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Unbiased proteomics and multivariable regularized regression
techniques identify SMOC1, NOG, APCS, and NTN1 in an
Alzheimer’s disease brain proteomic signature
Jackson A. Roberts 1,2✉, Vijay R. Varma1, Julián Candia 3, Toshiko Tanaka3, Luigi Ferrucci 3, David A. Bennett4 and
Madhav Thambisetty 1✉

Advancements in omics methodologies have generated a wealth of high-dimensional Alzheimer’s disease (AD) datasets, creating
significant opportunities and challenges for data interpretation. In this study, we utilized multivariable regularized regression
techniques to identify a reduced set of proteins that could discriminate between AD and cognitively normal (CN) brain samples.
Utilizing eNetXplorer, an R package that tests the accuracy and significance of a family of elastic net generalized linear models, we
identified 4 proteins (SMOC1, NOG, APCS, NTN1) that accurately discriminated between AD (n= 31) and CN (n= 22) middle frontal
gyrus (MFG) tissue samples from Religious Orders Study participants with 83 percent accuracy. We then validated this signature in
MFG samples from Baltimore Longitudinal Study of Aging participants using leave-one-out logistic regression cross-validation,
finding that the signature again accurately discriminated AD (n= 31) and CN (n= 19) participants with a receiver operating
characteristic curve area under the curve of 0.863. These proteins were strongly correlated with the burden of neurofibrillary tangle
and amyloid pathology in both study cohorts. We additionally tested whether these proteins differed between AD and CN inferior
temporal gyrus (ITG) samples and blood serum samples at the time of AD diagnosis in ROS and BLSA, finding that the proteins
differed between AD and CN ITG samples but not in blood serum samples. The identified proteins may provide mechanistic insights
into the pathophysiology of AD, and the methods utilized in this study may serve as the basis for further work with additional high-
dimensional datasets in AD.
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INTRODUCTION
Alzheimer’s disease (AD) remains the most common neurodegen-
erative disorder and cause of dementia among the elderly, yet
causal mechanisms driving sporadic AD remain elusive. Previously,
much AD research has focused on hypothesis-driven interrogation
of molecular mechanisms, which contributed to the identification
of the central roles of amyloid and tau in disease, as well as the
genetic association of the APOE ε4 allele with sporadic AD.
However, targeted and hypothesis-oriented research may pre-
clude the discovery of novel molecular mechanisms underlying
AD. The development of multiple unbiased omics methods and
their application to the large-scale analyses of blood and brain
tissue in AD holds promise for the identification of novel
molecular mechanisms associated with AD pathogenesis.
Proteomics offers a particularly exciting opportunity for the

study of disease mechanisms, as proteins represent the effector
molecules of many upstream biological processes and additionally
serve as the targets for the majority of known and potential
pharmacological therapeutics. Additionally, advances in high
throughput data acquisition have transformed proteomics into a
field in which rich datasets are readily generated, resulting in an
abundance of proteomic data for analysis1. As data become more
abundant, the challenge for researchers is no longer quantification
but rather analysis and interpretation of multi-dimensional
datasets. In response, systems biology approaches have been

elaborated, including network modeling analyses that seek to
cluster variables using multiple methods to establish similarity
distances between variables2. In proteomics, this may take the
form of protein-protein interaction networks that can be
generated for different disease states, including AD, which may
be followed by pathway enrichment to identify classes of
biological mechanisms altered in disease3. In AD, such approaches
have contributed to a global understanding of processes
associated with disease, proteostasis, immune response, cell
signaling, mitochondrial function, metabolism, RNA binding and
splicing, and several other biological pathways4,5.
While large-scale, co-expression-based approaches have made

significant contributions to understanding altered biologic net-
works in disease states, studies focused on individual protein
contributions to disease remain limited by methodologic hetero-
geneity6. Indeed, studies that examine individual protein differ-
ences in the context of disease are largely restricted to univariate
analyses that do not take into account the complexity of data
structures and inter-variable correlation that characterizes multi-
dimensional datasets in small sample size studies. In this context,
the elastic net7 offers a regularized generalized linear modeling
and variable selection method that is flexible and accounts for
multi-collinearity, allowing for the selection of a reduced set of
features that are highly associated with the outcome. The
eNetXplorer R package8 implemented functionality to sample
different predictive elastic net models with a cross-validated
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approach that generates model significance and predictive scores.
This framework has recently been applied to transcriptomic9, brain
imaging10, and proteomic11 data, showing the ability to scan a
high-dimensional feature space to find cross-validated signatures
predictive of a disease state. Such signatures may, as a result,
represent plausible drug targets or provide insight into disease
pathomechanisms.
In this study, we undertook an unbiased proteomics approach

in brain tissue samples to identify a set of proteins that could
accurately discriminate between AD and cognitively normal (CN)
individuals in two separate cohorts. We applied brain proteomic
analyses in the inferior temporal gyrus (ITG) and middle frontal
gyrus (MFG) in the Religious Orders Study (ROS) using regularized
generalized elastic net modeling to develop an AD proteomic
signature and then tested the discriminatory potential of this
signature in the Baltimore Longitudinal Study of Aging (BLSA). We
then compared the levels of proteins included in the signature in
BLSA and ROS ITG and MFG brain tissue, as well as in blood serum
samples collected at time of AD diagnosis, in order to determine if
signature proteins are reflected in raw tissue level comparisons
both within the signature brain region and additional tissue
matrices. Lastly, we examined the association of blood serum and
brain tissue levels of these proteins with the severity of AD
pathology.

RESULTS
Demographic characteristics
The demographic characteristics of participants who provided
brain tissue samples are summarized in Table 1. In the BLSA
sample, AD and CN groups did not differ significantly in age at
death or sex. The AD group had a higher proportion of white
participants (race) than the CN samples. As anticipated, AD and CN
groups differed significantly in the severity of neuritic plaques
(CERAD scores) and neurofibrillary tangles (Braak scores), with
higher levels of pathology in the AD group.
In the ROS sample, all individuals included in the study were of

white race. The AD group was older at the age of death and had a
higher proportion of female (sex) participants compared to CN. As
in BLSA, the AD group displayed higher CERAD and Braak scores,
indicative of a higher burden of pathology in this group.
We also compared demographic characteristics across the BLSA

and ROS cohorts. Considering the full sample, BLSA and ROS
varied significantly in sex and age at death. Comparing BLSA AD
participants to ROS AD participants, the BLSA AD group had an
earlier age of disease onset, longer duration of disease, had a
smaller proportion of female participants, and had higher Braak
scores than the ROS AD group.
Additional details regarding the demographic characteristics of

individuals with blood serum samples are provided in Supple-
mentary Table 2.

Protein signature evaluation in MFG
We performed eNetXplorer analyses to develop a discriminatory
protein signature in ROS MFG samples. In the MFG, the best-
performing model (alpha= 1) discriminated between AD and CN
brain samples with 83 percent accuracy (Fig. 1a, b). This model
identified four proteins (secreted modular calcium-binding protein
1 (SMOC1), noggin (NOG), amyloid P component, serum (APCS),
and netrin-1 (NTN1)) based upon the significance of feature
frequency, among which SMOC1 displayed a positive feature
coefficient—i.e., an increased level of this protein was associated
with an increased probability of classification as AD (Supplemen-
tary Fig. 1a). Furthermore, these proteins displayed significant
feature frequencies at all alpha levels tested, signifying stability of
the signature across model stringencies (Supplementary Fig. 1d).
These proteins were reassessed as a signature in a leave-one-out

cross-validated logistic regression model, which, as expected, was
able to accurately discriminate between ROS MFG AD and CN
samples with AUC= 0.909 (95% CI: 0.813–1.00) (Fig. 1c). We then
tested the ability of these proteins to discriminate between AD
and CN MFG samples in the independent BLSA cohort.
Remarkably, the protein signature accurately discriminated BLSA
MFG samples, with AUC= 0.863 (95% CI: 0.735–0.991), as shown in
Fig. 1d. As a result of this independent validation of the ROS MFG
signature, these proteins were further evaluated in the remainder
of the study.
We additionally tested the ability of the ROS-derived MFG

signature to discriminate between AD and CN in BLSA ITG
samples. The MFG signature failed to discriminate accurately
between AD and CN participants in the BLSA ITG, with an
AUC= 0.626 (95% CI: 0.428–0.825).

Protein signature evaluation in ITG
To establish an ITG proteomic signature, we performed eNetX-
plorer analyses in ROS ITG to determine which multivariable
protein model best discriminates between AD and CN partici-
pants. In the ITG, the highest cross-validated model performance
was obtained in the range alpha= 0.8–1, which discriminated
between AD and CN ROS participants with 91 percent accuracy
(Fig. 2a). Based on considerations of parsimony, we selected lasso
(alpha= 1), which was able to classify most individuals correctly
(Fig. 2b) and identified four significant proteins (Noggin (NOG),
interferon lambda 2 (IFNL2), secreted frizzled-related protein 1
(SFRP1), and midkine (MDK)) based on significance of feature
frequency. Two of these proteins (NOG and SFRP1) displayed a
significant positive feature coefficient—i.e., increased levels of
these proteins were associated with an increased probability of
classification as AD (Supplementary Fig. 2a). To confirm these
findings, we utilized this signature in a leave-one-out cross-
validated logistic regression model in the same ROS cohort, which,
as expected, was able to discriminate between ROS ITG AD and CN

Table 1. Cohort demographics.

Baltimore longitudinal study of aging (BLSA)

Total Sample
N= 50

AD N= 31 CN N= 19

Age at death, mean (SD) 86.38 (10.70)† 88.46 (8.30)† 82.98 (13.31)

Age of onset, mean (SD) - 78.81 (9.92)†

Disease duration, mean
(SD)

- 9.65 (4.47)†

Sex, n (% female) 21 (42.00)† 15 (48.39)† 6 (31.58)

Race, n (% white) 48 (96.00) 31 (100)* 17 (89.47)*

CERAD, mean (SD) 1.78 (1.34) 2.77 (0.43)* 0.16 (0.38)*

Braak, mean (SD) 4.14 (1.69) 5.13 (1.12)*† 2.53 (1.12)*

Religious orders study (ROS)

Total Sample
N= 53

AD N= 31 CN N= 22

Age at death, mean (SD) 90.58 (6.53)† 92.81 (5.45)*† 87.44 (6.75)*

Age of onset, mean (SD) - 89.14 (5.71)† -

Disease duration, mean
(SD)

- 3.67 (2.94)† -

Sex, n (% female) 40 (75.47)† 27 (87.10)*† 13 (59.09)*

Race, n (% white) 53 (100.00) 31 (100.00) 22 (100.00)

CERAD, mean (SD) 1.64 (1.26) 2.58 (0.50)* 0.32 (0.65)*

Braak, mean (SD) 3.89 (1.33) 4.65 (0.66)*† 2.82 (1.30)*

*p < 0.05 comparing AD to CN within a cohort.
†p < 0.05 comparing BLSA to ROS (i.e., AD in BLSA compared to AD in ROS).
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samples, yielding an AUC= 0.937 (95% CI: 0. 0.846–1.00). The
corresponding ROC plot is shown in Fig. 2c. Then, we tested this
same signature in an independent cohort, the BLSA, which
demonstrated much weaker discriminatory potential, yielding
AUC= 0.643 (95% CI: 0.463–0.823) as shown in Fig. 2d.
We additionally tested the ability of the ROS-derived ITG

signature to discriminate between AD and CN in BLSA MFG
samples. The signature discriminated between AD and CN
participants with an AUC of 0.867 (95% CI: 0.746–0.988).

Brain and blood serum levels of MFG protein signature
To determine differences in levels of SMOC1, NOG, APCS, and
NTN1 between AD and CN individuals, we performed proportional
odds models separately for each cohort. Comparisons were made
for both ROS and BLSA between protein levels in ITG, MFG, and
blood serum at the time of sampling concurrent with diagnosis
and age-matched controls. Among all 1300 proteins assayed in
the MFG, 352 were significantly different (p < 0.05) between AD
and CN in BLSA participants, and 223 were significantly different
between conditions in ROS participants (Supplementary Table 3).

In the MFG brain region in which the proteomic signature was
established, all 4 proteins were significantly different between AD
and CN individuals in both cohorts at the p < 0.01 level (Fig. 3). For
all four proteins, levels were higher in AD than in CN individuals in
both ROS and BLSA cohorts. In the ITG, the majority of protein
comparisons were also significant between AD and CN in both
cohorts (Supplementary Fig. 3). Only APCS was not statistically
significant (p= 0.095) in the ROS ITG, while all other proteins were
significantly higher in AD ITG samples compared to CN. In blood
serum samples at the time of diagnosis, levels of APCS were
higher in AD individuals, and levels of NTN1 were lower compared
to CN individuals (Supplementary Fig. 4). These results were
significant in the ROS cohort only.

Brain and blood serum levels of ITG protein signature
We also determined differences in levels of NOG, MDK, SFRP1, and
IFNL2 between AD and CN brain samples. In the ITG brain region,
in which the signature was established, all four proteins were
significantly different in ROS, but only one protein (NOG) was
significant in BLSA. SFRP1, IFNL2, and NOG were increased in ROS

Fig. 1 Establishment and evaluation of MFG proteomic signature. a Output of eNetXplorer model selection analyses, performed in ROS
MFG. The x-axis indicates the model alpha value, a parameter that scales from the ridge (alpha= 0) to lasso (alpha= 1) regression. The red line
indicates accuracy as quality function (QF), which represents the proportion of out-of-bag class (AD vs. CN) predictions that match the true
class of each participant. The blue line indicates the model significance for each alpha value. b Contingency matrix comparing the out-of-bag
predicted class and true class for the selected model. c Receiver operating characteristic (ROC) curve for leave-one-out cross-validation
(LOOCV) of the 4 protein MFG signature in the ROS cohort, derived at the alpha= 1 level. Gray shading indicates the 95 percent confidence
interval. d ROC curve for LOOCV of MFG samples from an independent cohort of BLSA participants. The area under the curve (AUC) is
demonstrated with 95 percent confidence intervals. Gray shading indicates the 95 percent confidence interval.
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AD participants, while IFNL2 was reduced. NOG was increased in
BLSA AD participants. In blood serum at the time of diagnosis,
none of the four proteins were significant in ROS or BLSA
participants. Among all 1300 proteins assayed in the ITG, 150 were
significantly different between AD and CN participants in the BLSA
cohort, and 353 were significantly different in the ROS cohort
(Supplementary Table 3).

Brain and blood serum protein correlations with AD
pathology
We also sought to determine if proteins in the MFG signature
correlated with Braak and CERAD scores, two measures of AD
pathology. We performed partial correlation analyses between ITG
and MFG protein levels of each of the four proteins with Braak and
CERAD scores separately.
In the MFG, all four proteins included in the signature displayed

strong positive correlations with both CERAD and Braak scores
(Fig. 4). Similarly, ITG levels of most proteins from the signature
displayed strong positive correlations with both scores of AD
pathology (Supplementary Fig. 5). The only correlation that did

not achieve statistical significance was the association between
ITG levels of SMOC1 and Braak (p= 0.16).
As in the ITG and MFG, we performed partial correlation

analyses between blood serum levels of proteins in the signature
at the time of diagnosis with scores of AD pathology. For the most
part, correlations between blood serum proteins and AD
pathology scores were not significant. However, NOG displayed
a positive correlation with CERAD, and NTN1 displayed a negative
association with Braak in the BLSA cohort only (Supplementary
Fig. 6).

DISCUSSION
In this study, we utilized a machine learning approach to perform
feature reduction with the goal of identifying a parsimonious set
of proteins whose expression levels in the brain could accurately
discriminate between AD and CN individuals. We utilized two
independent cohorts of AD individuals with autopsy brain tissue
samples, performing model training and feature selection in ROS
and then testing the selected model in BLSA. This methodology

Fig. 2 Establishment and evaluation of ITG proteomic signature. a Output of eNetXplorer model selection analyses, performed in ROS ITG.
The x-axis indicates the model alpha value, a mixing parameter that scales continuously from the ridge (alpha= 0) to lasso (alpha= 1)
regularized regression models. The red line indicates the out-of-bag prediction performance using accuracy as quality function (QF), which
captures the proportion of class (AD vs. CN) predictions that match the true class of each participant. The blue line indicates the estimated
model significance for each alpha value. b Contingency matrix comparing the out-of-bag predicted class and true class for the selected model
(alpha= 1). c Receiver operating characteristic (ROC) curve for leave-one-out cross-validation (LOOCV) of the four protein ITG signature in the
ROS cohort, derived at the alpha= 1 level. Gray shading indicates the 95 percent confidence interval. d ROC curve for LOOCV of ITG samples
from an independent cohort of BLSA participants. The area under the curve (AUC) is demonstrated with 95 percent confidence intervals. Gray
shading indicates the 95 percent confidence interval.
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allowed us to establish a four-protein signature (SMOC1, APCS,
NOG, and NTN1) that accurately discriminated AD and CN MFG
brain tissue samples in both ROS and BLSA cohorts. We then
compared levels of these four proteins in MFG and ITG brain tissue
samples at autopsy, as well as blood serum samples at the time of
AD diagnosis. In both brain regions, these proteins consistently
differed between AD and CN individuals. Notably, serum
concentrations of APCS and NTN1 additionally differed between
AD and CN individuals in the ROS cohort at the time of AD
diagnosis, suggesting these brain proteomic alterations may
extend to the peripheral system. Lastly, we sought to determine
the correlation between proteins in this signature and the severity
of AD pathology, identifying strong positive correlations between
ITG and MFG levels of all four proteins and CERAD and Braak in
ROS and BLSA. While relationships between blood serum levels
and AD pathology were less consistent, NOG and NTN1 did
correlate with AD pathology in BLSA samples.
The use of stringent feature reduction techniques to identify

proteins that are highly associated with AD status allows for a
more granular exploration of the potential mechanisms of the
relationship between proteomic alterations and AD pathogenesis.
APCS, or serum amyloid P component, is a pentraxin that has
consistently been identified in CSF, as well as bound to amyloid
deposits and neurofibrillary tangles, in individuals with AD12,13.
APCS has been shown to stabilize amyloid plaques, prevent
proteolysis, and promotes deposition of amyloid in vitro14,15. In
animal models and cell culture experiments, APCS has further
been shown to induce neuronal apoptosis16,17 and plays a role in
the immunological response via its effects on macrophage
polarization18. More systemically, APCS functions alongside CRP
as a key mediator of the innate immune response, binding to
pattern-recognition sequences on microbes, as well as recognizing

damaged tissue19,20. Both APCS and CRP activate the complement
activation cascade, with APCS binding C1q and C4b proteins21.
APCS, and other pentraxins, may therefore represent a possible
mediator between long-standing inflammation and AD, further
contributing to hallmark features of pathology. Indeed, studies
have shown that APCS deposition on neurofibrillary tangles occurs
prior to the activation of complement, thereby contributing to
local inflammation and resultant neuronal loss22.
SMOC1 is a member of the SPARC matricellular protein family

with a role in the regulation of the interaction between cell
matrices via the binding of cell surface receptors23. SMOC1 has
been discussed as a possible mediator of inflammation, as nitric
oxide inhibits SMOC1 function, which in turn results in reduced
TGF-β signaling24. SMOC1 appears to be consistently identified as
a key protein in AD, as multiple proteomics studies have found
elevations of SMOC1 in brain tissue and CSF, as well as
associations with amyloid pathology25–27. Such consistent findings
suggest that SMOC1 likely represents a plausible biomarker for AD
that is sensitive as a marker of AD pathology. SMOC1 also plays a
role as a pro-angiogenic factor28, which has frequently been
proposed as a biological process perturbed in AD29.
NOG is a protein with a role in the development of multiple

tissues, including neural cells, and is a member of the TGF-β
protein family, acting as an antagonist of bone morphogenetic
protein-4 (BMP-4). Prior studies have identified the role of NOG in
the regeneration of neurons following injury30. Others have found
that NOG signaling through BMP changes throughout the
lifecourse, finding that age-related increases in BMP signaling
are associated with impaired neurogenesis that may be buffered
by NOG31. Animal studies additionally suggest that NOG can
rescue hippocampal neurogenesis and behavioral deficits32.
However, in this study, we identified an increase in NOG in AD

Fig. 3 MFG levels of proteins present in the proteomic signature. Comparison of MFG levels of a SMOC1, b NOG, c APCS, and d NTN1
between AD (red) and CN (blue) individuals in BLSA and ROS. Protein levels are on the y-axis in relative fluorescence units (RFUs). Statistical
significance was calculated using sex and age-adjusted proportional odds models. Horizontal lines within each box represent the mean, and
error bars represent the standard deviation. **p < 0.01, ***p < 0.001.
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and a positive correlation with pathology, which may suggest that
NOG elevation may represent an attempt to promote neurogen-
esis in response to neuronal loss in AD. Previously, NOG has been
found to be hypermethylated in AD, suggesting that genetic
modification leading to an imbalance of NOG and BMP-4 may be a
feature of disease33.
NTN1 belongs to a family of proteins called netrins that play a

role in neuronal axon guidance through modulation of micro-
tubular function and additionally function to prevent apoptosis
initiation. NTN1 has previously been proposed as a therapeutic for
AD after the finding that administration of NTN1 to transgenic
mice reduced amyloid beta and improved working memory34.

Additionally, NTN1 gene expression in blood has previously been
found to be reduced in mild cognitive impairment (MCI)35.
Interestingly, we found NTN1 to be reduced in blood serum in ROS
individuals with AD at the time of diagnosis yet increased in BLSA
and ROS postmortem samples and positively correlated with AD
pathology. This may suggest that early in the disease course,
reductions in NTN1 could contribute to AD pathogenesis, while
later increases in expression could indicate a response to the
disease.
In summary, we have undertaken a unique multivariable

regression approach to identify a reduced set of proteins that
could discriminate between AD and CN brain tissue samples. We

Fig. 4 Correlation of MFG protein levels with AD pathology. Partial Spearman correlation, adjusted for sex and age at sampling, between
MFG protein levels and a CERAD and b Braak scores in BLSA and ROS. Protein levels are given in relative fluorescence units (RFUs) on the
x-axis. Shading indicates the 95 percent confidence interval of the estimate.
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achieved this by deriving a proteomic signature in one cohort,
ROS, before testing the discriminatory signature in an indepen-
dent cohort, BLSA. This signature was identified despite significant
demographic differences across cohorts, suggesting that the
identified protein signature may be associated with disease
independent of the study sample. This process identified four
proteins in the MFG brain region that discriminated accurately
between AD and CN samples in both cohorts that may represent
key features of AD pathogenesis. Despite strong replication in
brain tissue, however, the MFG signature failed to replicate in
blood serum obtained from participants at a baseline visit. This
suggests the signature is unlikely to have significant utility as a
serum screening biomarker in pre-clinical populations. It may
specifically reflect mechanisms of disease pathophysiology in
brain tissue, though exploration of these proteins in cerebrospinal
fluid may further evaluate their utility as AD biomarkers.
In contrast, the ITG protein signature identified in ROS failed to

discriminate between AD and CN in BLSA. This may be due to a
number of demographic differences between the two cohorts, as
ROS participants were on average older, more often female, and
with shorter disease duration as compared to BLSA. In addition,
while CERAD scores, reflective of amyloid pathology, were similar
across cohorts, AD participants in the BLSA had, on average,
higher Braak scores, reflective of greater accumulated neurofi-
brillary tangle pathology. The ITG was specifically selected in this
study as a brain region vulnerable to tau-related neurofibrillary
tangle pathology, while the MFG was selected as a brain region
vulnerable to amyloid accumulation36,37. Numerous studies have
suggested that amyloid beta precedes and may induce tau
aggregation, and distinct neurodegenerative alterations occur
when tau and amyloid colocalize38–40. Our findings of a strong
MFG-specific proteomic signature are, therefore, most likely to
represent a signature of AD that is closely related to amyloid
pathology, while the failure of the ITG signature to replicate may
reflect varying severity of neurofibrillary tangle pathology across
cohorts. Indeed, SMOC1 and NTN1 were recently identified among
the most highly-enriched proteins in amyloid plaques in early-
onset AD and individuals with Down syndrome and AD41.
Similarly, both proteins were also among the most highly-
enriched proteins in amyloid plaques in late-onset AD42, strongly
suggesting the MFG signature is reflective of proteomic alterations
related to amyloid plaque formation. In addition, MDK, which was
present in the ITG signature that also replicated in the MFG, was
identified as a highly-enriched protein in amyloid plaques in both
of these prior studies41,42.
In sum, we have applied a rigorous statistical methodology to

derive an MFG protein signature discriminating between AD and
CN participants in two independent cohorts that may have
significant specificity to amyloid pathology. This study confirms
prior work identifying SMOC1 and NTN1 enrichment within
amyloid plaques and extends results to suggest that NOG and
APCS are amyloid plaque-related proteins warranting further
evaluation. The approach taken here may provide further utility in
evaluating larger datasets of blood and CSF samples throughout
the course of AD development in order to identify improved
biomarkers or earlier targets for therapeutics. Additionally, this
approach may be adapted as even greater multi-dimensional
datasets emerge, allowing researchers to parse through such
datasets for rapid identification of proteins that may most
substantially contribute to disease outcomes.

METHODS
Participants: Baltimore Longitudinal Study of Aging (BLSA)
The National Institute on Aging’s (NIA) BLSA is among the longest-
running scientific studies of aging in the United States43. This
observational study began in 1958 and includes longitudinal,

radiological, clinical, and laboratory evaluations of community-
dwelling volunteer participants. The individuals included in this
study were participants in the autopsy sub-study of the BLSA,
which has been described previously44. Postmortem brains were
inspected by an expert neuropathologist to assess AD pathology.
The Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD) and Braak criteria were used to assess the severity of AD
pathology based on neuritic plaques45 and neurofibrillary
tangles46, respectively, as described previously in ref. 47. Clinical
diagnosis of dementia and AD have previously been described48

and were based on the Diagnostic and Statistical Manual (DSM)-III-
R49 and the National Institute of Neurological and Communication
Disorders and Stroke–Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) criteria, respectively50.
Diagnosis and cognitive status were determined at consensus

diagnosis conferences using procedures described in detail
previously48. Briefly, autopsy participants were classified as either
AD or CN according to the following criteria: AD participants had a
clinical diagnosis of AD or mild cognitive impairment (MCI) within
1 year of death in addition to a postmortem CERAD pathology
score >1 (i.e., CERAD B or C); cognitively normal (CN) participants
had normal cognition within 1 year of death and a CERAD
pathology score ≤1 (i.e., CERAD 0 or A). Demographic character-
istics of the BLSA cohort are included in Table 1. The BLSA study
protocol has ongoing approval from the Institutional Review
Board of the National Institute of Environmental Health Science,
the National Institutes of Health, and informed consent was
obtained from all participants.

Participants: Religious Orders Study (ROS)
The Religious Orders Study (ROS) has enrolled Catholic nuns,
priests, and brothers from a multitude of communities across the
United States since 199451. This longitudinal observational study
collects information from clinical, neuroimaging, laboratory, and
self-report evaluations of employed and retired community-
dwelling individuals. At the time of enrollment, participants are
without a diagnosis of known dementia. All participants agreed to
organ donation and annual clinical evaluation.
Our sample consisted of a subset of participants from the larger

ROS cohort study. All ROS participants provided written informed
consent and the study was approved by an Institutional Review
Board of Rush University Medical Center. Participants signed an
Anatomical Gift Act for organ donation and a repository consent
to allow their data and biospecimens to be shared. At each study
visit, dementia status was determined by trained clinicians using
all cognitive and clinical data blinded to prior years based on
NINCDS-ADRDA criteria. A final consensus clinical diagnosis was
determined at death, blinded to all neuropathologic data.
Autopsies were performed based on standard methods reported
using 4% paraformaldehyde-fixed 1-cm sections of brain tissue for
neuropathology analyses52. Postmortem brains were examined by
an expert neuropathologist or trained technician to assess AD
pathology. CERAD and Braak criteria were used to assess the
severity of AD pathology, as described previously53.
Participants were classified into two groups. AD participants had

a final clinical diagnosis of AD and an NIA-Reagan score of an
intermediate or high likelihood of AD. NIA-Reagan criteria are
based on both neuritic plaques (CERAD score) and neurofibrillary
tangles (Braak score)54. CN participants had a clinical diagnosis of
no cognitive impairment (NCI) and an NIA-Reagan score of a low
likelihood of AD or no AD. Diagnosis and cognitive status were
determined based on a three-stage process described pre-
viously51, which included a medical history, neurological examina-
tion, neuropsychiatric testing, and review of neuroimaging data
when present. At death, clinical data were reviewed in order to
make a likely clinical diagnosis.
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Brain tissue collection and homogenization
BLSA (AD= 31, CN= 19) and ROS (AD= 31, CN= 22) brain tissue
samples were selected from two a priori specified regions: the
inferior temporal gyrus (ITG) and middle frontal gyrus (MFG). The
ITG was selected to represent a brain region vulnerable to
neurofibrillary tangle deposition and the MFG was selected to
represent a region vulnerable to β-amyloid accumulation36,37.
Approximately 4-mm-diameter tissue punches were extracted
from the cortical surface of the brain tissue regions using a sterile
technique and stored at −80 °C prior to proteomic assays.
To ~10mg of brain tissue, 110 µl of T-PER (tissue protein

extraction reagent) (Thermo Fisher Scientific, USA) with 2 µl of
Halt™ Protease and Phosphatase Inhibitor cocktail (Thermo Fisher
Scientific, USA) was added and placed in a CKMix grinding tube,
containing soft tissue homogenizing lysis beads (a mix of 1.4 mm
and 2.8 mm ceramic (zirconium oxide) beads) (Bertin Technolo-
gies, San Quentin, France). The tubes were placed in the Precellys
Evolution tissue homogenizer (Bertin Technologies, San Quentin,
France) and homogenized for two 30 s cycles of 6500 rpm and a
30 s rest in between. The homogenate was removed and placed in
an Eppendorf tube and centrifuged at 16,000×g for 5 min at 4 °C.
The supernatant was removed and centrifuged a second time for
10min at 16,000×g at 4 °C. The supernatant was collected at 4 °C,
2.5 µl was aliquoted, and protein quantitation was carried out
using a MicroBCA Protein Assay Kit (Thermo Scientific, USA). The
total protein concentration was determined, and the samples
were diluted to a final volume of 200 µg/ml with PBS 1X and
stored at −80 °C until analysis.

Blood serum collection
Blood serum samples were collected from BLSA participants
(AD= 26, CN= 20) at time of AD diagnosis, 43 of whom were
included in the autopsy sample, at the NIA Clinical Research Unit
in Harbor Hospital, Baltimore. Details on collection and processing
have been published previously55. Briefly, venous blood samples
were collected between 6 and 7 a.m. following an overnight fast.
Serum samples were aliquoted into 0.5-mL volume in Nunc
cryogenic tubes and stored at −80 °C until further use. Samples
were not subject to any freeze–thaw cycles prior to proteomic
assays. Additional details on sample selection have been
published previously55. ROS participants (AD= 29, CN= 22)
provided blood serum at the time of AD diagnosis, all of whom
were included in the autopsy sample, as described previously56.

SOMAscan proteomic quantification
Sample total protein was adjusted to 16 μg/mL in SB17T buffer
(40 mM HEPES, 125mM NaCl, 5 mM KCl, 5 mM MgCl2, 1 mM EDTA,
0.05% Tween-20 at pH 7.5). Proteomic profiles for 1322 SOMAmers
were assessed using the 1.3 K SOMAscan assay (SomaLogic, Inc.,
Boulder, CO, USA) at the Trans‐NIH Center for Human Immunology
and Autoimmunity, and Inflammation (CHI), National Institute of
Allergy and Infectious Disease, National Institutes of Health
(Bethesda, MD, USA). The SOMAscan assay platform includes
1322 SOMAmer Reagents, of which 12 are hybridization controls,
five are viral proteins, and five are non-specifically-targeted
SOMAmers. As a result, analyses spanned 1300 SOMAmer
Reagents. The proteins targeted by SOMAmers included in this
assay are shown in Supplementary Table 1. The experimental
procedure for proteomic assessment and normalization has been
previously reported57. Briefly, the SOMAscan assay uses SOMA-
mers to translate protein concentrations into measurable DNA
signals, which can be quantified using standard DNA detection
procedures. This is achieved by affinity binding and biotin capture
on streptavidin beads. The DNA concentrations obtained from this
method are reported as relative fluorescence units (RFUs),
resulting from fluorescent SOMAmer hybridized to its

complementary probe on an Agilent array, and are directly
proportional to the reported relative abundance of SOMAmer
Reagents. The data normalization process includes hybridization,
control normalization, median signal normalization, and calibra-
tion normalization, as previously described in refs. 57,58.
Study/cohort-specific samples were run in the same batch.

Within the study/cohort, sample ordering was randomized by
disease (AD and CN), for brain tissue by brain region (ITG and
MFG), sex, and age. SomaScan reports protein abundances
measured in RFU with no missing or below limit of detection
(LOD) values. Following standard SomaScan normalization proce-
dures58, RFU data were processed using hybridization normal-
ization, median signal normalization, plate-scale normalization,
and inter-plate calibration, which were designed to remove
nuisance variability due to differences in loading volume, leaks,
washing conditions, microarray hybridization, and other sources of
intra- and inter-plate technical effects. Additional quality checks
based on principal component analysis were performed at each
normalization step; the fully normalized data used for downstream
analysis showed no evidence of significant technical bias. Outliers
were not excluded.

Statistical analysis: demographic characteristics
Demographic characteristics are summarized in Table 1. Compar-
isons between the BLSA and ROS cohorts were performed using
two-sample t-tests for continuous variables and chi-square tests
for categorical variables.

Statistical analysis: brain proteomic signature identification
To establish a brain proteomic signature discriminating AD and CN
brain samples, we utilized a two-step process in which we first
identified a signature in ROS and then validated the signature
independently in BLSA. We performed the signature identification
step separately in ROS ITG and MFG brain tissue samples utilizing
binomial classification in eNetXplorer8, an R package, which tests
the accuracy and significance of a family of elastic net generalized
linear models ranging from ridge regression (alpha= 0) to lasso
regression (alpha= 1)7. For analysis in eNetXplorer, the outcome
was a binary group variable (AD vs. CN) with predictors of log10-
transformed aptamer relative fluorescence units (RFU) in the brain
and covariates of sex and age at death. The elastic net mixing
parameter alpha was scanned from 0 to 1 in 0.2 intervals. The
alpha model best discriminating between AD and CN in ROS
samples was selected based on overall performance assessed as a
function of the fivefold cross-validated quality function (accuracy)
and the empirical p value estimated from comparing the model
against a statistical ensemble of null models generated by random
permutations of the response (i.e., AD and CN class labels). This
procedure required the evaluation of a large number of elastic net
realizations arising from 500 randomly generated fivefold cross-
validation runs, each of them compared against 250 null model
permutations, in which participant class labels (AD or CN) are
randomly assigned. Model performance is quantified by a quality
function (i.e., classification accuracy), and the comparison between
the model performance and null model performance distribution
is quantified with an empiric p value. To identify proteins defining
a discriminative proteomic signature, we selected proteins with a
significant (p value <0.05) feature frequency (frequency with
which a protein was selected by the model) or feature coefficient
in the selected alpha model. Proteins identified in this manner by
eNetXplorer are those that discriminate most accurately between
AD and CN brain samples in ROS. False-discovery rate corrections
were not applied to selected protein features as such methodol-
ogies assume statistical independence, whereas eNetXplorer
preserves the data covariance structure across feature space.
After identifying proteins accurately discriminating between AD

and CN brain samples in ROS with eNetXplorer, we validated the
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discriminative ability of these proteins by applying leave-one-out
cross-validation (LOOCV) with logistic regression models in an
independent cohort of BLSA brain samples. In LOOCV, one sample
is held out from the data as a test set and all other samples are
used in the training set. This procedure is repeated until all
samples in the dataset have been used as the test set59. LOOCV
was performed separately within each brain region: i.e., the ROS
ITG brain proteomic signature was applied to BLSA ITG tissue
samples, and the ROS MFG signature was applied to BLSA MFG
samples. Prior to model evaluation, we performed three inter-
quartile range (IQR) winsorization, in which protein values outside
the 3 IQR range were “winsorized” and set equal to the three IQR
limit60. Logistic regression models included the group outcome
(AD vs. CN), and predictors included levels of proteins in the brain
proteomic signature, as well as covariates—sex and age. Results of
LOOCV were visualized as receiver operating characteristic (ROC)
curves, from which we calculated area under the curve (AUC) with
95 percent confidence intervals.

Statistical analysis: protein abundance comparisons
To identify differences in levels of proteins identified by
eNetXplorer between AD and CN participants, we used propor-
tional odds models61, a generalization of the non-parametric
Wilcoxon and Kruskal-Wallis tests. All proportional odds models
included ranked protein levels (outcome), the group predictor (AD
vs. CN), and covariates—the age at sampling and sex. Models
were run separately for ROS and BLSA cohorts. For each cohort,
three sets of cross-sectional proportional odds models were
performed, one for each protein sampling matrix: ITG brain tissue,
MFG brain tissue, and blood serum at the time of diagnosis. The
significance for between-group comparisons was set as p < 0.05.

Statistical analysis: associations with AD pathology
We also sought to determine if blood serum and brain levels of
proteins in the brain proteomic signature were associated with the
severity of AD pathology in the ITG and MFG. As in prior work62,
we examined partial Spearman correlations of CERAD and Braak
scores with ranked aptamer values, controlling for covariates –sex
and age at sampling. Correlations were performed separately in
ROS and BLSA for ITG, MFG, and serum protein levels at the time
of samples concurrent (<1 year) with AD diagnosis and age-
matched controls. A significant (at a p value threshold of 0.05)
positive correlation indicated that a higher concentration of the
protein was associated with higher AD pathology (i.e., higher
CERAD or Braak scores) and, conversely, a significant negative
correlation indicated that a lower concentration of the protein was
associated with higher AD pathology.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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