for homogeneity of multivariate dispersions was
performed at 999 permutations.

The Analysis of Composition of Microbiomes®® (ANCOM) was applied for
the identification of differentially abundant features across the study
villages, with FDR level set to 0.05. ANCOM uses a linear framework to
statistically detect features whose composition varies across the villages
and household crowding index (analyzed as tertiles), while controlling for
other covariates of interest (a linear model comprised of the above-
mentioned covariates). A feature was considered significantly varying in
composition across an independent variable of interest at a detection level
of >0.7, meaning that the feature composition varied across the
independent variable with respect to 70% of reference features. Non-
parametric Spearman’s correlation coefficient was used to evaluate the
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association between a-diversity indexes and household crowding index.
An analysis of inferred metagenome functions was performed implement-
ing PICRUSt2°" (q2-picrust2). Differentially abundant metabolic pathways
were detected using the compositional ANCOM analysis at KEGG level 3.

Differences in demographic characteristics across the study villages
were examined using one-way analysis of variance (ANOVA) for continuous
variables and the chi-square test for categorical variables. Post-hoc
pairwise comparisons were conducted using the Bonferroni test to correct
for multiple comparisons.

Sensitivity analyses. The analyses were repeated while including in the
models antibiotic use during the past 6 months and in relation to the
history of diarrheal diseases in the past year prior to sampling collection
and enrollment, as covariates.

Differences in microbial B-diversity according to the village of residence
and household crowding were validated by implementing ANOSIM, a non-
parametric test, in addition to the PERMANOVA models.

Since the sample size differed across the study villages (Results section) we
examined whether the associations of residential SES and household crowding
with the gut microbiome are affected by the sample size of the groups while
utilizing a sub-sampling and re-analysis approach. We selected random and
equal subsamples of the three villages (using dplyr package, R program), so
each village included 47 randomly selected participants (the lowest sample
size of village A) and reanalyzed the data using the subsamples.

Ethical aspects

The Institution Review Board of Hillel Yaffe Medical Center and the ethics
committee of Tel Aviv University approved the study. Written informed
consent was obtained from the parents of the participants.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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