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Longitudinal molecular profiling elucidates
immunometabolism dynamics in
breast cancer

Kang Wang 1, Ioannis Zerdes 1,2, Henrik J. Johansson 3, Dhifaf Sarhan 4,
YizheSun4,DimitrisC. Kanellis 5, EmmanouilG. Sifakis 1, ArturMezheyeuski6,7,
Xingrong Liu1, Niklas Loman8,9, Ingrid Hedenfalk 9, Jonas Bergh 1,10,
Jiri Bartek 5,11, Thomas Hatschek1,10, Janne Lehtiö 3,12, Alexios Matikas 1,10 &
Theodoros Foukakis 1,10

Although metabolic reprogramming within tumor cells and tumor micro-
environment (TME) is well described in breast cancer, little is known about
how the interplay of immune state and cancer metabolism evolves during
treatment. Here, we characterize the immunometabolic profiles of tumor tis-
sue samples longitudinally collected from individuals with breast cancer
before, during and after neoadjuvant chemotherapy (NAC) using proteomics,
genomics and histopathology. We show that the pre-, on-treatment and
dynamic changes of the immune state, tumor metabolic proteins and tumor
cell gene expression profiling-based metabolic phenotype are associated with
treatment response. Single-cell/nucleus RNA sequencing revealed distinct
tumor and immune cell states in metabolism between cold and hot tumors.
Potential drivers of NAC based on above analyses were validated in vitro. In
summary, the study shows that the interaction of tumor-intrinsic metabolic
states and TME is associated with treatment outcome, supporting the concept
of targeting tumor metabolism for immunoregulation.

Breast cancer is a highly heterogeneous disease and represents an
ecosystem of extrinsic factors from the tumor microenvironment
(TME) and intrinsic parameters from the cancer cells1. Clinical trials in
the neoadjuvant setting are accelerating the evaluation process of
novel breast cancer drugs2–5, using pathologic complete response
(pCR) as the primary endpoint, which is strongly associated with long-
term outcome6. We have previously shown that immune state profiles

measured in sequential samples from breast cancer patients receiving
neoadjuvant chemotherapy (NAC), especially from on-treatment
samples, could better predict therapeutic response and long-term
survival7, but dynamic functional interplay within the intricate eco-
system is not clear. As our understanding of various strategies
employed by cancer cells to evade immune surveillance deepens,
several key steps of immune state modulation are increasingly
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becoming targets for boosting the antitumor immunity, such as innate
immune-sensing machinery, cellular metabolism, genetic alterations
of oncogenic signaling, and epigenetic regulators8.

Metabolic reprogramming allows tumors to acquire metabolic
properties that support cell survival, evasion of immune surveillance,
and hyperplastic growth9, which not only meets specific demands for
increased energy, biomass, redox maintenance, and cellular commu-
nication, but also interacts with the complex TME10–12. Previous studies
unraveled the plasticity of cancer metabolism in vitro and identified
alterations in several metabolic enzymes, fluxes and mediators13–16.
Moreover, immunometabolic interplay exists in the TME, where
complex metabolic networks of tumor, stromal and immune cells are
dictated by cell-intrinsic and environmental factors17. This diverse
milieu of immune, tumor and stromal cells creates a complex and
dynamic ecosystem that can be influenced by cancer type and
treatment18,19. There is emerging interest in the cancer immunometa-
bolic phenotype,which canhave clinical implications17,20, as a sourceof
prognostic biomarkers21–23 and for therapeutic targeting24–26. However,
the immunometabolic remodeling that occurs during treatment is not
well understood. The neodjuvant setting provides a unique window to
assess predictive biomarkers and response to therapy in vivo27. Using
single-nucleus DNA and RNA sequencing in longitudinal tumor sam-
ples, we previously demonstrated that breast cancer-resistant geno-
types are pre-existing and adaptively selected by NAC28. In addition,
modern mass spectrometry (MS) enables us to measure the actual
druggable molecular phenotype, paving the way for precision cancer
medicine29. A series of translational studies including treatment-naive
triple-negative breast cancer (TNBC) samples have indicated
metabolite-immune crosstalk, where metabolites are expected to
represent a potential therapeutic strategy to promote the efficacy of
immunotherapy24–26,30. Therefore, proteogenomic analysis of neoad-
juvant trials enables us to better understand the metabolic commu-
nication between tumor cells and TME with a dynamic perspective,
which holds great therapeutic value on shaping the TME for effective
antitumor immunity.

In this study, we comprehensively characterize the genomic and
proteomic landscape of HER2-negative breast cancer longitudinally,
using mass spectrometry-based proteomics, bulk RNA microarray,
single nucleus RNA sequencing (snRNA-seq), blood-tumor paired
whole-exome sequencing (WES), histopathology, and in vitro valida-
tion. The main objectives were to (i) evaluate the interaction of
immune and metabolic molecular phenotypes and prognostic rele-
vance, (ii) quantify how immune-metabolism interplay evolves during
NAC, (iii) reveal immunometabolic biomarkers and cellular pheno-
types correlated to NAC response, (iv) delineate metabolic hetero-
geneity by immune state in single-cell resolution, and (v) explore the
effect of clonal evolution on shaping TME switch.

Results
Longitudinal proteogenomic breast cancer cohort
The PROMIX trial is described in detail in Methods. After receiving
NAC, 13.4% of patients attained pCR, including 10 (26.3%) triple-
negative and 10 (9%) luminal tumors. After a median follow-up of
80months, 56 (37.3%) first events had occurred. Therewere 55 (36.7%)
recurrences and 46 (30.7%) all-causes deaths. Detailed clinical and
pathologic patient characteristics are provided in Supplementary
Table 1 and 2. Longitudinal tissue biopsies (pretreatment and after two
cycles) and surgical specimens were collected in the PROMIX trial
(Fig. 1a), thus amulti-omics cohort of 150HER2-negative breast cancer
patients was established (Fig. 1b): bulk microarray gene expression
profiling (GEP) (122 patients, 275 samples), single nucleus RNA-seq
(snRNA-seq) (8 patients, 20 samples), whole-exome sequencing (WES)
(20 patients, 50 tumor samples), multiplex fluorescent (mf) immuno-
histochemistry (IHC) (6 patients, 16 tumor samples), and MS-based
proteomics (29 patients, 53 samples). The intersection of the

proteomics data with GEP and WES is shown in Fig. 1c. Herein, multi-
omics data enabled comprehensive analyses on the correlation of
immunometabolic phenotype and treatment response/long-term sur-
vival (GEP), the interaction of immune state and tumor metabolism
(GEP), potential metabolic targets that modulated TME (paired GEP
and proteomics), metabolic characteristics of breast epithelial,
immune and stromal cells per immune state (snRNA-seq), tumor and
immune state co-evolution under NAC (WES and GEP).

Immune landscape and its prognostic significance
To better delineate TME evolution during NAC, we analyzed GEP data
across the three time points (pre/on/post-NAC) and validated our
findings both at the protein level using mf IHC and MS-based pro-
teomics, as well as in an external cohort. Using GEP, unsupervised
immune state clusters were modeled by integrating comprehensive
immune signatures representing seven immune components with
quanTIseq-based immune cell fractions, which classified all samples
into three distinct immune states: cold (n = 100), warm (n = 118), and
hot (n = 57) (Fig. 2a and Supplementary Fig. 1a). Overall, hot tumors
with the highest immune score calculated by ESTIMATE (Supplemen-
tary Fig. 1b) also had upregulated global immune-related signature
scores, and vice versa for cold tumors (Fig. 2a), whereas KI67 mRNA
was comparable across the three groups (Supplementary Fig. 1c). A
series of clinicopathologic characteristics and GEP-based biomarkers
were compared between the three groups to validate the generated
computational immune states internally (shown as Supplementary
Table. 3). In general, TNBC (IHC-based)/basal-like (PAM50 intrinsic
subtype) tumors were more often labeled as hot (both 38.6%), and
luminal A/B tumors were immunologically cold (71%) (P <0.001, see
Supplementary Fig. 1d and Supplementary Table. 3). Interestingly,
when the samples were annotatedwith Thorsson’s PanCancer immune
subtypes31, >80% of the hot tumors were classified as IFN−γ dominant
while TGF − ß dominant subtype that exerts systemic immune sup-
pression and inhibits host immunosurveillance32 only appeared in cold
tumors (Fig. 2a and Supplementary Table. 3). Hot tumors were more
infiltrated with higher intermediate-(10–50%) and high-density (>50%)
TIL infiltration (65.6%) than warm (49.4%) or cold (31.3%) tumors
(P = 0.006). Neither timepoint (P =0.5) nor tumor cellularity (P = 0.69)
distributed differently between the three immune states (Fig. 2b).
Moreover, quanTIseq-based immune cell composition indicated hot
tumors had the highest proportion of activated cells such as CD8 +T
cells, B cells, andM1macrophages. In contrast, suppressor cells likeM2
Macrophages were elevated in cold tumors (Supplementary Table. 3).
In addition, we employed multiplex fluorescent immunohistochem-
istry (mfIHC) of whole-section slides to support above immune cell
deconvolution results, and cell classes were assigned using the binar-
ized marker (co)expression patterns as illustrated in Supplementary
Fig. 1e.mfIHC indicated that hot tumorshave a higher density ofB cells
(P = 0.03), CD8 +T cells (P =0.06) but a lower density of macrophage
M2 cells (P =0.03) than cold tumors (Fig. 2c and Supplementary
Data. 1). To investigate protein level differences between the immune
state subtypes, we conducted differential protein abundance analysis
usingmass spectrometry (MS) basedproteomicsdata (Fig. 2d). Protein
levels of biomarkers of immune activation (such as GZMK, CD8A, HLA-
A, CD48) were upregulated within hot/warm tumors (n = 30) com-
pared with cold tumors (n = 23) (Fig. 2d).

Next, we aimed to identify association of tumor immune states
with clinical outcome (Fig. 2e and Supplementary Table. 4). Hot
tumors were more likely to reach pCR compared with cold tumors,
both pre-treatment (multivariable adjusted OR= 1.24; 95% CI,
1.04–1.48, P =0.02) and on-treatment (multivariable adjusted OR=
1.39; 95% CI, 1.11–1.73, P =0.005) after adjusting for breast cancer
subtype, tumor size and lymph node status. Similar associations (hot
vs cold tumors) were observed within the group of luminal tumors
(pre-treatment: multivariable OR = 1.22; 95% CI, 1.03–1.46, P =0.03;
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on-treatment: multivariable OR = 1.64, 95% CI, 1.33–2.02, P < 0.001),
while the limited number of TNBC cases precluded any conclusions in
this subgroup. Regarding the association between immune state and
long-term DFS, we observed that pre-treatment warm tumors tended
to have inferior DFS than cold tumors (pre-treatment: multivariable
HR = 2.18; 95% CI, 0.92–5.15, P =0.08).

Furthermore, a machine learning based algorithm using GSVA
score of TCGA PanCancerAtlas (https://cri-iatlas.org/) immune gene
set31,33, was applied to screen prognostic role on DFS by immune state.
Natural killer (NK) cell and its subpopulation like CD56bright NK cells
were identified as a promising biomarker across different immune
states (Supplementary Fig. 2a). Kaplan-Meier survival analysis stratified
by treatment timepoint verified that patients with higher signature
score of NK cells exhibited longer DFS, especially on post-treatment
samples (Supplementary Fig. 2b, c). Specifically, we observed that
difference in CD56bright NK cells signature score between disease-free
patients and those with relapse became more and more pronounced
during NAC (Supplementary Fig. 2d), but no difference was found
between pCR and non-pCR group (Supplementary Fig. 2e). Gene set
enrichment analysis (GSEA) suggested that a series of metabolic
pathways (i.e. glycolysis, fatty acid, oxidative phosphorylation
(OXPHOS)) were enriched in patients with low NK cells signature
score (Supplementary Fig. 2f). Furthermore, representative post-
treatment slides were stained by NK cell mIF panel, which included
NK cells (CD3-CD56 + ), NKT cells (CD3 + CD56 + ), adaptive NK cells

(CD3-CD56 +CD57 +NKG2C + FcεRγ-) and conventional NK cells (CD3-
CD56 + CD57 + FcεRγ + ) (Supplementary Fig. 2g). As illustrative
examples, patients 617 (pCR) and 213 (non-pCR) from PROMIX who
had high abundance of NK and adaptive NK cells remained event-free
at 10 years postoperatively. Conversely, patient 314 (pCR) had few
NK cells and recurred within 1 year after the operation (Supplemen-
tary Fig. 2g).

For external validation, we repeated our analysis pipeline on the
Korean validation cohort (HER2-negative subset, 86 patients, 144
tumors) and corroborated the above findings. Tumors with GEP were
classified into cold (n = 46), warm (n = 62) and hot (n = 36) immune
state (Supplementary Fig. 3a). TIL density gradually increased from
cold to hot tumors (Supplementary Fig. 3b), and triple negative tumors
were significantly enriched in the hot group (Supplementary Fig. 3c).
Compared with immunologically cold tumors, hot tumors were more
likely to reach pCR (Supplementary Fig. 3d), (pre-treatment: multi-
variable OR = 1.56; 95% CI, 1.10 to 2.2, P =0.02; on-treatment: multi-
variableOR = 1.29; 95%CI,0.92 to 1.83,P =0.15); and similar correlation
was seen in TNBC subsets (pre-treatment: multivariable OR = 1.64; 95%
CI, 0.99 to 2.72, P =0.06; on-treatment:multivariable OR = 1.51; 95% CI,
0.83 to 2.74, P =0.19).

Taken together, our genomic and proteomic analyses revealed
and validated distinct immune clusters. Immunologically hot tumors
associated with better treatment response, whereas post-NAC NK cell
abundance correlated with improved long-term survival.
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Tumor metabolic phenotype interacts with immune state
Given the complexity of metabolites in bulk tumor tissues10 and posi-
tive correlation between actual metabolite abundance and expression
of corresponding metabolic pathway genes23,24, we explored the
interaction between the derived immune states and metabolic phe-
notypes usingGEP and confirmed inMSproteomics. First, weclassified

tumors into three metabolic states (i.e downregulated, neutral, upre-
gulated) for each of the seven predefined metabolic pathways using
GEP of tumor cells only (Fig. 3a). We applied ISOpureR to 270 samples
with tumor cells, with estimated mean tumor purity of 0.58, 0.50, 0.31
at baseline, cycle 2 and surgery, respectively (P <0.001, ANOVA), and
extracted mRNA expression for tumor cells only and tumor-adjacent
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cells (Supplementary Data. 2). As expected, t-statistic Stochastic
Neighbor Embedding (t-SNE)34 revealed seven GEP-based metabolic
pathways distinct between tumor-adjacent cells versus tumor cells
(Supplementary Fig. 4). Then, we classified those 270 samples into the
three metabolic states (downregulated, neutral, upregulated) using
bulk and tumor cell-based gene expression (Supplementary Data. 2).
Figure 3b shows the proportions of bulk/tumor cell-derivedmetabolic
states within immune states, for all patients and separately per breast
cancer subtype (luminal and triple negative). Differential metabolic
tumor-cell GEP between each metabolic state (FDR <0.1) are shown in
Supplementary Fig. 5, where the Kolmogorov-Smirnov test indicated
that FDR values (derived from ANOVA tests) of each metabolic path-
way are lower than those from other coding genes (all P < 0.05) (Sup-
plementary Data. 3). Furthermore, representative metabolic protein
abundance (Supplementary Fig. 6a-d) as well as KEGG metabolism
signatures (Supplementary Fig. 6e–k) were compared between groups
(all P ≤0.1), which also showed a good concordance with tumor-cell
based metabolic group.

Next, we investigated the interaction between metabolism and
immune states and the prognostic implications of the different meta-
bolic subtypes at the gene expression level. Overall, a linear mixed-
effects model (LMEM) adjusted for tumor subtype, showed that
metabolic gene sets states were associated with immune states.
Upregulated lipid (coefficient, −0.25; P =0.002), amino acid (coeffi-
cient,−0.23;P = 0.0007), TCAcycle (coefficient,−0.21;P =0.0007) and
vitamin/cofactors (coefficient, −0.19; P =0.03) metabolic pathways
were inversely correlatedwith immunologically hot tumors (Fig. 3b, c).
We further assessed pair-wise correlations of the seven different
metabolic pathways (tumor cell/bulk GEP-based) and immune state
(Fig. 3d). TCA cycle subtype shared strongly positive correlations
(Spearman’s Rho > 0.4, P < .001) with other metabolic subtypes other
than carbohydrate subtype, and both bulk and tumor cell GEP-based
metabolic states were negatively associated with immune state
(Spearman’s Rho < −0.1, P <0.1). When we combined pre-treatment
and on-treatment samples, more prognostic metabolic phenotypes
derived from tumor cell GEP were identified than those from bulk GEP
(Fig. 3d and Supplementary Table. 5). Specifically, upregulated tumor
cell GEP-based metabolic subtypes in carbohydrate (multivariable-
adjusted HR = 2.62, 95% CI, 1.07–6.44, P =0.04) and TCA cycle path-
ways (multivariable-adjusted HR = 2.89, 95% CI, 1.16–7.21, P =0.02)
were associated with worse DFS compared with the downregulated
group. Likewise, patients with upregulated amino acid (multivariable-
adjusted OR=0.87, 95% CI, 0.76–1.01, P =0.07), TCA cycle (multi-
variable-adjusted OR=0.87, 95% CI, 0.74 to 1.03, P =0.1) and nucleo-
tide (multivariable-adjusted OR=0.77, 95% CI, 0.61 to 0.98, P =0.04)
pathways-based subtype were less likely to attain pCR than those with
downregulated pathways.

The reproducibility of the interaction between metabolic
pathway-based subtype and immune state was externally validated by
the expression profiles of the Korean cohort (Supplementary
Fig. 7a–c). Althoughwe failed to extract TCGEP due to lack of RNA-seq
data of post-treatment samples that reachedpCR, the tumor cellularity

was added into LMEM (Supplementary Fig. 7b) and multivariate
logistic regression. Metabolic-pathway based phenotype like TCA
cycle (coefficient, −0.22; P =0.003) and nucleotide (coefficient, −0.26;
P =0.03) were negatively correlated with immune states, but upregu-
lated vitamin/co-factors was associated with hot immune state (coef-
ficient, 0.37; P =0.03) (Supplementary Fig. 7b). Moreover, patients
with pre-treatment upregulated amino acid phenotype were less likely
to reach pCR compared to downregulated group (multivariable-
adjusted OR=0.71, 95% CI, 0.54–0.94, P =0.02) (Supplemen-
tary Fig. 7c).

Overall, herewe uncovered a critical interplay between tumor cell
GEP-based metabolic phenotype (i.e. TCA cycle) and immune state
subtype, and highlighted the prognostic role of cellular metabolism.

MS-based proteomic landscape of immunometabolic pheno-
type and pathways
Protein abundance data were generated based on a subset of pre/on-
treatment samples (N = 53) using mass spectrometry-based pro-
teomics. No significant batcheffect between six TMT setswasdetected
(Supplementary Fig. 8). In total, we identified 10,946 proteins (median
(interquartile range): 8300 (8090-8948)), of which 7357 proteins were
quantified in each of the 53 tumors (29 samples on pretreatment and
24 samples after two cycles of chemotherapy) (Supplementary Fig. 9a
and Supplementary Data. 4). Gene based correlation of mRNA and
protein data for 42 tumors showed positive correlations for 4585/
8,290 (55%) proteins (median r: 0.37, Fig. 4a), which is comparable to
previous proteogenomic studies35,36. Moreover, correlation between
protein interactions of known complex members from Biogrid or
CORUM differed between mRNA-mRNA and protein-protein correla-
tions (Fig. 4b, Supplementary Fig. 9b and Supplementary Data. 5). The
higher correlations at the protein level compared to the mRNA level
demonstrated that those biological processes are tightly regulated at
the protein level. Proteins related to metabolic and immune functions
showed varying correlations with their respective transcript abun-
dances (Fig. 4c), where immune proteins (mean r: 0.58) were sig-
nificantly more correlated with corresponding mRNA than those of
metabolism (mean r: 0.50) (P = 0.002) (Supplementary Fig. 9c).

After excluding protein pairs with weak correlations (absolute
Pearson’s r < 0.3), we mapped the protein correlation network using
immunometabolic and breast cancer-specific (PAM50) proteins. The
network snapshot demonstrated that proteins with similar biological
functions were highly connected (Fig. 4d). Interestingly, lipid proteins
were enriched in the immune-relatedmodule (Fig. 4d), supporting the
importance of lipid metabolism in immune functions such as antigen
presentation and T cell activation37. The mean abundance of immu-
nometabolic proteins differed across the three immune states
(Fig. 4e), which highlighted the role of the TME in shaping the tumoral
metabolic landscapes. Hot/warm tumors were likely to have higher
mean protein abundance in amino acid (P =0.03, Fig. 4e) and
nucleotide (P =0.07, Fig. 4e) metabolism compared with cold tumors,
probably owing to extra nutrition demands from functional immune
cells. Interestingly, though hot tumors were associated with increased

Fig. 2 | Immune state association with clinical outcomes. a Unsupervised clus-
tering using a joint latent variable model based on immune gene signatures and
immune cell composition reveals distinct immune states of breast cancer (Sup-
plementary Table2). b Distribution of TILs, sampling timepoints, and cellularity
among the immune states, which is tested by two-sided chi-squared test or Fisher’s
exact test (frequencies < 5). c Representative mfIHC images (stained for lympho-
cytic,macrophage and epithelialmarkers, i.e CD4, CD8, CD20, CD163, CD68, FoxP3
and Cytokeratin), for three immune states, and immune cells density (number of
positive cells normalized to tissue area) between cold (n = 3), warm (n = 6) and hot
(n = 7) tumors. Box plot wrapped in violin plot bounds the interquartile range
divided by the median, with the whiskers extending to a maximum of 1.5 times the
interquartile range beyond the box. Statistical significance (P-value) was

determined using Kruskal-Wallis test. d Volcano plot showing differentially abun-
dant proteins between hot/warm (n = 30) and cold tumors (n = 23),where the arrow
indicates immune-related proteins. e Forest plot of multivariable Cox and Logistic
regression analysis (n = 204) for DFS (HR with 95% CI) and pCR (OR with 95% CI),
respectively, adjusting for IHC-based breast cancer subtype, tumor size and lymph
node status (KI67 mRNA was additionally adjusted for DFS) (Supplementary
Table3). The hazard ratios andodds ratios are shownwith 95%confidence intervals.
***p <0.001; **p <0.01; *p <0.05; NS p >0.05. TILs tumor-infiltrating lymphocytes,
mfIHC multiplex fluorescent immunohistochemistry, DFS disease-free survival,
pCR pathologic complete response, ER estrogen receptor, HER2 Human epidermal
growth factor receptor-2, OR odds ratio, HR hazard ratio, CI confidence interval.
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proliferation (bulk MKI67 protein) (Supplementary Fig. 9d), MKI67
percentage according to IHC that only counts tumor cells was not
different between the three immune states at baseline (Supplementary
Fig. 9e). Therefore, we speculated that this upregulated proliferation/
nucleotide signaling in hot tumors observed from proteomics might
be derived from immune cells. Furthermore, we identified metabolic

proteins sustaining proliferative signaling through protein-protein
correlation analyses, and proteins involved in glycolysis (e.g. SLC16A1,
SLC2A3, HK2), glutamine (e.g. GLS, HMGCS1) and one-carbon meta-
bolism (e.g. PHGDH, PSAT1, SHMT2, MTHFD2, MTHFD1L), showing
positive correlations with cell proliferation proteins (e.g. MKI67,
CCNB1, KIF2C) (Supplementary Fig. 9f).
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Metabolic reprogramming may provide novel therapeutic
opportunities, and several metabolic enzymes have been found to be
valuabledrug targets for cancer therapy andmodulation of supporting
immune cells24,38,39. We mapped differentially expressed mRNA and
proteins between hot and cold tumors on major metabolic pathways
(Fig. 4f), to find potential targets with FDA-approved drugs that
appeared to synergize with TME improvement in stopping tumor
growth. Metabolic druggable proteome upregulated in cold tumors
such as FASN, whose inhibitor (cerulenin) is a potential candidate for
inhibiting tumor growth and simultaneously boosting TME function
(Supplementary Fig. 9g). Likewise, other potential drug targets with
experimental evidence like ACACA (inhibitor: KD-023), ALDOA and
HMGCS1 were also identified (Supplementary Fig. 9h–j). To validate
the above findings, we replicated our analyses using the Oslo2 pro-
teogenomic cohort that showed similar results (Supplemen-
tary Fig. 10).

These results further emphasized the interaction of immune and
metabolic phenotype in bulk transcriptomic and proteome levels, and
systematically identified potential metabolic targets as TME modula-
tion. Although our bulk MS-based proteomics revealed distinct meta-
bolic characteristics across the three immune states, our data also
suggest that single-cell level metabolomics or proteome will be more
informative due to metabolic heterogeneity in TME20.

Longitudinal pairwise analyses on immunometabolism
Longitudinal GEP and proteomic data from PROMIX trial provide a
unique opportunity to assess the correlation between tumor biological
characteristics (seen in Supplementary results, Supplementary Fig. 11)
involving immunometabolism profiles, and the response to NAC. We
employed a linear mixed-effects model (LMEM) and identified four
consensus clusters using pairwise differentially expressed genes
(DGEs) across treatment (on-treatment vs. pre-treatment,n = 137; post-
treatment vs. on-treatment, n = 344; post-treatment vs. pre-treatment,
n = 740) (Supplementary Fig. 11a and Supplementary Data. 6). These
were enriched in immune response (C1), metabolism (C2), extra-
cellular matrix (ECM) (C3), or tumor proliferation (C4) pathways
(Supplementary Fig. 11b). Corresponding pathway scores were cal-
culated and compared between sampling timepoints, where repre-
sentative and top enriched pathways within each cluster are shown in
Supplementary Fig. 11b, c. In tumor purity and subtype-adjusted
LMEM, continuously downregulated interferons (IFNs)-based anti-
tumor response was observed during NAC, while antigen-presenting
cell (APC) signaling was elevated from baseline to 2-cycle NAC then
decreased to lower levels in residual tumors/normal breast tissues at
surgery (Supplementary Fig. 11c). Conversely, fatty acid related
metabolic pathways such as triglyceride catabolism tended to be
upregulated by NAC (Supplementary Fig. 11c). Other tumor-intrinsic
signaling pathways, including ECM and cell proliferation, presented
completely reverse profiles during NAC (Supplementary Fig. 11c). As

reported previously40, we found that NAC led to a notable down-
regulation of proliferation. Given the strong correlation of ECM and
stroma score (Rho = 0.8, P < 0.001) (Supplementary Fig. 11d), we
identified upregulated ECM pathways score with reduced tumor
cellularity during NAC (Supplementary Fig. 11c and Supplementary
Fig. 11e).

We then limited analyses to correlation of dynamic immune or/
and metabolic phenotype changes and treatment response within 69
patients with both pre- and on-treatment tumors (patients’ char-
acteristics shown in Supplementary Table 6). Pairwise comparisons
of immune states indicated that 40% of cold tumors were converted
into warm or hot states after two cycles of NAC (Fig. 5a, b). Likewise,
28% of the warm tumors became hot, but fewer tumors went from
hot to cold (1/10) immune states under NAC. Interestingly, this effect
on immune state was persistent during the last four cycles of NAC.
Moreover, we defined as a negative immune state change if tumors
kept a cold immune state or turned to a colder immune state after
NAC, and vice versa for positive immune state change (Fig. 5c).
Patients with positive immune state change (OR = 1.2, 95% CI, 1 to
1.45; P = 0.05) (Fig.5d) were more likely to achieve pCR after adjust-
ing for tumor size, lymph node status and breast cancer subtype. The
same strategies were also applied to define tumor-cell-GEP based
metabolic phenotype profile (i.e. positive change: patients main-
tained downregulated metabolic phenotype under NAC, or with
changed metabolic phenotype (i.e. from upregulated/neutral to
downregulated)); all others are defined as negative change. Accord-
ingly, we revealed that positive changes of TCA cycle (OR = 1.28, 95%
CI, 1.03 to 1.58; P = 0.03) and nucleotide (OR = 1.41, 95% CI, 1.09 to
1.82; P = 0.01) metabolisms were independently associated with
increased pCR. Similarly, patients with positive energy metabolism
change showed a trend towards better treatment response (OR =
1.36, 95% CI, 0.96 to 1.94; P = 0.09). In addition, we evaluated the
correlation between integrated immunometabolism profiles
(Group1-4 shown in Fig. 5e) and radiologic response (response
group, N = 28; no response group, N = 41) after two treatment cycles.
We found that patients with both positive immune state and meta-
bolic phenotype profile were more likely to respond to NAC com-
pared with other groups (Fig. 5e and Supplementary Table 7).

To identify potential tumor drivers and biomarkers in immuno-
metabolism during NAC, we conducted longitudinally differential
mRNA and protein expression analyses separately, according to
objective response status (partial response versus stable disease or
disease progression) (Fig. 5f, g). Several immune-related proteins,
including IL32, CCL18, CD247, and CD8A, showed a strong positive
correlation with NAC response. Conversely, proteins on the TCA cycle
and nucleotide metabolism were downregulated (Fig. 5f). Interest-
ingly, in the “no response” group, we identified upregulated carbohy-
drate (SLC6A8, HS6ST2, SLC5A1) and exhausted CD8 +T cells (CD244)
biomarkers exclusively at the protein level (Fig. 5g).

Fig. 3 | Tumor cell GEP-basedmetabolic states interactionwith immune states.
a Bioinformatics approach named PureMeta (https://github.com/WangKang-Leo/
PureMeta) classified each sample into one of three GEP-based metabolic states
(upregulated, neutral and downregulated) in seven metabolic pathways. Step 1,
tumor cell gene expression profiling was extracted from bulk RNAmicroarray data
using ISOpureR (1.1.3)92, and GEP of surgical samples (n = 5) without tumor cells
(T0, N0)were regarded as reference. Step 2, GSEApre-ranked analysis based on the
gene set of each specificmetabolicpathwaywas conducted, and thephenotypewas
determined based on FDR and Z scores. Step 3, tumor cell GEP-based metabolic
phenotype was further validated on gene and protein levels. Box plot wrapped in
violin plot bounds the interquartile range divided by themedian, with the whiskers
extending to a maximum of 1.5 times the interquartile range beyond the box.
bPercentageofmetabolic states in sevenmetabolic pathways for the three immune
subtypes/states (from Fig. 2a), based on tumor cell or bulkGEP. Two-sided P-values
were derived from the Chi-Square test or Fisher’s exact test. c Funky heatmap

depicting the coefficient, random term, residual variance and p-value of LMEM,
which was conducted within all samples to identify interaction effects between
immune state (I) and tumor metabolic phenotypes (M), adjusting for the breast
cancer subtype (S). d Interaction of metabolic phenotypes derived from bulk or
tumor cell gene expression profiling and the immune states. Orange bubble,
metabolic phenotype from bulk gene expression; Purple bubble, metabolic phe-
notype from tumor cell gene expression; Green bubble, immune state. The size of
each cell represents pCR prediction of each phenotype, the calculation used the
formula log10(multivariable logistic regression two-sided P-values) (for details, see
Supplementary Table 4). The lines connecting bubbles represent immunometa-
bolic interactions. The thickness of the line represents the strength of correlation
estimated by Spearman correlation analysis. A positive correlation is indicated in
red and a negative in blue. GEP, gene expression profiling; GSEA, gene set enrich-
ment analysis; LMEM, linear mixed-effects model; pCR, pathologic complete
response.
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In summary, we demonstrate that both immune states and
metabolic phenotypes in HER2-negative breast cancer are not stable
but are dynamically shaped by NAC, with these early changes having
important prognostic implications regarding both radiologic and
pathologic response to treatment.

Single-cell transcriptional analysis of metabolic states and
reprogramming in TME
To better characterize metabolic heterogeneity and cellular compo-
sition in TME at single-cell resolution, we utilized longitudinal snRNA-
seq data from the PROMIX trial (8 TNBC patients, 16 samples) and a
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large-scale, well-annotated, treatment-naive scRNA-seq cohort (21
HER2-negative breast cancers)41.

In the PROMIX snRNA-seq dataset, we distinguished cancer cells
from normal cell types including immune, stromal, normal epithelial
cells using estimated genomic copy number profiles at an average
genomic resolution of 5Mb (Supplementary Fig. 12). Then, immune,
stromal, normal and tumor epithelial cells compartments were classi-
fied by classic biomarkers (Supplementary Fig. 13). Cell subpopula-
tions were further identified within each compartment
(Supplementary Fig. 14). To evaluate compartment-specific metabolic
heterogeneity, we conducted single-sample gene set enrichment ana-
lysis (ssGSEA) analyses of metabolic pathways in the PROMIX snRNA
dataset, indicating that bioenergetics of normal breast cancer epithe-
lial cells differed fromcancer cells. Tumor epithelial cells shared global
metabolic superiority to other compartments except for fatty acid and
drugmetabolismby cytochromeP450 (Supplementary Fig. 15a, b), and
consistent results remained within each cell type (Supplementary
Fig. 15c).

We next characterized metabolic profiles of breast epithelial cells
under the pressure of NAC treatment. Five epithelial clusters in
metabolism (MC1-MC5) were identified across longitudinally collected
TNBC biopsies and surgical specimens (Fig. 6a, b). The composition of
the metabolism-specific epithelial clusters changed between pre-
treatment and on/post-treatment samples, which was significantly
associated with immune state change (negative or positive) (Fig. 6c).
Epithelial MC1 (PDK4, DCN, ACTA2, FABP4) was characterized by
normal epithelial cells, antigen presentation (chemokines) and gly-
cerolipid metabolism (Fig. 6d, e), and MC1 proportion increased after
NAC in the group with positive immune state change. Within MC2
(FABP5, MTHFD2, TPI1, GAPDH), we identified a highly proliferated
(purine, folate one carbon metabolism) epithelial cell subset with
active bioenergetic metabolism features (i.e. OXPHOS, glycolysis)
(Fig. 6d, e). MC2 proportion increased after treatment in the negative
immune change group while it disappeared in the positive change
group, indicating shrinkage of this cell subtype was associated with
the good response to NAC (Fig. 6c). MC2 showed enrichment of gly-
colysis and hypoxia, while MC3 (COL1A1, MMADHC, PGK1, RAN, GLS,
OAT) wasmainly associatedwithOXPHOS andglutathionemetabolism
rather than glycolysis (Fig. 6d, e). Furthermore, the transition of MC2
through the other metabolic clusters was strongly supported by the
trajectory analysis (Fig. 6f). Pseudo-time ordering demonstrated an
ordered, progressive, stepwise transition fromnormal breast epithelial
cells (MC1) to malignant hypoxic and glycolytic phenotype (MC2)
(Fig. 6f). MC3 was probably converted into MC2 in the negative
immune state change group (Fig. 6c). The composition of MC4 (FAU,
ATP5G2, COX8A, COX5B), depending on amino acid and cholesterol
(retinol metabolism, steroid hormone metabolism) (Fig. 6d, e), was
relatively stable during NAC in either positive or negative immune
state change group (Fig. 6c). Interestingly, MC5 (PIK3R1, ITPR2, LRP2)
wasmainly seen in pre-treatment tumor cells of positive immune state
change group (Fig. 6c). The disappearance of MC5 on/post-treatment

in positive immune state change group could be explained by highly
expressed chemokines, which directed the migration of immune cells
into tumor tissue42. We performed differential expression analyses
between pre-treatment and on/post-treatment by the immune state
change group, to identify differential expression patterns in immu-
nometabolism (Fig. 6g, h). In the negative change group, down-
regulated genes following NAC were associated with antigen
presentation/major histocompatibility complex (MHC) (HLA −DRA,
HLA-DPAI, HLA − B, HLA −C, HLA −DQB1, CXCL9/10/11) and metabolic
genes were upregulated (RPL5, GAPDH, TPI1, DCXR, ATP5G2), and vice
versa for patients in the positive change group (Fig. 6g, h). High gene
expression of genes RPL5, GAPDH and TPI1 were potential therapy
targets based on CRISPR screen (DepMap 21Q2) data (high gene
expression associated with high gene dependency) (Supplementary
Fig. 16a–c). Furthermore, we calculated GSVA scores of cancer antigen
presentation and metabolisms for epithelial cells, demonstrating that
dynamic metabolism changes of breast epithelial cells during treat-
ment were associated with the immune state switch (all P-values of
Two-way ANOVA test with test for interaction <0.05) (Fig. 6i).

We applied the same strategies to immune and stromal cells to
assess the metabolic heterogeneity of immune state. Interestingly,
gene set of the seven metabolic pathways provided clear clusters by
time or immune states (Supplementary Fig. 17a). Given the limited
number of immune and stromal cells, we just focused on the cluster
(baseline immune cells in the hot immune state) containing a high
fraction of B cells and CD8 +T cells (>85%) (Supplementary Fig. 17a),
with high expression of CD44 that is a receptor for extracellularmatrix
component hyaluronan and biomarker of activated and memory
T cells43 (Supplementary Fig. 17b). In addition, lysosomal acid lipase A
(LIPA), which mobilizes fatty acids for FAO for memory CD8 T cell
development44, was enriched in this cluster (Supplementary Fig. 17b),
which was correlated with CD8A based on bulk GEP (Supplementary
Fig. 17c). Other critical metabolic genes like SDHD (TCA cycle) and
ASAH1 (lipid metabolism), were also found to be upregulated (Sup-
plementary Fig. 17b). To capture special metabolic features for hot
tumors, we compared metabolic GSVA score between hot and warm/
cold tumors. Interestingly, immune cells within cold/warm TME char-
acterized hypoxia, glycolysis, and glutathione (Supplementary
Fig. 17d). Upregulated kynurenine and tryptophan pathway signaling
were identified among immune cells within the hot immune state
group. Interestingly, we noted an upregulation of indoleamine 2,
3-dioxygenase 1 (IDO1), a protein recently identified as immune
checkpoint target, characterized as a rate-limiting metabolic enzyme
that converts tryptophan (Trp) into downstream kynurenines45.
Markedly upregulated IDO1 was seen on both immune and tumor cells
in hot/warm vs. cold immune state groups (Supplementary Fig. 17e).

As complement to inherent limitations of the used snRNA-seq
from PROMIX trial method46 for depicting immune and stromal cells
(seen in Supplementary results, Supplementary Fig. 17), we conducted
additional analyses mainly on metabolic profiles within immune and
stromal cells using HER2-negative subset of breast cancer single-cell

Fig. 4 | MS-based proteomic landscape of immunometabolic phenotype and
pathways. a Correlation between protein and mRNA quantitative values (Spear-
man) of individual genes. Correlation coefficient is considered statistically sig-
nificant if two-sided P <0.05 (dark gray bars). b Comparison of all pairwise
correlations to correlations from known interaction pairs from CORUM database,
using quantitative protein and RNA levels across 53 tumors (see Supplementary
Fig. 8b for the same analysis using Biogrid interactions). c Ranked mRNA–protein
correlations. d Breast cancer protein correlation network based on immunometa-
bolic and PAM50 proteins (n = 2837 in total) using > 0.3 Pearson correlation and
KCore > 2 cutoff. e Visualization of average proteome quantification of the three
immune subtypes/states (from Fig. 2a) in the correlation network. Boxplot showing
difference of mean protein abundance of each module between cold (n = 23) and

warm/hot tumors (n = 30). Box plot bounds the interquartile range divided by the
median, with the whiskers extending to a maximum of 1.5 times the interquartile
range beyond the box. Outliers are shown as dots. Statistical significance (two-
sided P-value) was determined using Wilcoxon rank-sum test. f Pathway diagram
summarizing metabolic genes involved in the TCA cycle, glycolysis, nucleotide,
amino acid, and cholesterol lipid synthesis andmetabolism. Alterations are defined
by significant upregulation or downregulation of protein abundance (left) and
mRNA expression (right) between hot and cold tumors (expressed as log2(fold-
change)). Red, upregulated genes/proteins in immunological hot tumor; blue,
downregulated genes in the immunological hot tumor. The gray panel highlighted
the FDA-approved drug targets. Figure4f created using Biorender (https://
biorender.com/).
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atlas dataset (GSE176078) (Fig. 7a)41. Interestingly, although breast
epithelial cells (Supplementary Fig. 18a), immune cells (Fig. 7b), or
stromal cells (Fig. 7c) predominantly depended on OXPHOS, meta-
bolic flexibility and variation within the TME were identified (Supple-
mentaryData. 7). Specifically, in epithelial cells, glycolysiswas themost

critical metabolic pathway besides OXPHOS, and was enriched in
basal-like and cycling cancer cells that were highly proliferative (all
GSEA FDR <0.05) (Supplementary Fig. 18a and Supplementary Data 7).
Likewise, glycolysis was also enriched in immune effector cells
including memory B cells, CD8 +T cells, cycling T cells, monocyte and
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Fig. 5 | Proteogenomic analyses of paired pre/on-treatment samples revealed
an association between changes in immunometabolism and response to NAC.
a Sankey plot of immune state changes from pre-treatment (baseline) to on-
treatment (cycle2) and from on-treatment to post-treatment (surgery) (Supple-
mentary Table 6). Numbers denote the number of samples in each immune state
and the percentage of samples that switch from one immune state to another.
bRepresentativemfIHC images from 16 independent experiments for patientswith
positive and negative immune state change, respectively. PROMIX patient 152: with
negative immune state change, had early distant metastasis after 10months of
diagnosis occurred. PROMIX patient 129: with positive immune state change, had
long-term DFS (66months). c Immune signatures for 69 paired pre/on-treatment
samples. Negative immune state change was defined if tumors conserved cold
immune state or turned to a colder immune state after NAC, and vice versa for

positive immune state change. d Forest plot depicting multivariable the logistic
regressionmodel (ORwith 95%CI) adjusting for tumor size, lymphnode status, and
IHC subtype that assess the association between immunometabolism profiles and
treatment response (pCR). e Bar plots showing the distribution of integrated
immune state with tumor cell GEP based metabolic state change among response
and no-response groups after two cycles of NAC (partial response versus stable
disease or disease progression). Multivariable logistic regression was fitted,
adjusting for tumor size, lymph node status, and IHC subtype (Supplementary
Table. 7). f, g Scatterplot showing pair-wise differential protein (y-axis) and mRNA
(x-axis) expression between on-treatment and pre-treatment samples in the
response group and no response group (partial response versus stable disease or
disease progression), respectively. The x/y axis shows the log2 (fold change). OR,
odds ratio; CI, confidence interval.
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cycling myeloid (Fig. 7b and Supplementary Data 7), which was
revealed by a series of nuanced models47–56 investigating the metabo-
lism of T cell expansion and CD8+ effector differentiation. Cancer-
associated fibroblasts (CAFs) (myofibroblast-like CAFs and
inflammatory-like CAFs) and endothelial cells, serving as major com-
ponents of tumor stroma and ECM, showed metabolic plasticity and
shared similar metabolic activity (OXPHOS, glycolysis, glutathione,
cytochrome P450) (Fig. 7c and Supplementary Data 7). The 21 tumors
were further classified into immunologically cold (n = 13) and hot
(n = 8) based on mean CD8 +T cell proportion as cut-off value (Sup-
plementary Fig. 18b). Then we calculated represented metabolic

pathway GSVA score using pseudo-bulk gene profiles for immune and
stromal cells for each sample, which were compared between hot and
cold tumors (Fig. 7d). Immune effector cells fromhot tumors harbored
higher metabolic activity than counterpart cells from cold tumors,
including pyruvate (CD4 +T cells and NK cells), glycolysis (NK cells),
citric acid cycle (CD8 +T cells and NK cells), and fatty acidmetabolism
(CD4 + /CD8 +T cells) (Fig. 7d). Conversely, amino acid (glutathione)
metabolism signature score derived from CD4 + T cells was higher in
cold tumors compared with hot tumors (Fig. 7d), and we observed
similar tendencies for cycling T−cells and memory B cells (both
P =0.1) (Fig. 7d).
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Fig. 6 | Identification of metabolic reprogramming during immune state evo-
lution by longitudinal single-nucleus RNA-seq. a Single-nucleus RNA-seq using
gene sets of the seven metabolic pathways identify five metabolic clusters (MC1-5)
of breast epithelial cells pre/on/post-treatment breast cancer in PROMIX trial (n of
sample = 16, n of cell = 3,039). b Feature plots showing sample ID, sampling time-
point, TME subtype, and cell type in eachmetabolic breast epithelial cell subcluster.
c The percentage of metabolic epithelial cell cluster in each sampling timepoint by
immune state change. d Heatmap of the top 10 differentially expressed genes
compared to all other clusters in (a), and the arrow indicated metabolic-related
genes. e The metabolic characteristics of each breast epithelial cell cluster (MC)
were analyzed and quantified based on metabolic signature scores: MC1 (glycer-
olipid metabolism, log2FC= 7.4; cancer antigen presentation, log2FC= 2.5), MC2
(purine biosynthesis, log2FC = 2.5; folate one carbon, log2FC = 2.7; cell cycle,

log2FC= 3.0; glycolysis, log2FC= 3.2; hypoxia, log2FC= 3.1; oxidative phosphoryla-
tion, log2FC= 3.0; citric acid cycle, log2FC = 2.7), MC3 (citric acid cycle,
log2FC=0.8; pantothenate and CoA, log2FC= 1.6; pyruvate metabolism,
log2FC= 1.8), MC4 (steroid hormone metabolism, log2FC = 2.5; glutathione meta-
bolism, log2FC=0.8; retinol metabolism, log2FC= 2.7), MC5 (chemokines,
log2FC= 1.7; notch signaling, log2FC=0.8). All FDR<0.05. f UMAP of metabolic
breast epithelial cell clusters, colored by pseudotime, calculated using Monocle3
(1.3.4). g, h Heatmap of the expression levels of differentially expressed genes
between pre- and post-treatment breast epithelial cells by immune state change.
i Stacked violin plots of metabolic gene signature scores for pre- and post-
treatment breast epithelial cells that significantly interacted with immune state
change, where the FDR values derived from aTwo-wayANOVA test with Interaction
of TME change and time.
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In summary, using snRNA-seq, we here characterized the meta-
bolic states and their dynamic evolution under the pressure of therapy
in the different cell types within breast tumors. As in the bulk tumor
analyses described above, significant associations between the tumor
metabolic activity and the immune state of the tumors were described.
More importantly, we also implied the metabolic differences that
existed in immune effector cells from cold and hot tumors.

In vitro validation of immunometabolic targets
Following extensive analyses of bulk GEP, proteomic data and snRNA-
seq, we demonstrated that various metabolic-related genes were
upregulated in cold tumors (i.e. FASN,ALDOA,HMGCS1,ACACA, seen in
Fig. 4f) or presented in on/post-treatment tumors with negative
immune state change (i.e. RLP5, GAPDH, TPI1, DCXR, seen in Fig. 6g).
Therefore, to further substantiate these findings and gain functional
insights into the immunometabolic interplay, we performed in vitro
studies targeting these genes. In order to establish our experimental
set of HER2-negative human breast cancer cell lines, we used publicly
available cell line transcriptomic data (Supplementary Fig. 19a), and
observed that baseline expression of three of these metabolic-related

genes (i.e. RLP5, TPI1, ALDOA) was most commonly upregulated in the
following breast cancer cell lines: MDA-MB-231 & BT549 (basal-like
subtype), MCF7 and T47D (luminal subtype). By using siRNA transient
transection technology, we successfully performed knockdown of the
three genes in all 4 cell lines (Supplementary Fig. 19b). Upon knock-
down of the metabolic-related genes, we observed a decreased cell
viability (evaluated by XTT cytotoxicity assay, Fig. 8a, b) and increased
apoptosis (evaluated by caspase 3/7 assay, Fig. 8c, d and Supplemen-
tary Fig. 19c) of the tumor cells with the knocked-down genes com-
pared to the control cells.

Given the importance of the anti-tumor activity of T cells in the
TME to eliminate tumor cells, we next conducted co-cultures of T-cells
with the aforementioned cancer cell lines (both control and gene-
silenced) and assessed for tumor killing over the course of a 24 h live
cell-imaging. Upon knockdown of the metabolic-related genes, direct
tumor cell killing was observed for most cell lines and target genes
when cultured with T-cells, especially for ALDOA in both luminal and
basal-like cells, and TPI1 in luminal cells (Fig. 8e). Furthermore, tumor
cell growth was arrested when cultured with T cells and upon gene
silencing, as demonstrated by a decreased confluence compared to
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Fig. 7 | Metabolic heterogeneity of immune and stromal cells. a UMAP dimen-
sionality reduction diagram showing immune and stromal cell fromHER2-negative
subset of breast cancer single cell atlas (GSE176078) by sampleID, subtype, and
immune state (n of sample = 21, n of cell = 54,652). Cell type was previously well
annotatedas follows: B cellsMemory (memoryB cells (CD79A,MS4A1, CD27), naive
B cells (CD79A, MS4A1, IGHD), plasmablasts (IGKC and IGLC2), CD8 + T cells (CD3,
CD8), CD4+ T cells (CD3, CD4), NK cells (KLRC1, KLRB1, NKG7, AREG), cycling
T cells (CD3, MKI67), NKT cells (KLRC1, KLRB1, NKG7, FCGR3A), macrophage
(CD86), monocyte (CD127), cycling myeloid (KI67), DCs (CLEC9A or CD1C), endo-
thelial (PECAM1, CD34 and VWF), MSC iCAF−like CAFs (ALDH1A1, KLF4 and LEPR),
myCAF−likeCAFs (ACTA2 (αSMA), TAGLN, FAPandCOL1A1), PVL (ACTA2, PDGFRB

and MCAM)). Metabolic pathways enriched in genes with highest contribution to
the metabolic heterogeneities among immune cells (b) and stromal cells (c). The
metabolic pathways with GSEA nominal p-value < 0.05 were considered as sig-
nificant. d Representedmetabolic pathways score of immune and stromal cells was
compared between cold (n = 8) and hot (n = 7) tumors. Box plot bounds the
interquartile range divided by the median, with the whiskers extending to a max-
imum of 1.5 times the interquartile range beyond the box. Outliers are shown as
dots. TME tumormicro-environment, FC fold change, FDR false discovery rate, CAF
cancer associated fibroblast, MSC mesenchymal stem cells, iCAFs inflammatory-
like CAFs, DCs dendritic cell, PVL perivascular-like.
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Fig. 8 | In vitro validation of TME-related metabolic targets. a, b XTT assay of
two luminal (MCF7, T47D) and two basal-like (MDA-MB-231, BT-549) breast cancer
cell lines following a. the knock-downofRPL5, ALDOAor TPI1 or (b). treatmentwith
Staurosporine. All growth assays were performed twice in sextuplicates (N = 12,
knock-down) or triplicates (N = 6, Staurosporine). Data are shown as mean± SD,
Students t-test (treatments compared to siCtr or DMSO), ns: non-significant. The
percentage of viable cells is shown inside the bards. c Cell apoptosis is shown as
mean intensity (arbitrary units) of Caspase 3/7 following a 72-h knockdown of the
same genes in the cell lines mentioned in (a). All apoptotic assays were performed
twicewith a total ofN = 1000–2000 cells counted per experimental condition. Data

are shown as mean ± SD, Students t-test (two-sided) (treatments compared to
siCtr), ns: non-significant. d Representative immunofluorescence images used for
the analysis presented in (c). Scale bar = 10μm. e Tumor cell killing percentage
following T-cell co-culturing in control cell lines and upon knock-down of RPL5,
ALDOA or TPI1 for 24h and 2 h time-lapse using live cell imaging. Cumulative data
(n = 4) are shown as mean± SEM, experiments were repeated twice with three
technical replicates and eight biological replicates. Statistical analyses were per-
formed using Dunnett’s multiple comparisons test presenting adjusted p-values
(two-sided). TME tumor microenvironment.
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control cells (Supplementary Fig. 19d). Taken together, our in vitro
data support the hypothesis that targeting metabolic genes may lead
to immune cell-mediated tumor cell killing and tumor growth inhibi-
tion, thereby provide insights for future studies in this field.

Co-evolution of tumor and immune state during NAC
To gain insights on how tumor cell and immune states co-evolve
under TME, we conducted clonality analyses on WES data28 of long-
itudinal tumor samples from 20 TNBC patients in the PROMIX trial.
Median sequencing depth across all samples was 132X (range 97-191),
with a 99.9% coverage rate (mean), and median tumor composition
calculated by PureCN was 31%, 16%, and 15% at pre/on/post-NAC,
respectively. We identified 4142 unique somatic mutations based on
two callers in this cohort, including 3218 single nucleotide variants
(SNVs) and 1345 insertion/deletion variants (Indels) (Supplementary
Data 8). The most common somatic mutations (cancer drivers)
included TP53 (61%) and PIK3CA (20%) (Supplementary Fig. 20a and
Supplementary Data. 8), and were seen more often in warm/hot than
cold tumors. Furthermore, we identified additional breast cancer
genes deleted more frequently in warm/hot tumors than in cold
tumors (BAP1, PBRM1, NOTCH1, CCND1, RB1) (Supplementary
Fig. 20b, c).

Weobserved a tendency forbaseline hot/warmtumors tobemore
heterogeneous than those with a cold immune phenotype (mean
subclone percentage (hot/warm vs. cold): 36.7% vs. 28.5%, P =0.26)
(Fig. 9a). Tumor mass contains clones of different fitness, and het-
erogeneous clones co-existed in the absence of selection pressure.
However, chemotherapy-induced extinction of weaker clones pro-
duced tumors dominant by chemo-resistant clones57. Accordingly, we
identified a lower numberof subclones in on/post-treatment hot/warm
tumors than cold tumors (mean subclone percentage (hot/warm vs.
cold): 21.3% vs. 36.1%, P =0.08) (Fig. 9a). Post-treatment cold tumors
also acquired more cancer-specific mutations (i.e., BRCA2, TPR, OMD,
RANBP2, EP300) (Supplementary Data. 8). Mutations were filtered to
include only coding non-synonymous SNV and Indels, and were then
used to classify clonal evolution status. The status was defined as
clonal extinction if >90% ofmutations present at baseline disappeared
following NAC or <10 mutations existed in post-treatment samples
(Supplementary Fig. 20d, e), and all other cases were defined as clonal
persistence. Somatic copy number alteration (SCNA) profiles were in
line with the changes of mutation number in each clonal evolution
group, respectively (Supplementary Fig. 20f, g). Interestingly, we
found that immune state change was correlated with clonal evolution
during treatment (P =0.002) (Fig. 9b). Tumors with positive immune
state change were more often associated with clonal extinction (7/9),
whereas negative immune state change was associated with clonal
persistence (11/11).

To further uncover therapeutic vulnerabilities based on the clonal
evolution of tumors, we employed PhylogenicNDT58 to calculate the
differences in growth rate (ΔGR) (Prob[ΔGR>0] > 0.95, limited to
P <0.05) between child and parent clones, where putative drivers were
defined using cancer consensus gene59. Here we focused on subclones
detected in 20 TNBC patients receiving NAC (Fig. 9c, d and Supple-
mentary Figs. 21, 22). Indeed, two subclones from 2 patients (patients
152 and 310) who both had negative immune phenotype change and
clonal persistence contained known metabolic drivers and their
growthwas significantly higher than their parent clone/subclone (all P-
value < 0.05, Fig. 9c). The strongest accelerations were associatedwith
second hits in lipid metabolism drivers, such as Acyl-CoA Synthetase
Long Chain Family Member 3 (ACSL3) and Cyclin C (CCNC) (ΔGR of
128% and 320% for subclone 3 of patient 152 and subclone 2 of patient
310, respectively). We further saw strong growth acceleration in
patient 206 who had positive immune state change and clonal
extinction, withmutation of themediator complex subunit 12 (MED12)
that was related to chemoresistance60. Conversely, those subclones

with known breast cancer drivers (patients 155, 115 and 612, Fig. 9d and
Supplementary Fig. 22) showed no growth rate advantage compared
with their parent clones. Overall, these analyses provided evidence of
TME and tumor co-evolution, highlighting that treatment might result
in the emergence of immune-suppressed TME and selection of resis-
tant subclones.

Discussion
Using integrated temporal proteomic and genomic profiling of breast
cancer during NAC, this study highlights the evolution of therapeutic
response biomarkers in metabolism under the pressure of che-
motherapy. We have shown that mutual metabolic requirements of
tumor and immune cells contribute to immunosuppression in TME,
where patients with immunogenic tumors and downregulated cancer
metabolism are more likely to respond to NAC. Potential therapeutic
vulnerabilities in immunometabolism were screened, including TME
related metabolic targets that inhibit tumor growth while enhancing
anti-tumor immunity, and immunometabolic targets exposed after
two cycles of NAC. Breast epithelial cellular heterogeneity in metabo-
lism was revealed through unsupervised clustering on snRNA-seq,
uncovering different metabolic dependencies, whose changeable
composition correlated with immune state switch and treatment
response over time. The relationship of the intra-tumoral hetero-
geneity with the immune state differed by treatment timepoint, and
metabolismdriverswere associatedwith an accelerated growth rate of
relevant subclones. Those findings are supported by our in vitro vali-
dation and previous functional research studies11,19,61,62, demonstrating
that metabolism within TME is associated with immune infiltration of
tumors, and that targeting metabolism has a potential dual effect of
tumor suppression and TME modulation.

A deeper analysis of the immune state subtype may help identify
therapy-predictive biomarkers63. Although advanced techniques, such
as spatially resolved transcriptomics, multiplex flow cytometry, T cell
receptor abundance and cytometry by time of flight (CyTOF), offer a
higher resolution in analyzing TME, they are still unavailable for rou-
tine clinical use due to high associated costs. Deconvolution algo-
rithms can estimate the immune infiltrate composition frombulk gene
expression data, achievingmoderate resolution64,65, but have generally
failed to uncover the heterogeneity in immunological composition,
spatial distribution, and function63. Here, we demonstrated that
immune state (cold, warm and hot) was independent of tumor purity,
and was in good accordance with other measures (i.e TILs by routine
pathology assessment, protein abundance related to immune activa-
tors/suppressors). Nevertheless, patients with warmor hot tumors did
not seem to present with significantly improved DFS. Though, hot
tumors in this study showed higher immune gene expression and
corresponded to an infiltrated-inflamed immune state subtype (with
an abundance of PD-L1, CTLA-4 expression on tumor andmyeloid cells
and highly activated CTLs characterized by expression of Grzb, IFNγ
and PD-1)63. Therefore, besides abundance of immune cells, measuring
immune cell function in vivo is of utmost importance. Previous studies
indicated that NAC could shape the immune state of breast cancer66–68,
and we found that TME had an early positive response to NAC (after
two cycles) such as elevated IFN andAPC signaling but residual tumors
post-NAC tended to be immune suppressed. Interestingly, upregula-
tion of the T cell exhaustion biomarker (CD244) in protein level on-
treatment was demonstrated in patients who did not respond to NAC.
Given the recent approval of the addition of pembrolizumab to
neoadjuvant chemotherapy3,69, this phenomenon also raises the
question on window-phase of immune checkpoint inhibitors added to
NAC70. However, it is evenmore complex -as indicated by final analysis
of the neoadjuvant neoMono trial (NCT04770272)71,72, demonstrating
a trend towards higher pCR rate from the addition of an atezolizumab
monotherapy window phase, prior to combination of chemotherapy
with atezolizumab in PD-L1 positive TNBC patients.
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Fig. 9 | Co-evolution of tumor clonality and immune state subtype under
neoadjuvant chemotherapy. a Subclone percentage difference (n =49) between
immune states by sampling timepoint. Box plot bounds the interquartile range
divided by the median, with the whiskers extending to a maximum of 1.5 times the
interquartile range beyond the box. Two-side Wilcoxon rank sum tests were per-
formed. b Swimming chart showing the treatment results (n = 20), the length of
each bar represents the duration of DFS of each patient in the PROMIX trial. The
patients were grouped by immune state change, and a chi-squared test (P =0.008)
was conducted based on immune state change (negative, positive) x clonal evo-
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significant growth advantage relative to their parent that contain knownmetabolic
drivers in patients with negative and positive immune state change. Results of
PhylogicNDT analysis: most likely phylogenetic tree (top); permutations of sSNVs
during tree construction yielding posterior CCFs of the clusters (with 95% credible
intervals) (middle); and growth rates relative to parental clones (bottom). Sig-
nificance of the differential growth rate (ΔGR>0) was estimated based on the
Markov Chain Monte Carlo (MCMC). Linear mixed model (two-sided p-values) was
used to compare ΔGR between interest clones. TME tumor micro-environment,
pCR pathologic complete response, DFS disease-free survival, CCF cancer cell
fraction.
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Efforts into metabolic subtyping have been made by previous
cancer studies23,24, although without extracting actual tumoral meta-
bolic gene expression data. We systematically synthesized metabolic-
pathway-based subtypes using tumor cell GEPand demonstrated that
the tumor intrinsic metabolic subtype is a stronger predictor of
immune state subtype and clinical outcomes than the bulk tumor
metabolic phenotype. Upregulated bioenergetic metabolism features
(i.e., TCA cycle, carbohydrate), lipid, and nucleotide-relatedmetabolic
phenotype were independently associated with lower pCR and worse
DFS, confirming prior pan-cancer findings23. Among those important
metabolic modules, we revealed that tumors with upregulated TCA
cycle were more likely to be immunologically cold. By observing close
protein(lipid)-protein(immune) interactions (Fig. 4d), immune effec-
tor cells (CD4/8+ T cell) from hot tumors harboring higher fat acid
signature score (Fig. 7d), and also driver mutations (ACSL3 and CCNC)
in lipid metabolism associated with an accelerated growth rate of
relevant subclones (Fig. 9c), we could demonstrate that lipid meta-
bolism plays a crucial role on immune cells. To infer potential meta-
bolic competitions within the TME, we revealed metabolic
dependencies of different cellular subtypes, includingOXPHOS (all the
cells), glycolysis (basal-like and cycling cancer cells, memory B cells,
CD8 + T cells, cycling T cells, monocyte and cycling myeloid), glu-
tathione (CAFs and endothelial cells), and cytochrome P450 (CAFs,
endothelial cells, and normal breast epithelial cell). As a proof-of-
concept study, Edwards et al. have previously reported that glutamine
transporter inhibitor V-9302 selectively blocked glutamine uptake by
TNBC cells but not CD8 +T cells, driving glutathione synthesis to
improve CD8 +T cell effector function73. Interestingly, we identified
themetabolic flexibility of TNBC epithelial cell clusters fromadynamic
perspective, whose composition during NAC confers predictive
implications for immune state switch and treatment outcome. One of
them, epithelial cells MC2 characterized by high proliferation and
multiple bioenergetic metabolism features, were more likely to pre-
sent within cold tumors and harbor a powerful ability to compete with
immune cells. Of note, this cellular phenotype was comparable with
the metabolic subtype (MPS2) proposed by Gong et al., and inhibiting
lactate dehydrogenase could improve response to anti–PD-1 therapy
and increase the anti-tumor immune response within this subtype24.

Another question that this study attempted to answer is the effect
of NAC on TME. Firstly, the heterogeneity of treatment-naïve tumors
was associated with immune status, which was supported by the fact
that tumors with high proliferation and intra-tumoral heterogeneity
exhibited a hot immune state31. NAC was found to be able to reshape
TME by inducing immune cell infiltration and priming immune cell
functions74,75, since 40% of cold tumors changed during NAC into
warm/hot status. Meanwhile, we observed that the immune state and
tumor metabolic phenotype switch was consistent, and the alteration
of tumormetabolismdue toNAC influenced the immune state through
nutrient and energy competition76,77. Moreover, post-treatment cold
tumorswith clonal persistence or expansion exhibited increased intra-
tumoral heterogeneity due to pre-existing or acquired drug-resistant
clones28,78. Importantly, our pair-wise analyses suggest the integrated
immunometabolic phenotype switch from baseline to on-treatment as
a novel biomarker for pCR, highlighting the importance of immuno-
metabolism dynamics on prognosis.

In conclusion, this study demonstrates the feasibility of proteo-
genomic profiling in longitudinal breast cancer biopsies during NAC,
systematically ascertaining unbiased biomarkers and phenotypes
present on-treatment. Additionally, our findings advance the under-
standing of the dynamic nature of tumor-TME-metabolism interac-
tions and suggest prognostic immunometabolic biomarkers and
potential immunomodulating candidates as treatment targets. Future
mechanistic experiments and clinical trials are needed to assess the
mechanisms of response and efficacy of those immunometabolic tar-
gets and regimens, respectively.

Methods
Patients and materials
The clinical trial and patients in this study have been previously
described in detail by Kimbung et al., summarized in Fig. 1a79. PROMIX
trial (ClinicalTrials.gov identifier NCT00957125) enrolled patients with
locally advanced (tumor size > 20mm) HER2-negative breast cancer,
whowere scheduled to receive six cycles of NACwith a combination of
epirubicin and docetaxel. Bevacizumab was added during cycles 3–6
for patients who did not achieve a clinical complete response (cCR)
after the second cycle of NAC. Following surgery, patients received
adjuvant therapy according to Swedish national guidelines and local
clinical practice. Therapeutic response to NAC was evaluated by phy-
sical examination and breast imaging (mammography and ultrasound)
after two, four and six courses of NAC. The study’s primary endpoints
were the early objective response rate and the pCR rate, which was
defined as the absence of invasive cancer in the breast and lymph
nodes at surgery; presence of residual non-invasive DCIS was allowed.
Disease-free survival (DFS) was regarded as a secondary endpoint in
this study. All patients underwent core needle biopsies at baseline and
after two cycles of NAC, and post-treatment surgical specimens were
also collected. Hormone receptor status was determined by immu-
nohistochemistry (IHC) and was considered positive if ≥10% of cancer
cells stained positive for estrogen receptor (ER) or progesterone
receptor (PR) at the baseline core biopsy, in accordance with Swedish
national guidelines.

The clinical study and correlative analyses were approved by the
Ethics Committee at Karolinska University Hospital, 2007/1529–31/2
and patients providedwritten informed consent for their participation
in the clinical trial and for translational research.

Sample preparation for MS-based proteomics
Tumor samples for MS-proteomics were prepared as previously
described35. The protein fraction from the Allprep kit (Qiagen) was
prepared for mass spectrometry-based proteomics using a modified
version of the filter assisted sample preparation method (FASP)80.
Samples weremixedwith 1mMDTT, 8Murea, 25mMHEPES, pH 7.6 in
a centrifugation filtering unit, 10 kDa cutoff (Nanosep® Centrifugal
Devices with Omega™ Membrane, 10 k), and centrifuged for 15min at
14.000g, followed by another addition of the 8M urea buffer and
centrifugation. Proteins were alkylated by 55mM IAA, in 8M urea,
25mM HEPES, pH 7.6 for 10min, centrifuged, followed by two more
additions and centrifugations with 8M urea, 25mM HEPES pH 7.6.
Trypsin (Promega). 1:50, trypsin:protein, was added to the samples in
0.250M urea, 25mMHEPES and digested overnight at 37 °C. The filter
units were centrifuged for 15min at 14.000g, followed by another
centrifugation with MQ. Flow-through of peptides was collected and
TMT10 labeled according to manufacturer’s instructions (Thermo). A
TMT tag with pool of all samples was used as denominator in each
TMT10 to connect the different sets. TMT labeled peptides were
pooled and cleaned by a strata-X-C-cartridge (Phenomenex).

IPG-IEF of peptides
TMT labeled peptides were separated by immobilized pH gradient—
isoelectric focusing (IPG-IEF) on pH 3–10 strips as described by Branca
et al.80. Peptides were extracted from the strips by a prototype liquid
handling robot, supplied by GE Healthcare Bio-Sciences AB. A plastic
devicewith 72wellswas put onto each strip and 50 µl ofMQwas added
to each well. After 30min of incubation, the liquid was transferred to a
96-well plate and the extraction was repeated two more times. The
extracted peptides were dried in a speed vac for storage and dissolved
in 3% acetonitrile (ACN), 0.1 % formic acid before MS analysis.

Q exactive analysis
Before analysis on the Q Exactive (Thermo Fisher Scientific, San Jose,
CA, USA), peptides were separated using an Ultimate 3000 RSLCnano
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system. Samples were trapped on an Acclaim PepMap nanotrap col-
umn (C18, 3 µm, 100Å, 75 µmx20mm), and separated on an Acclaim
PepMap RSLC column (C18, 2 µm, 100Å, 75 µmx50cm), (Thermo
Scientific). Peptides were separated using a gradient of A (5% DMSO,
0.1% FA) and B (90%ACN, 5%DMSO, 0.1% FA), ranging from6–37% B in
30–90min (depending on IPG-IEF fraction complexity) with a flow of
0.25 µl/min. The Q Exactive was operated in a data-dependentmanner,
selecting the top 10 precursors for fragmentation by HCD. The survey
scan was performed at 70,000 resolution from 400–1600m/z, with a
max injection time of 100ms and a target of 1 × 106 ions. For the
generation of HCD fragmentation spectra, a max ion injection time of
140ms and AGC of 1 × 105 were used before fragmentation at 30%
normalized collision energy, 35,000 resolution. Precursors were iso-
lated with a width of 2m/z and put on the exclusion list for 70 s. Single
and unassigned charge states were rejected from precursor selection.

Peptide and protein identification
Orbitrap raw MS/MS files were converted to mzML format using
msConvert from the ProteoWizard tool suite. Spectra were then
searched using MSGF+ (2020.03.14) and Percolator (v3.04.0), where
search results from 8 subsequent IPG-IEF fractions were grouped for
Percolator target/decoy analysis. All searches were performed against
the human protein subset of Ensembl 103 in Nextflow (v20.01.0).
MSGF+ settings included precursor mass tolerance of 10 ppm, fully
tryptic peptides, maximum peptide length of 50 amino acids and a
maximum charge of 6. Fixed modifications were TMT6plex on lysines
and peptide N-termini, and carbamidomethylation on cysteine resi-
dues; a variable modification was used for oxidation on methionine
residues. Quantification of TMT6plex reporter ions was done using
OpenMS project’s IsobaricAnalyzer (v2.5). PSMs found at 1% false dis-
covery rate (FDR) were used to infer gene identities. Protein false
discovery rates were calculated using the picked-FDR method using
gene symbols as protein groups and limited to 1% FDR.

Protein quantification by TMT10plex reporter ions was calculated
using TMT PSM ratios to the tissue sample pool and each tumor was
normalized to its median ratio. The median PSM TMT reporter ratio
from peptides unique to a gene symbol was used for quantification.
The normalized protein log2 ratios are denoted as protein abundance
or protein expression levels in figures and text. The output from all
quantitativeMSexperiments is available in SupplementaryData. 4. The
mass spectrometry proteomics data have been deposited to the Pro-
teomeXchange Consortium via the JPOST partner repository with the
data set identifier PXD039529 (URL: https://repository.jpostdb.org/
entry/JPST001987).

Tumor-Infiltrating Lymphocytes (TILs) score and cellularity
Hematoxylin-eosin (H&E) slides of 4μm thickness were prepared from
formalin-fixed paraffin-embedded (FFPE) tissue blocks. Two patholo-
gists performed the blinded evaluations of cellularity and TIL score,
and discordant cases were reviewed in order consensus to be reached.
TIL score was defined as the estimated proportion of area with TIL
infiltration within the tumor and adjacent stroma, which was cate-
gorized as low (<10%), intermediate (10–50%), and high (>50%) based
on international consensus guidelines81,82. Tumor cellularity was esti-
mated as the percentage of tumor cells among all cells (tumor cells,
lymphocytes, stromal cells). Tumor purity was also computationally
inferred using four different tools, namely ESTIMATE83 THetA84,
Control-FREEC85, and PureCN86.

Multiplex Fluorescent Immunohistochemistry (mfIHC)/Immu-
nofluorescence (mIF) and multispectral image analysis
Whole tissue FFPE sections (4-μm thickness) were prepared and
stained formfIHC using the Leica Bond RXm (Leica Biosystems, Buffalo
Grove, IL, USA) autostainer. The 7-color IHC kit (OpalTM 7 Solid Tumor
Immunology Kit, Akoya Bioscienes, Malborough, MA, USA) was

modified to include the following immune (lymphocyte & macro-
phage) markers: CD4, CD8a, CD163, CD20, FoxP3, CD68, cytokeratin
(Supplementary Table. 7). 4′,6-diamidino-2 phenylindole (DAPI) was
used for nuclei staining and the tissue sections were subsequently
mounted with the Prolong Diamond Antifade Mountant (Thermo-
Fisher, Waltham, MA, USA). A detailed list of antibodies and experi-
mental conditions is provided in Supplementary Table. 7. Whole-slide
image acquisition was performed using the Vectra® Polaris™ Auto-
mated Quantitative Pathology Imaging System (Akoya Biosciences) by
scanningmultiple areas of the same tissue biopsy at 10xmagnification.
Algorithm training for tissue (tumor, stroma, blank) and cell segmen-
tation, thresholding and image analysis were performed using the
Phenochart® and inForm® image analysis software (Akoya Biosciences)
as previously described87–90. Tissue curation was then performed to
exclude staining artifacts, necrotic areas and/or intraglandular struc-
tures by a trained researcher (IZ) and reviewed by a certified pathol-
ogist (Ar.M). Spectral unmixing and cut-offs for marker positivity were
applied as previously described87 to obtain the cell densities for each
marker (number of positive cells normalized to tissue area).

Regarding the NK cell panel (Supplementary Table. 8), the FFPE
tissue sections were treated with antigen retrieval using the 8–10ml
citrate acid-based antigen unmasking solution (Vector Laboratories,
Oxfordshire, UK) at the boiling status followed by PBS washing. Then
theblocking processwas conductedwith 5%goat serum (AgilentDako,
Santa Clara, CA, USA) in PBS. The tissue sections were subsequently
stained with the primary antibody CD3 (Abcam, Cambridge, UK) at
1:500 dilution for 1 h followed by AF594-conjugated goat anti-rabbit
secondary antibody at the ratio of 1:5000 (Thermofisher Scientific,
Waltham, MA, USA) staining for 30min. Next, all the other antibodies
with direct fluorophore conjugation including CD56 (AF532) (Bio-
techne, Minneapolis, USA), CD57(APC) (Biolegend, San Diego, USA),
FcεRγ (FITC) (Merck Millipore, Darmstadt, Germany) NKG2C(PE)
(Miltenyi Biotech, Bergisch Gladbach, Germany) and PanCK (AF405)
(Bio-techne, Minneapolis, USA) were used to stain the slides for 1 h
without light exposure at room temperature. Following the antibodies
staining, the nucleus dye Hochest (Thermofisher Scientific, Waltham,
MA, USA) was used to stain the slides, PBS washing was performed
between the abovementioned sequential steps. The images were
acquired by AIR+ConfocalMicroscope (Nikon, Tokyo, Japan).We used
Image J (Fiji ImageJ 2.9.0) to achieve the calculations of multiple
fluorescent intensities for each cell and extract XY coordinates, fol-
lowed by counting for different immune cells in the slides.

Microarray-based bulk GEP
RNA was extracted from serial biopsies at baseline and cycle2 and
surgical specimens (275 samples from 141 patients) and was then
profiled on Illumina Human HT-12 v4.0 Expression BeadChip (Illumina
Inc., San Diego, CA), as described previously (GSE87455)79. We calcu-
lated breast cancer PAM50 subtype for each sample using Genefu
package91, taking the official centroids with traditional scaling of the
gene expressions as input.

Immune state modeling
To identify the immune state for each sample, we performed immu-
nogenomic analyses by utilizing GEP across the three time points.
Considering the heterogeneity of TME in BC92, we jointly included
immune cell fraction and immune-related signatures to establish the
immune classification. QuanTIseq (1.6.0)93 wrapped in
immunedeconv65 (2.1.0) was employed estimate the relative propor-
tion of tenprimary immune cells types (B cells, CD8T cells, CD4T cells,
Treg cells, NK cells, monocytes, M1 macrophages, M2 macrophages,
mast cells, dendritic cells, andneutrophils) frombulkGEP.Weused the
TCGA PanCancerAtlas (https://cri-iatlas.org/) in-house immune gene
set31,33 (Supplementary Data. 11) kindly provided by Dr. David L Gibbs.
The gene signature score was calculated through ssGSEA94, and
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representative immune gene signatures within six distinct TME com-
ponents including adaptive/innate immune cells, tumor stroma,
cytokine, tumor-associated antigens, and immune checkpoints, were
extracted. A joint latent variable model95 involving immune cell frac-
tion and immune signatures was fitted to cluster immune state, whose
optimal number of clusters was determined based on the Bayesian
information criterion (n.lambda = 233, cpus = 4). The immune score
calculated by the ESTIMATE83 and the pan-cancer immune subtype
(leukocyte infiltration, macrophages, TGF-beta, IFN-gamma, Wound
healing)31 deconvoluted by the XGBoost classifier, were acquired to
evaluate coherence with our immune state. Moreover, correlations of
immune phenotypes with pathologic features (cellularity and TIL
score) were analyzed to evaluate the robustness of the computational
immune state.

Deconvolution of tumor metabolic phenotype
Due to the complexity of metabolic phenotypes and given that bulk
GEP measurements are not distinguishing tumor cells from tumor-
adjacent cells20,96, we constructed a computational pipeline (https://
github.com/WangKang-Leo/PureMeta) for the deconvolution of
metabolic subtypes based on the tumor cell-based expression of seven
metabolic pathways (as shown in Fig. 3a). In the first step, the tumor
cells’ mRNA abundance, as well as tumor purity, was concurrently
estimated using the R package ISOpureR (1.1.3)96, and GEP of surgical
samples (n = 5) without tumor cells (T0, N0) were regarded as refer-
ence. Tumor- cells’ mRNA profiles were calculated using:

B=p x t + 1� pð Þ x s, ð1Þ

where B is the bulk GEP, t is ISOpureR estimated tumor cells’ mRNA
abundance we want to estimate, p is ISOpureR’s estimate of the pro-
portion of tumor and s is the tumor-adjacent cells’ mRNA abundance.
Bulk/tumor cells’ GEPs were normalized across samples by Z scores to
obtain a rank within ~16,000 coding genes in each sample.
T-Distributed stochastic neighbor embedding (t-SNE)97 was applied
on tumor cell and tumor-adjacent cell mRNA profiles of curated
metabolic pathway-based gene sets derived from the Reactome
annotations98 (Supplementary Data 12). Then, as described in a
previous pan-cancer study on metabolic expression subtypes23, we
conducted GSEA pre-ranked analysis based on the gene set of each
specific metabolic pathway, including amino acid metabolism,
carbohydrate metabolism, integration of energy, lipid metabolism,
nucleotide metabolism, tricarboxylic acid cycle (TCA cycle) and
vitamin &cofactor metabolism. The following criteria determined the
bulk/tumor cells GEP-based subtype on each metabolic pathway: (1)
Upregulated subtype: Samples with FDR <0.1 and higher (positive) Z
scores; (2) Downregulated subtype: Samples with FDR <0.1 and lower
(negative) Z scores; (3) Neutral subtype: Sampleswith FDR >0.1. Lastly,
each tumor sample was labeled with seven bulk/tumor cell GEP-based
metabolic subtypes, which was further confirmed by differential
metabolic gene analyses with one-way analysis of variance (ANOVA)
and Kolmogorov-Smirnov tests.

Immunometabolic protein network
We assessed mRNA-protein, mRNA-mRNA and protein-protein pair-
wise correlations using the Pearson correlation test, and immunome-
tabolic gene/protein was annotated by a gene list that we used for
immunometabolic subtypes. Protein core complex information was
downloaded from CORUM 3.0 released on 03/09/2018 (http://mips.
helmholtz-muenchen.de/corum/#download), and another database of
protein-protein interactions was downloaded from BioGrid (BIOGRID-
4.4.201, https://downloads.thebiogrid.org/BioGRID). Genes (n = 9547)
in the above twodatabases thatwere found in bothGEP andproteomic
data were extracted for the following analyses: immunometabolic
protein correlation network was generated by calculating the Pearson

correlation matrix based on immunometabolic as well as PAM50 pro-
teins (n = 2837 in total) and filtering away protein pairs with weak
correlations (absolute Pearson’s r < 0.3). Then, data was exported into
Gephi 9.2, which removed outlier nodes (KCore < 2) and employed the
ForceAtlas2 algorithm (Scaling 1, Gravity 5, PreventOverlap) to layout
network structures. To visualize protein levels across immune states in
the correlation network, the average protein level was calculated for
each immunologically cold, warm, and hot group.

The key proteins/genes were extracted from metabolic pathways
(https://metabolicatlas.org/), whose magnitudes in mRNA and protein
levels were compared between hot and cold tumors. The gene list with
FDA-approved drug targets wasdownloaded fromProteinAtlas (http://
www.proteinatlas.org/humanproteome/druggable).

Longitudinal Gene Expression Profiling (GEP) and pathway
analysis
To systematically discover biological clusters changed during NAC,
firstly, we collected pair-wise DGEs across three sampling timepoints
(i.e., on- vs. pre-treatment; post- vs. pre-treatment; post- vs. on-treat-
ment). Accordingly, the linear mixed-effects models (LMEM)99

were respectively fitted, adjusting for the BC subtype (ER+ or triple-
negative (TN)) and tumor purity derived from ESTIMATE83. Then, the
aggregated list of DGEs with false discovery rate (FDR)100 <0.05 and
absolute log 2-fold change (FC) >0.5, was collected to detect unsu-
pervised consensus clusters on their GEP101. Then, genes that belong to
each cluster were fed to conduct gene set enrichment analysis
(GSEA)102 based on the MSigDB103 resource, including the HALLMARK,
KEGG, and ImmuneSigDB gene sets. Additionally, the GSVA
algorithm104 was employed to quantify the enriched pathways score
(PS) for each sample. Lastly, due to non-independence distributions of
the PS longitudinally calculated, the LMEM was fitted for differential
GSVA score analyses, which also involved three pair-wise comparisons
like DGE analyses, respectively. More specifically, we constructed the
modelwith individual PS (y) as the response, tissues collection time (T)
as the predictor, and potential confounding factors such as tumor
purity (P) and breast cancer subtype (S) as follows:

yij ∼β0+β1Pij +β2Sij +β3Tij + γj +2ij ð2Þ

where samples (i) were contributed by the patient (j), β0 is the overall
intercept, β1 is the purity effect on PS, β2 estimates GEP due to IHC
subtype, β3 describes the treatment time effects on GEP, γj is the
intercept that is allowed to vary across patients (random effect term),
and ϵij is the residual variations, respectively. To identify the sig-
nificantly changed PS over time during NAC, we inferred the statistical
relevance between the time (T) covariate and the LMEM goodness-of-
fit using likelihood ratio tests. A differentially expressed pathway
mapped to the DEG clusters was defined based on GSEA (FDR <0.1)
and differential GSVA score (FDR <0.1).

Single-nucleus RNA-seq (snRNA-seq) data analysis
snRNA-seq data (NCBI Sequence Read Archive under accession:
SRP114962, URL: https://www.ebi.ac.uk/ena/browser/view/PRJNA
396019) were acquired for 8 TNBC patients with 16 samples from the
PROMIX trial, as previously described28. The log-transformed TPM
(Transcript per million) (log(TPM/10 + 1)) value was used to conduct
downstream analyses, which was filtered to include genes that were
expressed inat least 30%of cells. Thedataof 16 librarieswere integrated
using “Harmony”105 from Seurat (4.0.1)106 according to sample ID.

Variable genes were detected through a mean-variance inspec-
tion, and the top principal components were identified using an elbow
plot and used for theUMAPdimensionality reduction107. To extract the
immune, stromal, normal epithelial and tumor compartments from
cluster identification, an integrated two-step based strategy was
applied: (1) CopyKAT108 was employed to distinguish normal cell types
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(immune, stromal, normal epithelial cells) in the TME from malignant
cells; (2) mean expression of the following gene markers for each
cluster was calculated: (a) immune compartment: PTPRC, (b) stromal
compartment: FN1, COL1A1, ACTA2, (c) tumor compartment: EPCAM,
(d) normal epithelial cells: ACTA2, KRT18, KRT19. Subsequently, the
cluster identity was determined at a mean expression cutoff >0.8. (3)
Immune and stromal cell subpopulations were further defined based
on the following genemarkers: (a) plasma cell: SDC1, (b) B cell: MS4A1,
CD79A, (c) CD8 +T cell: CD8A/B, CD40LG, CD3E, (d) CD4 +T cell: CD4,
CD40LG, CD3E, (e) myeloid cell: CD14, CSF1R, LIRA4, (f) macrophage
M1: CD68, (g) macrophage M2, CD163, (h) dendritic cell: IRF7, CXCR3,
(i) endothelial cell: PECAM1, (j) adipocyte cell: ADIPOR1/2, (k)fibroblast
cell: FN1, DCN, C1R, PDGFRA, OGN.

To quantify cellular immunometabolism under NAC treatment,
we applied different bioinformatic strategies. Unsupervised clustering
of all metabolism-associated genes was conducted for the immune/
stromal and tumor/normal compartment, respectively, using the
K-nearest neighbor (KNN) graph (No. of neighbors = 20) based on
Euclidean distance in “harmony” space. Then, We employed the Fin-
dALLMarkers (from Seurat 4.0.1) function with the Kruskal-Wallis test
to perform a DGE analysis of different cellular metabolic states or
immune state switch groups (min.pct = 0.25, logfc.threshold =0.5).
Likewise, we also calculated single cell-based GSVA score as bulk GEP,
and differential expression on GSVA score across groups was identi-
fied. Single-cell trajectory analysis within metabolic epithelial cell
clusters was performed using Monocle3 (1.3.4)109, which uses an algo-
rithm to learn the sequence of gene expression changes each cell.
Lastly, the computational framework for characterizing metabolism
using single-cell RNA-seq (scRNA-seq) data, developed by Xiao et al.
(https://github.com/LocasaleLab/Single-Cell-Metabolic-Landscape)22,
was employed to evaluate metabolism of TME using an external vali-
dation scRNA-seq dataset.

Whole-exome Sequencing (WES) data preprocessing
The bulk WES data (100bp paired-end on the HiSeq2000/HiSeq4000
Illumina systems) of 20 TNBC patients in the PROMIX trial, including 20
normal blood and 49 paired tumor samples collected longitudinally,
were generated as previously described (NCBI Sequence Read Archive
under accession: SRP114962, URL: https://www.ebi.ac.uk/ena/browser/
view/PRJNA396019)28. In this study, we have re-analyzed the WES data
using the nf-core/sarek110 (v.2.7.1), an analysis pipeline built using
Nextflow111. The nf-core/sarek pipeline follows the GATK Best-
Practices112,113 for data preprocessing. Briefly, sequence reads (FASTQ)
were aligned to theGRCh38 (hg38) reference genomewith BWA-MEM114,
followed by duplicate marking and base quality score recalibration
(BQSR)112. A wide range of quality control metrics was generated by
several tools (FastQC115, QualiMap116, BCFtools117, Samtools118, and
VCFtools119), whose output was integrated and visualized by MultiQC120.

Somatic SNV/indel calling
Somatic short mutation calling, including SNVs and Indels, was per-
formed in matched tumor-normal mode using GATK4 Mutect2121 and
Strelka2122. To capture recurrent technical artifacts, the provided by
GATK panel of normal (1000g_pon.hg38.vcf.gz) was also used as input
in Mutect2. Then, all variants were further annotated for potential
functional effects with VEP123. To reduce potential false positive var-
iants, especially for post-treatment tumor samples with low purity, we
have filtered out mutations detected by Mutect2 and Strelka2 follow-
ing a tailored approach. Specifically, a somatic SNV was considered a
positive call if it met the following stringent criteria: (1) Variant allele
frequency (VAF): An SNVwas called by bothMutect2 and Strelka2, with
a VAF >2%, or by any caller independently with a VAF >5%. Any SNV
from the aggregated list with VAF >2%was also identified if it appeared
across at least two time points. (2) Total read depth and VAF in normal
blood: the depth in all positive SNVs needed to be >30 reads, and the

VAF in matched normal samples needed to be <1% and the number of
reads <5. (3) Population-specific variants: The selected SNVs were not
in the list of population-based databases (i.e., dbSNP124 and 1000G125,
and frequency exceeds 1%). As for the positive candidate Indels,
besides the criteria mentioned above for SNVs, a total read depth
requirement of >50 was set.

Somatic Copy Number Alteration (SCNA) calling
CNVkit (0.9.6)126 was used for somatic copy number alteration (SCNA)
calling. Specifically, the circular binary segmentation (CBS) algorithm127

was employed to infer copy number segments, and sample- and assay-
specific systematic noises were removed by adjusting GC content and
utilizing the normal reference samples. To estimate normal-cell DNA
contamination, we used different tools, including THetA284, Control-
FREEC85, and PureCN86, and the computationally-inferred-tumor purity
was compared with the pathology-based tumor cellularity. PureCN
showed the highest concordance and distribution of purity values
among the tested tools and was thus selected and used for subsequent
analyses. In addition, PureCN predicted the optimal ploidy of each
sample in the likelihood score-based grid search. Finally, we performed
allele-specific copy number analyses by combining the normalized
coverage with SNP allele frequencies, which was also used to calculate
the major and minor allele-specific integer copy numbers. Genomic
Identification of Significant Targets in Cancer (GISTIC2.0) algorithm128

was used to identify significantly amplified or deleted focal-level events
(q values <0.25, Amplification Threshold =0.1, Deletion Threshold =
−0.1, Broad Length Cutoff =0.98, Arm Level Peel-Off = 1).

Subclone deconvolution
Intratumoral heterogeneity, appearing as the characteristic of clonal
architecture, enables tumors to adapt and acquire treatment
resistance129. Herein, we inferred the clonality of a single sample based
on cancer cell fraction (CCF, represented as a probability density dis-
tribution∈ [0, 1]), which described the proportions of cancer cells
harboring a mutation (Nmut). CCF was calculated as described
previously130 (3), and clonality was defined as a confidence interval of
CCF overlapping 1.

CCFNmut = VAF
1
p

pCNt +CNn 1� pð Þ� � ð3Þ

wherep denotes the tumor purity, CNt is the tumor locus-specific copy
number, and CNn is the normal locus specific copy number (CNn = 2).

Phylogenetic analysis
Since the distribution of CCF represented the independent estimates
for somatic events, a series of somaticmutations were often shared by
the same population of cancer cells/subclone. The multidimensional
Dirichlet clustering algorithm (PhylogicNDT Clustering58,131) was
employed to generate improved partitioning of the CCF and learn the
underlying clonal structure via a Markov Chain Monte Carlo (MCMC)
method from the data across multiple samples. Then, we inferred the
phylogenetic trees within each patient using the BuildTree component
of PhylogicNDT. The generated posterior distributions on cluster
positions and mutation membership were used to calculate the
ensemble of possible trees that supported the phylogenetic relation-
ship of the detected cell populations. Lastly, we modeled subclonal
growth rates within MCMC (PhylogicNDT GrowthKinetics). Growth
acceleration was identified by comparing the growth rate to its parent
and was considered significant if the growth rate was higher than that
of the parent in >95% of MCMC iterations. Driver genes derived from
The Cancer Gene Census (CGC) (https://cancer.sanger.ac.uk/census),
and breast cancer-related or metabolic drivers were underlined on
phylogenetic trees. All of the MCMCs were run with 10,000 iterations
and burned-in 1000 samples.
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External validation
A series of HER2-negative breast cancer cohorts were obtained to
validate findings from this study externally (see detailed in Supple-
mentaryTable. 2), includingOslo2 cohort35 (42 patientswithbothRNA-
seq and MS-based proteomics), South Korean NAC cohort67 (86
patients treated with NAC, with longitudinal RNA-seq data (pre/on/
post-NAC, n = 144)), and a scRNA-seq cohort41 (a total of 21 untreated
patients with single-cell RNA-seq). All samples from Oslo2 and scRNA-
seq cohorts were previously untreated primary breast cancers, and the
South Korean NAC cohort included both pre-treatment biopsies and
post-treatment samples.

DepMap 21Q2 (Cancer dependency map) that facilitates the prior-
itization of therapeutic targets132 and contains a score expressing how
vital a particular gene is in terms of how lethal the knockout/knockdown
of that gene is on a target cell line, was applied to assess biomarkers
identified in this study. For instance, a highly negative dependency score
implies that a cell line depends highly on that gene. We explored cancer
genes in metabolism within DepMap for pan-cancer cell lines. In addi-
tion, PRISM (Profiling Relative Inhibition Simultaneously in Mixtures),
which has demonstrated the feasibility of new approaches for pin-
pointing smallmolecule sensitivities at large-scale133, was used to identify
potential anti-cancer, non-oncology drugs in metabolism.

Cell lines
For the experimentswe used four breast cancer cell lines,MDA-MB-231
(ATCC, HTB-26), BT-549 (ATCC, HTB-122), MCF7 (ATCC, HTB-22) and
T47D (ATCC, HTB-133). MDA-MB-231 was cultured in DMEM (Thermo
Fisher Scientific, 31966-047) supplemented with 10% FBS (Thermo
Scientific, A3382001) and 1% NEAA (Thermo Fisher Scientific, 11140-
050). MCF7 were cultured in MEM (Thermo Fisher Scientific, 11-095-
080) supplementedwith 10%FBSand 1%NEAA. BT-549 andMCF7were
cultured in RPMI (Thermo Scientific, 88365) supplemented with 10%
FBS. 1% penicillin/streptomycin (Thermo Fisher Scientific, 15-140-122
was added to all media).

Cell survival assays
Cell proliferation was assessed using the XTT assay (CyQUANT™ XTT
Cell Viability Assay, ThermoFisher Scientific, X12223) following the
manufacturer’s guidelines. Cells were seeded at a density of 2000 cells
per well in 96well plates and they were subsequently reverse trans-
fected with siRNAs for 120 h. A 24-h treatment with 2μM Staur-
osporine (Tocris, 1285) was used as a positive control. Following the
additionof the dilutedXTT substrate, the plateswere incubated for 4 h
at 37 °C and the emitted fluorescence wasmeasured with amicroplate
reader (Tecan Infinite M1000 Pro) as the absorbance subtraction of
450nm–660 nm (background signal).

Cell apoptotic assays
Cell apoptosis was measured with the Invitrogen™ CellEvent™ Cas-
pase-3/7 assay (ThermoFisher Scientific, C10423). Cells were seeded at
a density of 2000 cells per well in 96well plates and they were subse-
quently reverse transfectedwith siRNAs for 72 h. A 24-h treatmentwith
2μM Staurosporine (Tocris, 1285) was used as a positive control. Fol-
lowing the treatment, the cells were incubated at 37oC for 1 h with
5μM of the Caspase 3/7 reagent. They were subsequently fixed using
4% formaldehyde (Sigma-Aldrich, F8775) for 10min at room tem-
perature and counterstained with Hoechst (Thermo Fisher Scientific,
62249). Images were acquired using an IN Cell Analyzer 2200 (GE
Healthcare) and analysed using Cell Profiler and Fiji (Image J).

Gene silencing
Commercially available SMARTpool ON-TARGET oligonucleotides
targeting human uL18 (RPL5) (Catalog no. L-013611), ALDOA (Catalog
no. L-010376), TPI1 (Catalog no. L-009776), and non-targeting siRNA
(Catalog no. D-001810) were purchased by Horizon Discovery

(Dharmacon). Cells were reverse transfected with 20nM siRNA using
Lipofectamine RNAiMAX reagent (Thermo fisher scientific, 13778150)
according to the manufacturer’s instructions.

Tumor and T cell coculture
MDA-MB-231, MCF7, T47D, and BT549 (authenticated from ATCC)
were labeled with red fluorescent CellTracker (5μM, Invitrogen). For
analysis of tumor cell killing. Tumor cells were plated at a concentra-
tion of 1 × 104 cells per well in 96-well flat u-bottom plates and incu-
bated with the Caspase 3/7 green dye (Essen BioScience) to detect
killing. The following day, CD3 bead-isolated T cells were added at a 2:1
ratio to the target cells, or 20:1 as a positive control. The number of
killed target cells was monitored by 2-hourly fluorescence imaging
over 24 hours using an IncuCyte Live Cell Analysis System (Essen
BioScience). Dead cell frequency was quantified using IncuCyte soft-
ware (Essen BioScience) and normalized to the number of dead cells
remaining in the target cell-only control group and related to max-
imum killing (% killing = (overlap counts-red counts) / (overlap
positive-red count) x 100). Alternatively, tumor cell confluence was
calculated by red dye count of tumor and T cell coculture—tumor cell-
only control.

Databases
The following databases were used for gene (signatures), protein or
cell line references: Immunological metagene signatures (https://cri-
iatlas.org/), CORUM-3.0 (http://mips.helmholtz-muenchen.de/
corum), BIOGRID-4.4.201 (https://downloads.thebiogrid.org/
BioGRID), Cancer Gene Census (CGC) (https://cancer.sanger.ac.uk/
census), ProteinAtlas (http://www.proteinatlas.org/humanproteome/
druggable), and DepMap 21Q2 (https://depmap.org/portal/).

Statistical analysis
The interaction effect between immune (I) and metabolic (M) pheno-
types was assessed by prior LMEM (2) as the following equation:

Iij ∼β0+β1Mij +β2Sijð+β3CijÞ+ γj +2ij ð4Þ

The tumor cellularity (Cij) was adjusted when we ran LMEM using
Korean validation cohort, where tumor-derived GEP was not available.
A two-way ANOVA with interaction was used to test the metabolic
GSVA score profile based on immune state switch (negative and
positive) and treatment time (pre-treatment and on/post-treatment).
Logistic regression with adjustment for confounder variables was
applied to evaluate the relationship between immunometabolic phe-
notype and pCR status (pCR vs. residual disease), where odds ratio
(OR) with a 95% confidence interval (CI) was calculated between
groups. Survival curves were constructed using the Kaplan-Meier
method and compared with the log-rank test. Multivariable Cox pro-
portional hazardmodelingwas applied to estimate hazard ratios (HRs)
and 95% CIs. Meanwhile, we integrated the Least Absolute Shrinkage
and Selection Operator (LASSO) regression and bootstrapping algo-
rithm (iteration = 10,000, nfold = 5) to find the best prognostic
feature134,135. The time to event for DFS was defined as the days from
breast cancer diagnosis until any relapses or death. Censoring time for
DFSwasdefined as the time from inclusion to study until last follow-up
occurring on or before 31 December 2020 for participants without
events. Rank correlation analysis for immunometabolic phenotypes
was conducted with Spearman’s correlation.

P-values reported (two-sided) <0.05 were considered statistically
significant. FDR was used for multiple correction testing. All analyses
were performed using R (version 4.0.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The mass spectrometry proteomics raw data generated in this study
have been deposited in the ProteomeXchange Consortium under
accession number PXD039529 (URL: https://repository.jpostdb.org/
entry/JPST001987). Source data can be downloaded from Figshare
(https://doi.org/10.6084/m9.figshare.22687246). Source data are pro-
vided with this paper.

Code availability
The code used to determine tumor cell-based metabolic phenotype
(i.e. downregulated, neutral, upregulated) is available at https://github.
com/WangKang-Leo/PureMeta. Codes are also archived at Zenodo
(https://doi.org/10.5281/zenodo.10864368 (ref. 136)).
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