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Structure-based prediction and
characterization of photo-crosslinking in
native protein–RNA complexes

Huijuan Feng 1,2,3,4, Xiang-Jun Lu5, Suvrajit Maji 2,3,4, Linxi Liu6,7,
Dmytro Ustianenko2,3,4, Noam D. Rudnick3,8 & Chaolin Zhang 2,3,4

UV-crosslinking of protein and RNA in direct contacts has been widely used to
study protein-RNA complexes while our understanding of the photo-
crosslinking mechanisms remains poor. This knowledge gap is due to the
challenge of precisely mapping the crosslink sites in protein and RNA simul-
taneously in their native sequence and structural contexts. Here we system-
atically analyze protein-RNA interactions and photo-crosslinking by bridging
crosslinked nucleotides and amino acids mapped using different assays with
protein-RNA complex structures. We developed a computational method
PxR3D-mapwhich reliably predicts crosslink sites using structural information
characterizing protein-RNA interaction interfaces. Analysis of the informative
features revealed that photo-crosslinking is facilitated by base stacking with
not only aromatic residues, but also dipeptide bonds that involve glycine, and
distinct mechanisms are utilized by different RNA-binding domains. Our work
suggests protein-RNA photo-crosslinking is highly selective in the cellular
environment, which can guide data interpretation and further technology
development for UV-crosslinking-based assays.

Control of RNA metabolism, which is a critical component of gene
expression regulation, relies on specific sequence or structural ele-
ments embedded in transcripts that are recognized by RNA-binding
proteins (RBPs)1,2. Such regulatory elements are frequently short (3–7
nucleotides) and degenerate, and protein–RNA interactions are highly
dynamic, so it remains a challenge to understand howRBPs specifically
recognize their targets3–5. A widely used approach to investigate
protein–RNA interactions is to crosslink protein and RNA in direct
contacts using UV light, which induces covalently linked conjugates
between the interacting amino acids and nucleotides6–8. UV cross-
linking can be performed for tissues or cultured cells and crosslinked
protein–RNA complexes can then be analyzed to determine both the

RNA and protein components using different strategies. For example,
crosslinking and immunoprecipitation (CLIP) is now the de facto
standard method to isolate RNA fragments crosslinked to a particular
RBP of interest followed by deep sequencing to map RBP binding
footprints on a genome-wide scale9–11. Alternatively, RBPs canbepulled
down through crosslinked RNA to recover their identities using RNA-
interactome capture12–14. These efforts have greatly expanded the list
of RBPs and our understanding of how they contribute to RNA
regulation.

Despite thewide applications of UV crosslinking-based assays, the
biophysical basis of protein–RNA crosslinking is currently poorly
understood, especially for native complexes in vivo or in cellular
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contexts. Earlier studies using in vitro crosslinkingmodel systems that
involve single amino acids (or dipeptides) and homopolynucleotide
chains suggest that each of the RNA bases is capable of forming con-
jugates with a variety of amino acids or peptides15,16. However, these
studies provide limited information about photo-crosslinking of
macromolecular complexes in cells. To improve the resolution of
protein–RNA interaction mapping, approaches have been developed
to pinpoint the exact crosslinked nucleotide or amino acid at single-
residue resolution, taking advantage of the covalently linked amino
acid-nucleotide adducts. Previously, we developed computational
methods to map the exact crosslink sites in RNA through analysis of
crosslink-induced mutation sites (CIMS) or truncation sites (CITS)
using CLIP data17–19. CIMS and CITS provide signatures of protein–RNA
crosslinking introduced by the amino acid-RNA adducts interfering
with the reverse transcription process. The RNA-interactome capture
workflow has also been refined to map the crosslinked amino acids by
considering the mass shift caused by the RNA moieties conjugated to
the crosslinked peptides that are subject to mass-spectrometry
analysis20–22. However, to our knowledge, no current technologies
can map crosslinked amino acid and nucleotide simultaneously in
native protein–RNA complexes, although such efforts have beenmade
for individual protein–RNA complexes reconstituted in vitro in a few
cases23–25. Consequently, it remains unclear how selective photo-
crosslinking is or whether particular types of amino acid-nucleotide
contacts are required for photo-adduct formation. This knowledge is
highly relevant for understanding protein–RNA complex structures
and interpreting data generated by UV crosslinking-based assays.

We reasoned that the sequence and structural contexts of
protein–RNA crosslink sites can be deduced by integrating the cross-
linked nucleotides in RNA inferred by CIMS and CITS analysis and
crosslinked amino acids identified in RNA-interactome capture with
experimentally determined protein–RNA complex structures. In this
work, we developed a computational method named PxR3D-map for
this purpose. PxR3D-map systematically analyzes various structural
features associated with each nucleotide and amino acid in direct
contact within 3D protein-RNA complex structures, which are then
used to classify crosslinked vs. non-crosslinked nucleotides, as well as
crosslinked vs. non-crosslinked amino acids. More importantly,
PxR3D-map ranks structural features based on their importance for
classification, which providesmechanistic insights into the biophysical
basis of protein–RNAphoto-crosslinking and adduct formation in their
native complexes.

Results
PxR3D-map method overview
The central idea of PxR3D-map is to overlay UV crosslink sites in RNA
nucleotides obtained from CLIP data and crosslinked amino acids in
proteins obtained fromRNA-interactome capture onto experimentally
determined protein-RNA complex structures, as deposited in the Pro-
tein Data Bank (PDB)26. The use of PxR3D-map to integrate CLIP and
structure data is illustrated in Fig. 1a. For each protein–RNA complex,
we determine the crosslinked nucleotide(s) in the RNA ligand by
searching for CIMS/CITS in all instances of this sequence in the tran-
scriptome. We then examine how the crosslinked nucleotide(s) inter-
act with amino acids in the 3D complex structure to find structural
features uniquely associated with these nucleotides as compared to
non-crosslinked nucleotides. To automate this process, we search for
various structural features associated with each nucleotide in the RNA
ligand using programs DSSR and SNAP in the 3DNA software suite27,28.
In total, 15 groups of structural features are extracted to annotate each
nucleotide, including RNA nucleotide conformation (e.g., base con-
formation and sugar puckering) and RNA-secondary structural fea-
tures (e.g., single vs. double stranded region). The types of
protein–RNA contacts considered include hydrogen bonds, planar
amino-acid side-chain base stacking (π-stacking), and planar amino-

acid base pairing (pseudo pairing)29. To facilitate machine learning-
based classification of each nucleotide’s crosslinking status, the list of
features is tabularized by aggregating the same type of contacts for
each unique amino acid (e.g., 20 features that summarize the number
of hydrogen bonds with each of the 20 amino acids). Additional fea-
tures are also included by aggregating amino acids with similar prop-
erties (six categories: polar, positive, negative, hydrophobic, aromatic
and aliphatic). This results in a total of 246 structural features asso-
ciated with each nucleotide (Supplementary Data 1). Nucleotides from
all protein–RNA complexeswith bothCLIP data and PDB structures are
then compiled together, and the crosslinking status of each nucleotide
is classified by its structural features using a random forest model,
which also ranks features based on their importance for classification.
Similarly, for protein–RNA complexes with crosslinked amino acids
identified by RNA-interactome capture, the same strategy is applied to
predict the crosslinking status of each amino acid based on its asso-
ciated structural features (Supplementary Data 2).

To test the feasibility of this strategy, we first examined several
examples that 1) represent different types of RNA-binding domains
(RBDs) that recognize distinct RNA sequence motifs; and 2) have
unambiguously determined crosslink sites in the RNA and protein. We
previously demonstrated that RBFOX, which binds the UGCAUGmotif
through an RNA-recognition motif (RRM), crosslinks to guanines G2
and G6 in the motif sequence by CIMS and CITS analysis18. Not sur-
prisingly, G2 and G6 were identified as the predominant crosslink sites
when we performed a similar search using the RNA ligand, the hepta-
mer UGCAUGU, which was used to determine RBFOX1 RRM-RNA
complex structure (PDB accession: 2ERR30; Fig. 1b). These two
nucleotides form base-stacking interactions with two phenylalanines,
F126 and F160, respectively, which were recently identified as major
crosslinked amino acids21,23,31. In addition, R118 was also found to be
crosslinked in a recent study21, and this amino acid forms two hydro-
gen bonds with G6. In a second example, we checked the complex
formed by LIN28 and precursor microRNA pre-let7-f1 (PDB accession:
3TS0; ref. 32), with a particular focus on the region interactingwith the
cold shock domain (CSD). We previously determined that LIN28 CSD
recognizes a UGAU motif, with crosslinking at the last uridine33. This
was confirmedwhenwe searched crosslink sites using theCSDbinding
region sequence (UAUGAUAC) of pre-let7-f1. The crosslinked uridine
stackswith phenylalanine F55,whichwas also experimentally validated
as the crosslinked amino acid24 (Fig. 1c). In the last example, we
examined PUM1, which recognizes an 8-mer motif UGUANAUA
through eight Pumilio RNA-binding repeats (Fig. 1d). When we sear-
ched CLIP data using the RNA ligand in complex structure (PDB
accession: 1M8Y34), we foundcrosslinking to thefirst uridine (U1) of the
motif and also another uridine immediately upstream (U-1). In the
crystal structure,U1 stackswith a tyrosine (Y1123);U-1 does not directly
contact the protein in the structure, but several amino acids in the
vicinity (K1153 and Y1154) were found to be crosslinked to RNA21, and
they may interact with U-1 in cells. These examples demonstrate a
striking degree of selectivity of crosslink sites between protein and
RNA, indicating requirements of certain structural features of
protein–RNA contacts to induce photo-crosslinking in the cellular
environment.

Distinct structural features associated with crosslinked
nucleotides
Among RBPs with both high-resolution protein–RNA complex struc-
tures deposited in PDB and in-depth CLIP data available, we were able
to infer crosslink sites in the RNA ligand unambiguously for 29 non-
redundant protein–RNA complexes representing 25 RBPs (Supple-
mentary Data 3; Methods). These complexes have a total of 214
nucleotides in the RNA ligands directly contacting the proteins,
including 43 nucleotides that were defined as crosslinked nucleotides
and the remaining 171 as non-crosslinked nucleotides. Structural

Article https://doi.org/10.1038/s41467-024-46429-y

Nature Communications |         (2024) 15:2279 2

https://www.rcsb.org/structure/2ERR
https://www.rcsb.org/structure/3TS0
https://www.rcsb.org/structure/1M8Y


features associated with each nucleotide were extracted as described
above (Supplementary Data 4).

We first performed a statistical comparison of crosslinked vs.
non-crosslinked nucleotides interacting with protein by examining
individual sequence and structural features. We observed statistical
differences in base composition between the two groups (p = 0.0013,
chi-squared test), with enrichment of guanine in the crosslinked
group; uridine, which is known to be susceptible to UV-
crosslinking35,36, is similarly enriched in the two groups (Fig. 2a).

This pattern appears to be driven mainly by crosslinking to
RRMs (Fig. 2b).

RNA nucleotide conformation has been implicated to play a role
in protein–RNA recognition37. Interestingly, the crosslinked nucleo-
tides favor theC2′-endo conformation in their sugar puckers, while the
non-crosslinked nucleotides show similar percentages in C2′-endo or
C3′-endo conformation (odds ratio=4.1, p = 0.005, Fisher’s exact test;
Fig. 2c). In addition, the enrichment of the C2′-endo conformation is
particularly prominent for crosslinked guanines and uridines (Fig. 2d).

Fig. 1 | Overview of PxR3D-map to predict photo-crosslinking in native
protein–RNA complexes. a Schematic of PxR3D-map to predict crosslinked
nucleotides inRNAusing structural features. For structurally resolvedprotein–RNA
complexes, the crosslink sites in the RNA ligand are determined by searching CIMS
and CITS in instances of this sequence in CLIP data. Structural features associated
with the crosslink sites including how these nucleotides contact amino acids in the
complex are then examined. Specifically, the protein–RNA complex structure is
analyzed by DSSR and SNAP in the 3DNA software suite to automatically extract
various structural features including RNA nucleotide conformation, secondary
structures and various types of nucleotide-amino acid contacts including planar
amino acid sidechain-base stacking (BS), pseudo base pairing (BP), and different
types of hydrogen bonds (H-bond). These structural features are tabulated based
on their association with each nucleotide in the RNA ligand (e.g., how many base
stacking interactions of a nucleotide with each of the 20 amino acids). These

features are used to predict the crosslinking status of each nucleotide by training a
random forest model, which is also used to rank feature importance for their
contribution to classification. b–d Three examples of protein–RNA complexes. For
each complex, the bar plot shows the crosslinking frequency of each nucleotide
position, and the major crosslinked nucleotides are indicated at the bottom. The
crosslinking frequencywasdetermined by searching all instances of theRNA ligand
sequence in CLIP data and counting crosslink sites in different positions of these
instances as determined by CIMS and CITS analysis. The structure of the
protein–RNA complex illustrated using PyMOL67 is shown at the top, with RNA in
pale blue and protein in gray cartoons. The crosslinked nucleotides (red) in RNA
and the crosslinked amino acids (cyan) in protein are shown in sticks to highlight
the nucleotide-amino acid contacts. b RBFOX1 RRM in complex with UGCAUGU.
c LIN28 in complex with pre-let7-f1. d PUM1 in complex with AUUGUACAUA. The
PDB accession code of each structure is indicated.
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We also observed that nucleotides in direct contact with proteinmore
frequently adopt the anti-conformation rather than the syn-
conformation in the base, and the preference is greater for pyr-
imidines (Supplementary Fig. 1a,b), which is consistent with a previous
study37. However, there are no notable differences in base conforma-
tion between crosslinked and non-crosslinked nucleotides.

We next examined amino acids in direct contact with crosslinked
vs. non-crosslinked nucleotides but did not observe notable differ-
ences in amino acid composition between the two groups (Supple-
mentaryFig. 1c), suggesting that the aminoacid identity alonedoes not
determine the specificity of crosslinking. In contrast, when we com-
pared the type of protein–RNA contacts, we found a significant
enrichment of base stacking with phenylalanine for crosslinked
nucleotides as compared to the non-crosslinked nucleotides (0.33 vs.
0.09 events per site, p = 9.5e-4, Binomial test; Fig. 2e, f). From this
analysis, we did not observe notable differences in other types of
amino acid-nucleotide contacts, such as hydrogen bonds (Supple-
mentary Fig. 1d), despite their importance for determining both spe-
cificity and affinity of protein–RNA interactions.

Prediction of crosslinked RNA nucleotides based on structural
features
To assess the contribution of different structural features and their
combinations more systematically to photo-crosslinking in
protein–RNA complexes, we applied random forest-based classifica-
tion models to predict the crosslinked vs. non-crosslinked nucleotides
using structural features. For this analysis, the performance of the
model was evaluated by a 10-fold cross-validation. Notably, structural
features are clearly predictive of crosslinked vs. non-crosslinked
nucleotides with an AUC (area under ROC curve) of 0.69 (95% con-
fidence interval between 0.60 and 0.79; Fig. 3a and Supplementary
Data 4). We confirmed that this performance is robust with regard to
the choice of a wide range of model parameters (Supplementary
Fig. 2), but required all features combined, as classification using

individual features is less accurate (AUC<0.64; Supplementary Fig. 3).
Classification using several other machine learning methods, namely
logistic regression, support vector machine (SVM), XGBoost and
neural network, also resulted in similar performance (ROC AUC: 0.69-
0.73; Supplementary Fig. 4a-d). Furthermore, including nucleotide and
overlapping di-nucleotide identities further increased ROC AUC to
0.74 (95% confidence interval between 0.65 and 0.83; Supplementary
Fig. 5a), consistent with the difference between crosslinked and non-
crosslinked nucleotides in base composition, as we identified above.

Random forest models provide ranks of features based on their
importance for classification reflected in a reduction in Gini index38.
Since our sample size used for classification is relatively small, we took
caution to ensure the ranks of features are robust using permutation
tests. In addition,we also used a generalized linear regressionmodel to
determinewhether each feature contributes positively or negatively to
crosslinking, whichwas not provided by the random forestmodel (see
Methods). Consistent with results obtained from analysis of individual
features, we found that planar base stacking with phenylalanine, or
hydrophobic amino acids as a group, and the C2′-endo conformation
of sugar puckering represent the top-ranked features that facilitate
crosslinking (Fig. 3b, Supplementary Fig. 5b and Supplementary
Data 5). Interestingly, there is also an indication that certain types of
hydrogen bonds, such as those formed between the phosphate (PO4)
group and the sidechain of arginine, may contribute to crosslinking.

Together, our random forest prediction and analysis of individual
features suggest that nucleotide base stacking with aromatic residues
represents a prominent structural feature that facilitates crosslinking.
However,we also noticed that only 22 of 76 (29%) stacking interactions
had detected crosslinking, while the remaining 54 (71%) cases did not.
To investigate additional structural features that may contribute to
crosslinking cooperatively with base-stacking, we focused on the 76
nucleotides stacking with aromatic residues and built another random
forest prediction model. In this analysis, we achieved a prediction
accuracy ROCAUC of 0.80 (95% confidence interval between 0.68 and

Fig. 2 | Comparison of crosslinked and non-crosslinked nucleotides using
associated structural features. Only nucleotides in direct contact with amino
acids were included in the analysis. a Base composition of crosslinked (XL) vs. non-
crosslinked (non-XL) nucleotides. b Base composition of crosslinked nucleotides
for RRMs, KH-domains and other types of RBDs. c Distribution of sugar puckering

types for crosslinked vs. non-crosslinked nucleotides. The schematics of C2′-and
C3′-endo conformations are shown on the left. d Similar to (c), but shown for each
nucleotide base separately using heatmaps. e Distribution of base stacking with
aromatic amino acids for crosslinked vs. non-crosslinked nucleotides. f Similar to
(e), but shown for each nucleotide base separately using heatmaps.
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0.92; Fig. 3c and Supplementary Fig. 5c). Evaluation of feature
importance for prediction suggests that the C2′-endo sugar puckering
type, as well as interaction with arginine through hydrogen bond and
base stacking, contributes to protein–RNA crosslinking (Fig. 3d and
Supplementary Fig. 5d). The presence of such structural features
appears to be particularly common for RRM, as shown in the example
of RBFOX. In this case, G6 of the UGCAUG motif interacts with phe-
nylalanine (F160) and arginine (R118) through base stacking and
hydrogen bond, respectively, and both amino acids were found to be
crosslinked (Fig. 1b). Taken together, our analysis of structural features
associated with crosslinked nucleotides identifies the structural
requirements to induce protein–RNA photo-crosslinking and high-
lights the importance of base stacking with phenylalanine, specific
types of hydrogen bonds and nucleotide conformation in this process.

Distinct structural features associated with crosslinked
amino acids
To further validate our finding regarding the structural features asso-
ciated with crosslinked nucleotides, we applied the PxR3D-map
method to analyze crosslinked amino acids identified by RNA-
interactome capture. Among the previous studies that reported
crosslinked amino acids at single residue resolution20–22, we decided to
focus our analysis on data obtained fromRBS-ID, which represents the
most comprehensive collection of crosslinked amino acids21. After
intersecting with protein–RNA complex structures in PDB, we
obtained 55 nonredundant complexes (Supplementary Data 6), which
consisted of 116 crosslinked amino acids and 1,380 non-crosslinked
amino acids that are in direct contact with RNA. For each of these
amino acids, we extracted 36 structural features describing the iden-
tity of the interacting nucleotides, and the type of protein–RNA con-
tacts including hydrogen bonds, planar side-chain base stacking, and
pseudo pairing (Supplementary Datas 2 and 7).

Among all crosslink sites identified by RBS-ID without filtering by
protein–RNA complex structures, the most abundant amino acids

reported in the original study were cysteine, followed by phenylala-
nine, tyrosine, and arginine21, which was reproduced in our analysis
(Fig. 4a). The enrichment of phenylalanine, tyrosine, and arginine is
consistentwith our analysisof amino acids interactingwith crosslinked
nucleotides, as described above. On the other hand, while cysteinewas
also known to be susceptible to UV crosslinking with nucleotides15,39, it
was not enriched among amino acids directly contacting crosslinked
nucleotides. Interestingly, while 67% of crosslinked phenylalanine and
43% of crosslinked tyrosine are located within annotated RBDs, the
proportion is much lower for cysteine (29%) (Fig. 4a).

The under-representation of crosslinked cysteine within anno-
tated RBDs, as compared with the other most frequently crosslinked
amino acids, aromatic residues in particular, is intriguing. We hypo-
thesize that this could be potentially explained by two mechanisms.
One hypothesis is that due to its high photoreactivity, cysteine can get
crosslinked with nucleotide even when the protein–RNA interaction is
transient. Alternatively, RBPs without annotated RBDs (unconven-
tional RBPs or ucRBPs40) may have distinct modes of protein–RNA
interactions with comparable structural stability as complexes formed
between RNA and conventional RBPs (cRBPs) with well-characterized
RBDs. Cysteine can be involved in these unconventional protein–RNA
interactions, resulting in its increased crosslinking frequency. We
prefer the first hypothesis because we and others recently found that
unconventional RBPs rarely have RNA sequence specificities40,41.

To formally distinguish these two hypotheses, we first examined
the crosslinked amino acids located in well-characterized RBDs with
experimentally resolved protein–RNA structures. We asked if the
crosslinked amino acids differ depending on whether they are at the
protein–RNA interaction interfaces, with the assumption that amino
acids at the interaction interfaces (i.e., RNA-contacting amino acids)
most likely participate in stable interactions with RNA, while those
amino acids outside the interaction interfaces (non-contacting amino
acids) more likely involve transient contacts with RNA. We found that
the proportion of crosslinked amino acids directly contacting RNA is

Fig. 3 | Prediction of crosslinked vs. non-crosslinked nucleotides using random
forest. a Prediction performance of crosslinked vs. non-crosslinked nucleotides as
measured by AUC (black curve). The shaded area indicates 95% confidence interval
as determined by 2000 models trained with bootstrapped data. b Feature impor-
tance plot with Mean GiniDecrease of each feature shown in x-axis and feature

robustness derived from permutation tests shown in y-axis. The direction of Mean
GiniDecrease represents whether the feature is positively or negatively associated
with crosslinking. Different feature groups are color-coded. c, d, Similar to (a, b)
but the analysis is limited to crosslinked vs. non-crosslinked nucleotides stacking
with aromatic amino acids.
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also much lower for cysteine (4/16 = 25%), as compared to phenylala-
nine (29/34 = 85%) and tyrosine (5/6 = 83%) (p = 3.5e−5, Fisher’s exact
test) (Fig. 4b). The difference is not due to a general depletion of
cysteine at the protein–RNA interaction interfaces, as compared to the
other most frequently crosslinked amino acids. Indeed, when we
estimated the crosslinking frequencies for RNA-contacting vs. non-
contacting amino acids separately, cysteine is the most frequently
crosslinked amino acid in the non-contacting group (7%), followed by
methionine (3.8%), valine (1.9%), and tryptophan (1.85%); non-RNA-
contacting phenylalanine has a crosslinking frequency of 1.3%. A dis-
tinct crosslinking profile was observed for the RNA-contacting amino
acid group, with dramatically increased crosslinking frequencies for all
aromatic residues (phenylalanine: 27% or 20 fold, tryptophan: 38.5% or
21 fold, tyrosine: 31.5% or 6.1 fold, histidine: 11% or 9.1 fold) and
methionine (19% or 5.0 fold), while cysteine has only a moderate
increase in crosslinking frequency (12% or 1.7 fold) (Fig. 4c). We also
directly compared amino acid crosslinking frequencies between con-
ventional and unconventional RBPs, using the list of proteins compiled
by Ray et al. 40. Compared to conventional RBPs, unconventional RBPs
are generally enriched in cysteine (17.2% vs. 7.5%) and depleted in
phenylalanine (7.2% vs. 15.1%; Supplementary Fig. 6a). Importantly,
they also have a higher crosslinking frequency of cysteine (11.3% vs.
7.6%) but a lower crosslinking frequency of phenylalanine (2.2% vs.
5.8%; Supplementary Fig. 6b), which is qualitatively similar to the

differences we observed between RNA-contacting and non-contacting
amino acids in conventional RBPs with defined structures. Together,
these data imply that cysteines can be crosslinked regardless of whe-
ther they are at the protein–RNA interaction interfaces of stable
complexes.

We also examined thebase compositionof the closest nucleotides
each crosslinked vs. non-crosslinked amino acid directly contacts, as a
proxy of the nucleotide it might crosslink to. In this analysis, the base
compositions for the two groups are in general similar (p = 0.25, chi-
squared test), with only a slight enrichment of G/U for crosslinked
amino acids (Fig. 4d). Finally, we examined the types of amino acid-
nucleotide contacts, and found that the only type of contacts enriched
in crosslinked vs. non-crosslinked amino acids is base stacking (0.53 vs
0.13 event per amino acid; Fig. 4e). This enrichment was observed for
all four aromatic residues (Fig. 4f) and they do not appear to show an
overt bias for particular nucleotides, as compared to non-crosslinked
aminoacids interactingwithRNA (Fig. 4g). This analysis confirmed that
base stacking between aromatic residues and RNA nucleotides can
strongly facilitate photo-crosslinking.

Prediction of crosslinked amino acids based on structural
features
We next focused on the 116 crosslinked and 1,380 non-crosslinked
amino acids that are in direct contact with RNA and applied PxR3D-

Fig. 4 | Comparison of crosslinked and non-crosslinked amino acids using
associated structural features. a The number of crosslink sites grouped by amino
acid and RBD types. Amino acids are ordered by the total number of crosslinked sites.
b Among the crosslinked amino acids that can be mapped to structurally resolved
protein–RNA complexes, the number of crosslink sites with and without direct RNA
contacts is shown. Amino acids are ranked by the proportion of RNA-contacting
crosslink sites. c Amino acids in structurally resolved protein–RNA complexes are
divided into two groups based on whether they directly contact RNA at the protein-

–RNA interaction interface, and the crosslinking frequency is calculated for each
amino acid and group separately. Amino acids are ranked as in panel (b). d Among all
RNA-contacting amino acids in structurally resolved protein–RNA complexes, the
base composition of the closest nucleotides is shown for crosslinked and non-
crosslinked sites separately. e Frequency of structural features associated with
crosslinked and non-crosslinked amino acids. f Frequency of base stacking interac-
tions for aromatic residues at crosslinked andnon-crosslinked sites.g Similar to (f) but
shown for individual nucleotide bases separately in heatmaps.
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map to predict crosslinked vs. non-crosslinked amino acids using
structural features. A random forest model was trained using the
amino acid anddipeptide identities aswell as the 36 structural features
describing amino acid-nucleotide contacts. In this analysis, we
achieved an ROC AUC of 0.76 by 10-fold cross-validation (95% con-
fidence interval between 0.71 and 0.82; Fig. 5a and Supplementary
Data 7). Again, the performance of the random forest model is robust
with respect to a wide range of model parameter choices (Supple-
mentary Fig. 7), but classification using individual features is less
accurate (AUC <0.59; Supplementary Fig. 8). Classification using other
machine learning methods also resulted in very similar performance
(Supplementary Fig. 9a-d). By applying the same feature ranking
method as described above, we found aromatic residues including
phenylalanine and tyrosine as well as stacking of these residues with
nucleotide bases, especially uridine and guanine, as the most strongly
associated features for prediction. Interestingly, we found that several
dipeptides involving glycine, such as VG and GL, are also ranked
among the top features (Fig. 5b; also see below). Consistent with our
previous analysis of crosslinked nucleotides, most types of hydrogen
bonds seem to have no or only moderate contribution to facilitating
crosslinking (Fig. 5b and Supplementary Data 8).

Different mechanisms of photo-crosslinking for RRMs and KH
domains
Taking advantage of the expanded number of crosslink sites identified
by RNA-interactome captures, we next examined whether different
types of RBDs have different crosslinkingmechanisms. It is well known
that different RBDs have distinct amino acid compositions and struc-
tural characteristics at the protein–RNA interaction interface. For
example, RRMs and K homology (KH) domains are the two most
abundant types of RBDs with distinct folds and RNA binding specifi-
cities. While aromatic residues, which we found to facilitate cross-
linking, are frequently found in RRMs, they are rarely present in KH
domains42,43.

By comparing the residue compositionof crosslinked amino acids
in different types of RBDs, we found aromatic residues, such as phe-
nylalanine and tyrosine, are indeed themost abundant at the crosslink
sites in RRMs. This is in stark contrast to KH domains, in which
crosslinking frequently occurs at cysteine, arginine, and glycine. For
zinc finger (ZNF) domains, tyrosine is the most represented amino
acid (Fig. 6a).

To investigate unique mechanisms of protein–RNA crosslinking
that may underlie specific types of RBDs, we focused on the compar-
ison of RRMs and KH domains. For each type, we compiled a list of
domains, including those with identified crosslink sites. Multiple

sequence alignments were then performed, so that the crosslink sites
in different domains of each type could be compared (Supplementary
Figs. 10 and 11). This analysis confirmed that the major crosslink sites
for RRMs are located in the two ribonucleoprotein domains RNP-1 and
RNP-2, which are two critical features for RNA binding in RRMs. There,
the two conserved phenylalanines are themost frequent crosslink sites
(Fig. 6b), and they typically form base stacking with RNA (Fig. 1b and
additional examples discussed in refs. 20,21,23). In contrast, for KH
domains, the most frequent crosslink sites are located adjacent to the
GXXG (X=any amino acid) motif, a defining feature of the KH domain,
in the N-terminus; these crosslink sites frequently involve a dipeptide
includingglycine, suchas cysteine-glycine (Fig. 6c). Ingeneral, cysteine
is crosslinked in the context of the cysteine-glycine dipeptide, while
glycine is crosslinked in GX or XG dipeptide in the absence of cysteine.
However, crosslinking rarely occurs in the GXXG motif.

KH domain is known to recognize an RNA tetramer motif, such as
YCAY (Y=C/U) for NOVA43–46. When we examined these protein–RNA
complex structures in detail, we found that the dipeptide at the
crosslink site interacts with the first position of the tetramer. For
example, glycine (G100) has evidence of crosslinking in QKI STAR
domains (a variant of KH domains with two flanking Qua domains)21,
and it interacts with the first uridine of theUAACmotif forQKI (Fig. 6d;
in this case, thefirst twonucleotides in theQKI binding sequencemotif
ACUAAC are recognized by the Qua2 domain)47. In the case of NOVA,
the crosslink site in the protein is unknown. However, we previously
determined that the first uridine in the YCAY motif represents the
predominant crosslink site in RNA. This nucleotide contacts a glycine-
alanine dipeptide in NOVA2 KH3 (G18-A19, PDB accession: 1EC6;
ref. 45; Fig. 6e). Importantly, in both cases, the GX or XG dipeptide
bond appears to stack over the base of the contacting nucleotide48.
This is confirmed by a systematic search for planar stacking formed
between dipeptide bonds and nucleotide bases using 3DNA-SNAP27,28.
Furthermore, our survey also found additional examples including
NOVA1 KH3 (G18-A19; PDB accession: 2ANN48), PCBP2 KH1 (G26-S27;
PDB accession: 2PY9, ref. 49.) and KH3 (G300-S301, PDB accession:
2P2R50). This analysis suggests that crosslinking of KH domains with
RNA utilizes a distinct mechanism from base stacking over aromatic
residues observed for RRMs.

Protein–RNA crosslinking in the ribosome
Our analyses so far have focused on relatively simple complexes
formed between monomer RBP and RNA ligand. To test whether
conclusions from these analyses are generalizable to large
protein–RNA complexes which involve more non-sequence specific
and dynamic interactions, we examined the ribosome using an 80S

Fig. 5 | Prediction of crosslinked vs. non-crosslinked amino acids using random
forest. a Prediction performance of crosslinked vs. non-crosslinked amino acids as
measured by AUC (black curve). The shaded area indicates the 95% confidence
interval as determined by 2000 models trained with bootstrapped samples.

b Feature importance plot with Mean GiniDecrease of each feature shown in the
x-axis and feature robustness derived from permutation tests shown in the y-axis.
The direction of Mean GiniDecrease represents whether the feature is positively or
negatively associated with crosslinking. Different feature groups are color-coded.
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ribosome structure determined by Cryo-EM51. This structure contains
79 proteins, from which we identified 272 crosslinked amino acids
using RBS-ID data (Supplementary Data 9). Among them, phenylala-
nine, tyrosine, arginine, lysine and cysteine are the most crosslinked
amino acids (Fig. 7a). We then analyzed crosslinked amino acids
separately depending on whether they directly contact RNA in the
structure. When normalized by amino acid compositions in ribosomal
proteins in the structure, cysteine showed the highest crosslinking
efficiency (12.8%) among amino acids without direct contactwith RNA,

followed by aromatic residues phenylalanine (3.3%), tyrosine (4.8%)
and tryptophan (6.1%). Furthermore, in comparison between RNA-
contacting vs. non-contacting amino acids at crosslink sites, aromatic
residues phenylalanine, tryptophan and tyrosine showed a larger
increase in crosslinking efficiency, as compared to cysteine (2.9-3.6
fold vs. 2.3 fold) (Fig. 7b). Among these three aromatic residues
interactingwith RNA through base stacking, 29.5% showed evidenceof
crosslinking (See examples in Supplementary Fig. 12). These data
confirmed that cysteine is the most photoreactive amino acid even

Fig. 6 | Distinct protein–RNA crosslinking mechanisms for different types
of RBDs. a The number (left) and composition (right) of crosslinked amino acids
in different types of RBDs. b Top: Multiple sequence alignment logo for RRMs.
The total height of each position shows the information content of all amino acids
in each position, while the relative height of each letter reflects the amino acid
composition at that position. Amino acid color codes are the same as in (a).
Bottom: Crosslinked amino acids at each position are shown in the same format
as at the top. Note that crosslinked amino acids are visible only for positions with
non-zero information content. The two RNP motifs defining RRMs are indicated.
c Similar to (b) but for KH-domains. The GXXG motif defining the KH-domains is

indicated. d, e Examples of KH-domains in which a glycine-related dipeptide
stacks over the base of the first position of its tetramer RNA sequence motif. In
each panel, the structure is illustrated using PyMOL67, with protein in gray and
RNA in blue cartoons. The RBD and PDB accession codes are indicated. d The GX
dipeptide shown in cyan (stick) indicates crosslinked amino acids. The dipeptide
bond stacks over the first position (red) of the tetramer RNA motif, highlighted
using a shaded box in the RNAnucleotide sequence. e The first nucleotide (red) of
the UGACmotif represents the predominant crosslink position determined using
CLIP data. The GA dipeptide interacting with this uridine is highlighted in
cyan (stick).

Article https://doi.org/10.1038/s41467-024-46429-y

Nature Communications |         (2024) 15:2279 8



when the residue does not stably interact with RNA, while aromatic
residues facilitate protein–RNA crosslinking through base stacking.
Applying the same random forest models for the classification of
crosslinked vs. non-crosslinked amino acids resulted in an ROCAUCof
0.77, which is also consistent with our results from individual
protein–RNA complexes (Fig. 7c).

Discussion
In this study, we developed a computational framework and method
named PxR3D-map to systematically analyze structural features asso-
ciated with and likely contributing to photo-crosslinking between
protein andRNA in their native complexes. Given thewide applications
of UV-crosslinking to help interrogate protein–RNA interactions and
their functional consequences in gene regulation, the identification
and characterization of the precise crosslink sites in both RNA and
protein is undoubtedly a key step to better interpret data generated by
these assays and understand mechanisms underlying protein–RNA
complex formation.

Although current technologies fall short in the simultaneous
identification of crosslink sites in RNA and protein, we demonstrate
that this limitation can be mitigated by the integration of crosslink
sites identified separately in protein or RNA for protein–RNA com-
plexes with experimentally resolved 3D structures. Systematic analysis
of an expanding list of complexes allowed us to gain mechanistic
insights into protein–RNA crosslinking. Based on our analysis, direct
contact between amino acids and nucleotides is clearly not sufficient
to induce the formation of covalent bonds between the two in the
experimental conditions currently used to study protein–RNA com-
plexes in vivo or in cells. Instead, this process relies on certain struc-
tural features in the complex. Even though currently resolved
protein–RNA complex structures in the PDB are still limited, several
structural features facilitating protein–RNA crosslinking start to
emerge. Among them, the contribution of base stacking with peptide
side chains, especially aromatic residues, is the most compelling.
Crosslinking at such interaction sites has been experimentally vali-
dated between LIN28 CSD and its bindingmotif UGAU. In this case, the
last uridine stacks with a phenylalanine and was crosslinked when the
complex reconstituted in vitro was irradiated by UV light24.

While this manuscript was in preparation, a study was published
that characterized the crosslinking of RBFOX1 RRM with the cognate
binding sequence UGCAUGU in detail23. The authors combined mass-
spectrometry analysis with isotope labeling of specific nucleotides to
determine crosslink sites in RNA and protein simultaneously. This
study validated our previous finding from CIMS/CITS analysis that the

two guanines in the motif are predominant crosslink sites in RNA18,
while also determining the two phenylalanine residues that stack with
the two guanines as crosslink sites in the protein. By manual exam-
ination of aromatic residues and base stacking around crosslink sites
determined by RNA-interactome capture, they independently identi-
fied the importance of stacking between the aromatic ring and the
nucleotide base for photo-crosslinking.While the exactmechanismsof
peptide-nucleotide adduct formation through base stacking are yet to
be established, possible mechanisms have been proposed23. We note
that it has been known for decades that UV light can induce the for-
mation of U-U or U-C dimers for nucleotide bases stacked together52,
probably through similar mechanisms.

Our systematic and unbiased study, which is made possible by
automated analysis of protein–RNA complex structures and structural
feature extraction followed by rigorous machine learning-based clas-
sification, allowed us to identify additional structural features asso-
ciated with crosslink sites. Among them, the most notable finding is
the crosslinking of dipeptides is most likely through nucleotide base
stacking over the dipeptide bond. A systematic search for such
dipeptide bonds revealed that they are most frequently associated
with glycine, probably because of the small size and structural flex-
ibility of this amino acid. This mechanism appears to be particularly
important for crosslinking of KH domains with RNA. In addition, we
also noticed that several other residues including valine and lysine are
frequently crosslinked in RNP-1 and RNP-2 of RRMs. Moreover, certain
types of hydrogen bonds, as well as the C2′-endo type of nucleotide
conformation, may also contribute to crosslinking. This observation is
consistent with previous work that demonstrated that DNA in the C2′-
endo conformation is less UV-resistant compared to the C3′-endo
conformation53. Altogether, we propose that multiple mechanisms
underly the selective photo-crosslinking between protein and RNA,
which await further validation and characterization. It is also important
to note that our method aims to reveal common structural features
shared across many complexes, while protein-specific or rare features
contributing to the photocrosslinking efficiency will be missed and
they have to be investigated using alternative methods interrogating
individual protein–RNA complexes (e.g., refs. 23,24).

Knorlein et al. reported that up to 78% of crosslink sites in struc-
turally resolved protein–RNA complexes can be explained by base
stacking with aromatic residues23. This estimate appears to be rather
high based on our analysis, even when we focused on RRMs, in which
aromatic residues are overrepresented at the protein–RNA interaction
interface (Fig. 6b). Moreover, crosslinking through base stacking with
aromatic residues is clearly not the main mechanism for KH domains,

Fig. 7 | Comparison of crosslinked and non-crosslinked amino acids in 80S
ribosome using associated structural features. a Among the crosslinked amino
acids that can be mapped to the ribosome structure (PDB accession: 6Z6M), the
number of crosslink sites with and without direct RNA contacts is shown. Amino
acids are ranked as in Fig. 4b. b Amino acids in the ribosome structure are divided
into two groups based on whether they directly contact RNA at the protein–RNA

interaction interface, and the crosslinking frequency is calculated for each amino
acid and group separately. Amino acids are ranked as in Fig. 4b. c Prediction per-
formance of crosslinked vs. non-crosslinked amino acids as measured by AUC
(black curve). The shaded area indicates the 95% confidence interval as determined
by 2000 models trained with bootstrapped samples.
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which are the second most common type of RBDs (Fig. 6c). Along this
line, our analysis suggests that stacking between RNA base and aro-
matic residues is insufficient to induce crosslinking. A striking example
illustrating this point is PUM, which recognizes each of the eight
nucleotides in its RNA sequence motif through base stacking, and yet
crosslinking occurs specifically at the first uridine of the motif or one
nucleotide further upstream (Fig. 1d). This is also in line with our
finding that additional structural features, including hydrogen bonds
between the sugar of the nucleotide and the side chain of arginine, as
well as C2′-endo sugar puckering, can classify crosslinked vs. non-
crosslinked stacking interactions (Fig. 3c, d).

Our analysis provides insights into the crosslinking of cysteine,
which is the most photoreactive among amino acids due to the
presence of sulfur as an electron donor15,39. While cysteine is themost
abundant amino acid at crosslink sites identified by RNA-interactome
capture21, a large proportion of them are not located in known RBPs.
Even for those located in the annotated RBDs of RBPs, they fre-
quently do not directly contact RNA, as judged from available
protein–RNA complex structures (Fig. 4a, b). This is in contrast to the
crosslinking of aromatic residues, which is found predominantly at
the protein–RNA interaction interfaces (where they form base
stacking with nucleotides). In addition, for unconventional RBPs
identified by RNA interactome captures, the crosslinking of cysteine
is much more frequent while the crosslinking of aromatic residues is
much less, as compared to conventional RBPs. These observations
aremost consistent with the notion that crosslinking of cysteine with
RNA can occur independently of stable protein–RNA interactions.
That said, we note that among the 13 crosslink sites found in KH
domains that involve cysteine, 10 (77%) occur in the CG or GC
dipeptide context. This proportion does not seem to be explained by
the overrepresentation of such dipeptides in KH domains in general
and may reflect the importance of these dipeptides in initiating
crosslinking at cysteine.

Crosslinking bias in CLIP data has been discussed in the
literature54, but the extent and underlying mechanisms are not clear.
Following our analyses, such bias can arise when the structural
requirement to induce crosslinking cannot be fulfilled in protein–RNA
contacts that determine specific protein–RNA interactions, but is
rather fulfilled through additional protein–RNA contacts which might
be more transient. We previously found cases in which the crosslink
sites are not part of the RBP binding motifs but are located in the
immediate vicinity, such as crosslinking of the upstream uridine in
PUM binding motif (Fig. 1d). As another example, SRSF1 binds to
GGAGGA or the half site GGA, but crosslinking occurs predominantly
in an upstreamuridine in the sequenceUGGA and the uridine does not
contribute to binding specificity or affinity41.

Indeed, crosslinking of transient protein–RNA interactions with-
out stable complex formation could be widespread. This is in line with
the overrepresentation of cysteine among crosslinked amino acids
with a majority lacking evidence of direct protein–RNA contacts from
stable complexes, as described above. In addition, we noticed that
among crosslink sites in RNA identified by CIMS and CITS analysis of
RBFOX CLIP data18, over half are uridine when the consensus UGCAUG
or UGCAUG-like (with one mismatch) sequences are not present. On
the surface, this observation appears to be inconsistent with the pre-
dominant crosslinking ofRBFOXwith guanineswhen stable complexes
are formed between the RRM and UGCAUG element. However, this
apparent discrepancy can be resolved if one envisions that cross-
linking could occur when the protein scans through RNA before a
cognate binding site is found. In this context, multiple interactome
capture studies aimed to identify the crosslinked peptide-nucleotide
adducts reported that the crosslinked RNA moiety is predominantly
uridine20,21,25 and Bae et al. decided to focus on uridine exclusively in
their mass-spectrometry analysis to limit the search space21. Our ana-
lysis implies that a subset of the crosslink sites with uridine adducts

could reflect transient protein–RNA interactions which might out-
number stable complexes. From these experiences, the identification
of predominant crosslink sites (especially uridine) outside the expec-
ted sequence motif or lack of specific sequence motifs around cross-
link sites beyond uridine-rich sequences should signal caution in CLIP
data analysis. Importantly, the interpretation of protein–RNA interac-
tions mapped by CLIP can benefit from validation using independent
approaches such as assessment of binding specificity by in vitro
binding assays without UV crosslinking55,56, experimentalmutagenesis,
or allele-specific binding analyses using CLIP data41. In this regard, it is
worth noting that a high-throughput method was developed recently
to map RBP binding sites by in situ reverse transcription and sequen-
cing without relying on UV-crosslinking57.

Weestimate that about 55–60%crosslinked amino acids identified
by RNA-interactome captures are not located in the stable
protein–RNA interaction interface of individual protein–RNA com-
plexes or the ribosome. Together with the overrepresentation of
cysteine crosslinking, this study also warrants caution for the numer-
ous RBPs identified by RNA-interactome captures, including many
unconventional RBPs without any characterized RBDs. Along this line,
a recent study proposed that the larger set of RBPs identified by
interactome capture should not be conflated with the conventional
subset because the vast majority of unconventional RBPs lack any
apparent sequence specificity, similar to an observation we made
previously based on CLIP data analysis40,41. The proposal is echoed and
extended in this study, as we now provide a mechanistic explanation—
they tend to be pulled down due to protein–RNA crosslinking during
transient contacts. That said, one should certainly not exclude the
possibility that a subset of unconventional RBPs might have the
capacity to form stable protein–RNA complexes similar to their con-
ventional counterparts, or that transient protein–RNA interactions
might have certain functional significance. We examined the list of
unconventional RBPs previously shown to have clear sequence speci-
ficity and found two RBPs with high-resolution protein–RNA complex
structures and evidence of crosslinking. Among them, ZRANB2 con-
tains two zinc fingers, with each zinc finger recognizing a 5ʹ splice-site-
like AGGUAA motif based on in vitro binding40,58 and CLIP data. Our
CLIP data analysis also determined that the predominant crosslinking
occurs at G2 of this motif, which forms base stacking with an aromatic
residue tryptophan (W79; PDB accession: 3G9Y) (Supplementary
Fig. 13a). In the other example, RPP25 crosslinks with RNA through a
cysteine (C70; PDB accession: 6LT7). However, this amino acid does
not directly interact with RNA (Supplementary Fig. 13b).

Finally, the specific structural requirement for protein–RNA
crosslinking suggests that the crosslink sitesmapped by CLIP or RNA-
interactome capture could provide useful constraints when one
develops models of protein–RNA complex structures. This direction
is particularly encouraging because of recent progress made in the
computational prediction of protein structures using primary
sequences59. These models are typically trained with large datasets, a
requirement that is difficult to meet for protein–RNA complexes
(~2000 structures in total as of June 2022). It is possible that the
demands on a large number of training complexes could be relaxed
by providing structural constraints for protein–RNA complexes as
suggested by selective protein–RNA crosslink sites. On the other
hand, the predicted protein–RNA complex structures may also
facilitate the characterization of protein–RNA crosslinking by
expanding the sample size that can be used by PxR3D-map analysis, a
major limitation of the current study. Moreover, we expect that
experimental mapping of protein–RNA interactions can benefit from
technologies that are able to crosslink protein and RNA with less
selective structural requirements to achieve improved sensitivity and
reduced bias. The methodological framework and analyses pre-
sented in this work could provide a guide for the future development
of such technologies.
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Methods
Compilation of protein–RNA complex structures and structural
feature extraction
For systematic analyses of protein-–RNA complex structural features
described in this study, we downloaded and parsed all Protein Data
Bank (PDB)26 structures to identify macromolecular complexes invol-
ving both protein and RNA chains in July 2020. In total we identified
1,090 complexes, including 277 (human), 28 (mouse), and 6 (rat)
complexes, respectively.

All these complexes were analyzed by the programs DSSR and
SNAP in the 3DNA software suite27,28 to determine nucleotides and
amino acids in direct contacts (defined by the shortest distance
between a pair of heavy atoms in the nucleotide and the amino acid
≤4.5 Å). In addition, DSSR and SNAP extracted structural features that
describe RNA nucleotide conformation (e.g., base morphology and
sugar puckering), RNA-secondary structures (e.g., single vs. double-
stranded region), and various types of RNA-protein contacts including
different types of hydrogen bonds, planar amino acid sidechain-base
stacking, and pseudo pairing. Occasionally, amino acid-RNA contacts
of particular types have distances slightly above the threshold and
these were also included. To facilitate downstream analysis, we sum-
marized these features with respect to their association with each
nucleotide in the RNA ligand (e.g., the number of hydrogen bondswith
each of the 20 amino acids; 246 features in total; Supplementary
Data 1) or each residue in the protein chain (e.g., the number of
hydrogen bonds with each of the four RNA bases; 36 features in total;
Supplementary Data 2) at the protein–RNA interaction interface.
Additional features were also included by aggregating amino acids
with similar properties (6 categories: polar, positive, negative, hydro-
phobic, aromatic and aliphatic; Supplementary Data 4).

Mapping crosslink sites to structurally resolved protein–RNA
complexes
Tomapcrosslinked nucleotides of RNA ligands in structurally resolved
protein–RNA complexes, we intersected the RBPs in these complexes
and those with CLIP data and obtained a list of 41 RBPs18,60–64. Cross-
linking sites in RNA were mapped by crosslinking-induced mutation
site (CIMS) and truncation site (CITS) analysis in our previous studies
(e.g., ref. 41) or performed in this study using the CLIP Tool Kit (CTK)
package19. De novo motif analysis was performed using mCross41. For
this study, we kept only RBPs whose consensus binding motif can be
unambiguously determined and matches the RNA ligand used in
structure determination. For each RNA ligand, we then searched
instances of the RNA sequence in the respective CLIP data to deter-
mine the frequency of crosslinking at each nucleotide position using
themCrosspackage41.When theRNA ligand is long andonlypart of the
sequence interacts with RBP, the sub-sequence that resembles the
consensus RNA-binding sequence motif of the RBP was used for the
search. In these cases, searches with one or two nucleotide extension
on each side were also performed to identify additional crosslink sites
immediately flanking the consensus motif sequence. A nucleotide in
the RNA ligand was defined as crosslinked nucleotide if we found ≥20
instances of the ligand (or its subsequence interacting with the pro-
tein) with crosslink sites determined by CLIP, and the crosslinking
frequency at the position among all instances was ≥0.3. Alternatively,
when a smaller number of instances with crosslinking evidence were
available (≥10), we required the crosslinking frequency at the position
≥0.5. The remaining positions of the RNA ligand interacting with the
protein were defined as non-crosslinked nucleotides (Supplementary
Data 4). Positions without direct contact with amino acids were
excluded in our analysis. When multiple protein–RNA complex struc-
tures were available for the same RBD, only the one supported by the
most crosslinking events was kept in our analysis. We were able to
determine crosslink sites in RNA unambiguously for 29 non-redundant
protein–RNA complexes representing 25 RBPs, from which we

obtained 43 crosslinked and 171 non-crosslinked nucleotides directly
contacting the protein (Supplementary Datas 3 and 4).

To map crosslinked amino acids in structurally resolved
protein–RNA complexes, we used crosslink sites identified byRBS-ID21.
This dataset included 1,970 crosslink sites in proteins (denoted RNA-
binding sites or RBSs in the original paper) that belong to 640 protein
groups. The amino acid coordinates reported for these sites were
comparedwith the amino acid residue coordinates in the protein chain
in the respective PDB structures. In total, we found 104 complex
structures from 46 proteins with at least one crosslinked amino acid.
We removed the redundant structures and chains by keeping the one
with the maximum crosslinked peptide counts and the maximum
number of non-zero structural features to obtain 55 non-redundant
complexes (Supplementary Data 6). After removing amino acids
without directly contacting RNA nucleotides, we obtained 116 cross-
linked and 1,380 non-crosslinked amino acids used in our analysis
(Supplementary Data 7).

We also examined the crosslinked amino acid compositions in398
conventional RBPs (cRBPs) with annotated RBDs and 624 unconven-
tional RBPs (ucRBPs) lacking annotated RBDs, as defined by Ray et al.
40. Among 1,970 crosslink sites identified by RBS-ID, 1,029 and 458
crosslinked amino acids were mapped to 152 cRBPs and 167 ucRBPs,
respectively. Finally, we analyzed 80S ribosome structure (PDB
accession: 6Z6M51), which includes 79 proteins. In total, RBS-ID
detected 288 crosslinked amino acids, among which 272 residues
can bemapped to the PDB structure (107 RNA-contacting and 165 non-
contacting residues, respectively; Supplementary Data 9). Structural
features associated with each amino acid were extracted as
described above.

Prediction of crosslinked nucleotides and amino acids using
random forest models
We trained a random forest model to predict crosslinked vs. non-
crosslinked nucleotides using structural features as described above
and prioritize the structural features that contribute to protein–RNA
crosslinking. Another random forestmodel was developed to predict
crosslinked vs. non-crosslinked amino acids and prioritize associated
structural features. For these tasks, the Caret package (version
6.0.80; ref. 38) in R was used to train the models and perform
predictions.

Weobserved improved sensitivitywithout impairing specificity by
adopting a sampling method that corrects the imbalance of the posi-
tive and negative samples using SMOTE65. Model performance was
evaluated by 10-fold cross-validation using ROC area under curve
(AUC). To evaluate the robustness of themodels with respect tomodel
parameter choices, we trained models with different parameters
including the number of trees (ntree) in the forest and the number of
features per tree (mtry). For the prediction of crosslinked nucleotides,
the optimal performance was achieved with mtry = 17 and ntree = 100
as measured by AUC (Fig. 3a). Similarly, for the prediction of cross-
linked amino acids, the optimal performancewas achievedwithmtry =
6 and ntree=1000 for individualRBP-RNAcomplexes (Fig. 5a) andmtry
= 6 and ntree=100 for ribsomal proteins (Fig. 7c).

Evaluation of structural feature importance
For a trained random forest model, Mean GiniDecrease was used to
rank the feature importance for prediction. Given the relatively mod-
erate sample size of data available for our classification tasks, we also
developed a metric to measure the robustness of feature ranks. Spe-
cifically, we randomly permutated the crosslinking labels of the
nucleotides (or amino acids) and re-trained the models with the same
parameters. For each permutation and re-trained model, the features
were ranked. This process was repeated for N = 2000 times, and the
robustness of each feature is defined as Rs = � log10ð

PN
i = 1 Iðris<rsÞ=NÞ,

where rs is the rank of feature importance for feature s in the true
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model without crosslinking label permutation and ris is the rank of
feature s in the ith permutation; I(.) is the indictor function.

The Gini index does not indicate whether a feature contributes
positively or negatively to the prediction of the crosslinked nucleo-
tides or amino acids. To address this limitation, we used a generalized
linear regressionmodel usingRpackageCaret. 10-fold cross-validation
was used to determine the best parameters (α =0.56 and λ =0.14 for
prediction of crosslinked nucleotides; α =0 and λ = 7.37 for prediction
of crosslinked amino acids) thatmaximized theAUC. The coefficient of
each featurewas used to determine the contribution direction towards
the prediction of the crosslinking status.

To evaluate the performance of individual features on prediction,
we trained random forest models using each features with Gini
decrease value ≥ 1.5 for crosslinked nucleotide prediction (22 fea-
tures), and ≥2.5 for crosslinked amino acid prediction (17 features)
using the same procedure described above.

Prediction of crosslinked nucleotides and amino acids using
various machine learning models
In addition to the random forest models, we also compared the clas-
sification and prediction of crosslinked vs non-crosslinked nucleotides
and amino acids using several other machine learning techniques,
namely logistic regression, support vector machine (SVM), extreme
gradient boosting (XGBoost) trees, and model averaging neural net-
work implemented as avNNet in Caret package38. The avNNet method
works by using different random number seeds to fit the same neural
network model. The model scores from all the resulting trained
models are then averagedbefore beingused inpredicting the classes66.
Similar to the random forest model, all the other models were also
implemented with SMOTE to address the class imbalance issue, and
the model performance was evaluated by 10-fold cross-validation
using ROC-AUC scores. The comparative model performance for all
the above-mentioned machine learning models is shown in Supple-
mentary Figs. 4 and 9.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the
corresponding authors upon request. Protein–RNA complex struc-
tures were downloaded from Protein Data Bank (PDB; https://www.
rcsb.org). The PDB accession codes of protein–RNA complex struc-
tures analyzed in this study were included in Supplementary
Datas 3 and 6. The CLIP data analyzed in this study were downloaded
from NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra)
or the ENCODE website (https://www.encodeproject.org) with acces-
sion codes summarized in Supplementary Data 3.

Code availability
The scripts used for this study are available at https://github.com/
chaolinzhanglab/PxR3D (https://doi.org/10.5281/zenodo.10602866).
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