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Temporally organized representations
of reward and risk in the human brain

Vincent Man 1 , Jeffrey Cockburn 1, Oliver Flouty2, Phillip E. Gander 3,4,5,
Masahiro Sawada3, Christopher K. Kovach 3,6, Hiroto Kawasaki3,
Hiroyuki Oya 3,5, Matthew A. Howard III3,5 & John P. O’Doherty 1,7

The value and uncertainty associated with choice alternatives constitute cri-
tical features relevant for decisions. However, themanner in which reward and
risk representations are temporally organized in the brain remains elusive.
Here we leverage the spatiotemporal precision of intracranial electro-
encephalography, along with a simple card game designed to elicit the
unfolding computation of a set of reward and risk variables, to uncover this
temporal organization. Reward outcome representations across wide-spread
regions follow a sequential order along the anteroposterior axis of the brain. In
contrast, expected value can be decoded from multiple regions at the same
time, and error signals in both reward and risk domains reflect a mixture of
sequential and parallel encoding. We further highlight the role of the anterior
insula in generalizing between reward prediction error and risk prediction
error codes. Together our results emphasize the importance of neural
dynamics for understanding value-based decisions under uncertainty.

Adaptive behavior is predicated on an ability to evaluate relevant
features of the environment. A substantial collection of evidence has
demonstrated that humans and animals alike direct their actions
according to reward expectations1. However, developing robust esti-
mates of future reward is complicated by the fact that real-world set-
tings are often inherently unpredictable. To act well in face of this
unpredictability, the brain tracks and employs higher-order variables
such as expected uncertainty2–6. Nevertheless, the temporal dynamics
by which these variables are computed in the brain remain poorly
described, largely due to the field’s reliance on non-invasive neuroi-
maging techniques that are spatially or temporally coarse. To address
this limitation, we leveraged intracranial electroencephalography
(iEEG) to probe the neural evolution of reward and risk computations
at high spatial and temporal resolution.

Reward prediction error (RePE) signals that quantify the dis-
crepancy between observed and expected reward7,8 not only offer a
means of iteratively improving reward estimates9, but importantly also

provide a quantity to describe outcome variability (i.e., risk)10. Analo-
gous to RePE, it has been suggested that risk prediction error (RiPE)
signals are computed by the brain when predictive associations
between choices and outcomes change5,11. To explicitly investigate
relationships betweenRePE andRiPE, we employed a normativemodel
following from4,12 that describes RiPE as a second-order uncertainty
term which is derived as a function of RePE, therefore making an
explicit temporal prediction that neural signals reflecting reward error
should precede and predict those supporting risk error computations.

However, little is known about the temporal characteristics of
reward and risk representations at the wide spatial scale for which
correlates of thesedecision variables have been reported in the human
brain13,14. Studies using scalp EEG fromus15 andothers16,17 havebegun to
probe the neural correlates of reward and risk at finer timescales, with
evidence suggesting a mixture of both parallel and sequential com-
putations across the brain15. In support of this, an emerging line of
work has begun to describe possible modes of temporal configuration
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by which cognitive processes are carried out in the brain. For example,
evidence suggests that both parallel and sequential temporal
arrangements support the encoding of visual features and their sub-
sequent maintenance, respectively18, and similar interactions between
parallel and sequential processing modes have been described in the
context of multi-tasking19,20. Evidence of sequential processing in the
reward domain has also highlighted a posterior to anterior flow of
information15,21. However, studies using scalp EEG provide limited
spatial resolution and are unable to probe deeper subcortical
regions22, thereby painting an incomplete spatio-temporal mapping
between theoretically grounded variables and neural function.

We aimed to expandour understanding of the temporal dynamics
of reward and risk processing in the brain by directly testing for
interactions in the neural representations of pertinent variables. We
investigated two theoretically motivated hypotheses: that reward
prediction error should precede risk prediction error, and that reward
prediction error representations should directly relate to risk error
computations given that RePE serves as input to the computational
function that defines RiPE (see “Computational analysis” for details).
Importantly, evidence of an explicit correspondence between neural
representations of different variables in a given brain region would
lend support for that region’s role in the computational transforma-
tions mid-stream. This hypothesis stands in contrast to the alternative
possibility of distinct representational codes for different computa-
tional variables in the same neural population (e.g. ref. 23).

We also held strong prior hypotheses about candidate regions
that would represent reward and risk variables. Within the prefrontal
cortex, anterior (frontal pole) and ventromedial PFC (vmPFC) have
differential contributions to risk24,25 and reward26,27, respectively28. We
further hypothesized that the amygdala would be important given its
embedding in a reward circuit along with vmPFC29 and OFC30, and by
our own previous work in human electrophysiology highlighting its
role in reward representations31,32. We further predicted that OFC and
anterior insula in particular would be candidate substrates for holding
representations across reward and risk domains. However, the tem-
poral ordering of computational representations in OFC remains to be
clarified given evidence of both simultaneous33 and sequential34

encoding of expected value and risk. Similarly, despite evidence of
RePE35,36 and RiPE4,17,37 signals in anterior insula, to date no studies have
directly compared the relative timings nor tested for interactions
between these variables in anterior insula.

We recorded human iEEG in a sample of patients undergoing
chronic evaluation for epilepsy. Patients performed a task designed to
decouple the rapid unfolding of both reward and risk variables first
described by4,12, allowing us to investigate the neural mechanisms by
which reward-related representations contribute to building risk
computations. iEEG is well situated to overcome many of the spatio-
temporal limitations of noninvasive neuroimaging38 and has been used
to elucidate functional contributions of neural activity both within
specific regions (e.g. refs. 33,39) and across wide-spread areas of the
brain40,41. We leveraged this latter advantage of iEEG by simultaneously
recording from frontal, subcortical andparietal areas to investigate the
temporal organization of reward and risk encoding across widespread
brain networks. Among the locations from which we were able to
record the intracranial potential, we focused a priori on a smaller set of
hypothesized ROIs while also exploring a wider span of regional tar-
gets. Our objectives were to address outstanding questions about the
temporal signature of reward and risk encoding at scales unattainable
with non-invasive human neuroimaging, and to test directly for neural
interactions between computations.

We report wide-spread outcome processing that unfolds along
the anteroposterior axis of the brain. In contrast, expected value can
be decoded from multiple regions simultaneously, whereas error sig-
nals exhibit a mixture of sequential and parallel processing. We high-
light the computational contribution of anterior insula in generalizing

between RePE and RiPE. Together our results emphasize the utility of
uncovering temporal dynamics in the human brain for understanding
how reward and risk computations unfold.

Results
To understand how the brain temporally organizes reward and risk
representations, we combined iEEG recordings in 10 patients across 16
recording sessions, all of whom completed a task designed to elicit an
array of reward and risk computations12. All patients were recruited on
the basis of clinical considerations only andwere implantedwithmulti-
contact subdural grid and/or depth electrodes to enable chronic eva-
luation for the treatment of refractory epilepsy. Electrode placement
was determined by the clinical requirements specific to each patient;
as such the number of contacts varied across individuals. We thus
pooled all recording contacts across patients using a pseudo-
population approach42 to sample from our regions of interest (see
individual subject coverage in Fig. S1). In total 428 contacts were
included in the analyses across all ROIs. The number of contacts within
each ROI is shown in Supplementary Table 1.

On a trial, participants guessed whether the second of two
sequentially-drawn playing cards would have a higher or lower
numerical value than the first. After the second card was presented,
participants had all the necessary information to determine the accu-
racy of their initial guess. Correct guesses earned game points and
incorrect guesses resulted in point deductions. After each trial, parti-
cipants reportedwhether theyhadwon (Fig. 1A). Thedeckwas shuffled
and cards were replaced between trials. The task was designed in
conjunction with a normativemodel of reward and risk4,12, allowing for
the calculation of expected value (EV), outcome (OUT), expected risk
(E.Risk), reward prediction error (RePE), and risk prediction error
(RiPE) (Fig. 1B). These variables are computed sequentially over the
course of a single trial, based on information provided by the cards
drawn. After the second card is drawn, participants can compute RePE
by comparing the actual outcome with EV and compute RiPE in terms
of variance around E.Risk, thereby taking as input the RePE (see
“Computational analysis”). Critically, each trial provides an indepen-
dent sample of these variables, allowing us to employ single-trial
decoding to unpack locally distributed multivariate representations.

Behavior reflects knowledge of task structure and control for
learning confounds
Our objective was to characterize the temporal properties of the
neural representations underlying reward and risk-related computa-
tions. We aimed to study how multiple brain regions encoded these
variables free from the potentially confounding effects of learning
dynamics on neural activity. As such, we used a task that constrained
the computational process within a single trial and did not elicit
learning dynamics between trials. The task was designed such that the
only optimal behavior was to report correctly at the end of each trial,
and there was no optimal guessing strategy given that the deck was
reset on each trial.

We found evidence that participants indeed attended to the
information provided by the presented cards, as demonstrated by
strong reporting accuracy significantly above chance in our sample
(mean= 91.50%, s.e.m. = 2.84%, β =0.415, 95 CI [0.358, 0.471],
t(9) = 14.398,p = 1.184e−7; Fig. 2A). Therewasno effect of trial count on
reporting accuracy (βt = −1.272, 95 CI [−2.672 0.127], z = −1.782,
p =0.075) and the accuracy remained high even in the late trials
(mean= 88.4%, s.e.m. = 3.96%). In all subsequent neural analyses we
controlled for trials with inaccurate reports across the entire span of
the task. Further, participants did not show any evidence that they
adopted behavioral strategies commonly seen in learning tasks such as
win-stay/lose-shift (βOUT = −0.103, 95 CI [−0.220 0.014], z = −1.719,
p =0.086; Fig. 2B), nor did we find evidence that participants adopted
other behavioral heuristics such as sticking to the same guess (βt−1 =
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−0.092, 95 CI [−0.346 0.162], z =0.709, p =0.478; βt−2 = 0.005, 95 CI
[−0.235 0.245], z =0.039, p =0.969) or left/right response key (βt
−1 = 0.181, 95 CI [−0.488 0.851], z =0.531, p = 0.595; βt−2 = 0.166, 95 CI
[−0.270 0.602], z =0.746, p =0.456; Fig. 2C).

Finally, given our interest in the underlying computations that
emerge over the span of a trial, we tested whether computations on
previous trials might have any influence on participants’ guesses on the
following trial. We expected there to be no effect of computational
variableson theguess choiceof thenext trial if participants truly treated
each trial independently. Critically, this analysis allowed us to carefully
test the contribution of reward and risk error on the next trial’s choice,
where a lack of significant prediction would suggest that we succeeded
in isolating the task from learning dynamics. Participants’ behavior was
analyzed using logistic regression to assess whether guesses were pre-
dicted by reward and risk features of the previous trial, as index by the
level of each of our variables of interest. We found that participants’
guesses were independent of their past experience both in terms of

reward (βEV = −0.104, 95 CI [−0.311 0.104], z= −0.980, p =0.327;
βRePE = −0.010, 95 CI [−0.173 0.153], z= −0.122, p =0.903) and risk
(βERisk = 0.138, 95CI [−0.1840.461], z =0.842,p=0.400; βRiPE = 0.159, 95
CI [−0.096 0.415], z = 1.225, p =0.220; Fig. 2D; see “Computational
analysis” for their definition). Again, no behavioral strategy was neces-
sary to performoptimally given the task design; these results alongwith
their high reporting accuracy provide evidence that participants
understood the nature of the task well, and paid attention to both their
guesses and the information presented through the span of a trial to
report their outcome accurately. Importantly, this allowed us to pro-
ceedwith confidence to the neural analyses which relied on the derived
computational variables.

Decoding computational variables with multivariate neural
signals
We aimed to investigate the coordination of reward and risk repre-
sentations across multiple brain regions. Using a multivariate

Fig. 1 | Experimental paradigmand computationalmodel. AOverviewof a single
trial in the task completed by participants. Distinct trial events are labeled above,
and each event duration is given below, the panels. The within-trial period used in
subsequent neural analyses is denoted by the red line at the bottom, and a priori
windows for each computational variable are overlaid in the colored boxes. Neural
analyses were conducted in epochs from −200 to 500ms around respective trial
event onsets. In the task, playing cards are shown; each card is represented in this
figure by their corresponding number. B Variation in computational variables as a
function of the drawn number of card 1, conditioned on an initial guess that card 2
will be lower as illustrated in the example trial depicted in (A). Each column anchors
at a trial event for the events analyzed in the study (the period before Card 1 is not
included in the neural analysis but depicted here for completeness). Model

predictions of the computational variables are shown at each respective trial event.
Reward-related variables including expected value (EV; green) and reward predic-
tion error (RePE; blue) are shown in the top row. Risk-related variables including
expected risk (E.Risk; yellow) and risk prediction error (RiPE; red) are in the bottom
row. Variables after the onset of card 2 are conditioned on the experienced out-
come (win or loss). C Contact locations across the pseudo-population. Each dot
represents a bipolar sensor located at a projected coordinate between the paired
contacts' locations. Dots are colored by their assignment to each atlas-defined
region of interest (ROI). Copyright (c) 2007–2023 The nilearn developers. All rights
reserved. https://github.com/nilearn/nilearn. Source data are provided as a Source
Data file.
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decoding approach, we examined the timing of each computational
variable’s representation within a region of interest (ROI). We took a
multivariate analytic approach given our objective of describing neural
representations of complex computational variables. We reasoned
that the information pertaining to these reward and risk computations
were likely to involve multiple dimensions of neural representation
given the multifaceted nature of the computational information43, as
such, a multivariate approach examining how information is coded
across spatially distributed sites within a ROI would provide greater
sensitivity44,45 to uncover neural representations and their temporal
properties.

Our design matrix for single-trial decoding allowed us to assess
the decodability of each computational variable at its respective
point of occurrence within a trial. While this allowed us to leverage
the sequential structure of the task to temporally separate vari-
ables, it constrained our investigation of temporal organization to
within the specified time windows respective to each variable. We
statistically orthogonalized variables occurring at the same point in
a trial. Note that while the computational model describes an
expected risk term twice (before and after card 1 is shown; see
“Computational analysis”), because expected risk before card 1 did
not vary across trials it was not included in the decoding analysis.
Consequently all references to E.Risk in the results describe E.Risk
after the onset of card 1 and before the onset of card 2 (i.e.,
E.Riskcard1Off). Similarly risk prediction error (RiPE) in our decoding
results refer to the RiPE computed after the onset of card 2
(RiPEcard2) due to our process of ensuring computational specificity
by orthogonalizing variables occurring at the same trial event (see
“Feature preprocessing”). To ensure unique decoding of each vari-
able of interest, we regressed out all other variables and covariates
(e.g., per-trial report accuracy) from each neural feature. We then
extended our decoding approach across ROIs spanning cortical and
subcortical regions, focusing primarily in our key regions of interest

but also conducting an exploratory investigation into a larger set of
potentially relevant ROIs. Because our analytic approach compares
across ROIs in terms of respective timings, we took care to ensure
our neural signals were spatially precise and reflected unique
sources of information. To do so, we used a bipolar referencing
scheme in which pairs of adjacent contacts were subtracted to
reflect a single source (see Fig. S1) alongside an ICA-based denoising
method which removed distal noise. These processing approaches
also increased the signal to noise ratio of our neural features, and
together facilitated the comparison of decoding results across
regions in order to identify temporal patterns of representation at a
wide scale across the brain.

Distinct modes of temporal organization between value-based
computations
We hypothesized that the timing of decoding need not respect reward
and risk domain boundaries, but could instead be organized in a man-
ner consistent with the nature of the computation. Specifically, EV
requires integrating over each remaining card’s reward likelihood after
card 1 whereas OUT representations rely on exogenous information
given when card 2 is shown, which in conjunction with the initial guess
and card 1 determines trial success. Thus one possibility is that of
sequential processing for outcome computations as the external
information provided by card 2 is used in multiple ways to realize the
trial’s outcome.

Consistent with a perspective highlighting differences in what the
brain needs to do to compute each respective variable, we found dif-
ferent temporal configurations in the decoding patterns for EV and
outcome across regions. We were able to decode EV in our hypothe-
sized regions of vmPFC (CAUC = 0.725, Cthresh = 0.543, p = 0.032,
AUC0.096 = 0.576, 95 CI [0.517 0.605]) and amygdala (CAUC = 0.471,
Cthresh = 0.234, p =0.022, AUC0.070 = 0.564, 95 CI [0.525 0.592])
(Fig. 3A) in temporally overlapping windows (vmPFC [0.040–0.142 s];

Fig. 2 | Behavior reflects understanding of task structure. A Overall average
report accuracy across the task. Boxes depict the interquartile range (25th to 75th
percentile) andmedian (red line).Whiskers extend from theminimum tomaximum
report accuracy across participants (blue dots). B Proportion of trials in which
participants switched their guess as a function of the outcomeon the previous trial.
No effects are significant, suggesting that participants (n = 10) understood the task
and did not adapt any heuristic strategy (e.g., win-stay-lose-shift) in their guess.
Boxes depict the interquartile range (25th to 75th percentile) andmedian (red line).
Whiskers extend from the minimum to maximum proportion of guess switches
across participants (blue dots). C Guess choice (left) and left vs. right response

(right) auto-regressive model coefficients. L1 and L2 denote a lag of 1 and 2 trials
back, respectively. Black dots and bars denote the mean fixed-effect coefficients
and 95 CI around coefficients, respectively, and colored dots are per-subject ran-
dom effects.D Regression coefficients for the logisticmodel of predictors of guess
choice. Black dots are mean fixed-effect coefficients and error bars depict 95 CI
around coefficients. Colored dots depict per-subject random effects. Along with
(C), no predictors are significant indicating that participants (n = 10) understood
the structureof the task andwere treating each trial independently. Source data are
provided as a Source Data file.
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amygdala [0.044–0.102 s]) after the onset of card 1 (Fig. 3B). In an
exploratory analysis, we were also able to decode EV in the hippo-
campuswith two temporal clusters (early:CAUC = 0.382,Cthresh = 0.239,
p =0.025; q =0.117, AUC0.100 = 0.559, 95 CI [0.528 0.592]; late:
CAUC = 0.428, Cthresh = 0.239, p =0.023; q =0.117; Fig. S2A), with an
earlier cluster overlapping in decoding timing [0.082–0.138 s] when
compared to vmPFC and amygdala.

Whereas EV decoding was significant in temporally overlapping
extents across relevant ROIs, we observed a temporal cascade in per-
iods of significant outcome decoding across regions of the brain
(Fig. 3C). We were able to decode outcome in a widespread set of
regions across the brain, both in regions included in our a priori

targeted ROIs, and those we surveyed in an exploratory analysis
(Fig. 3D). Ordered from latest to earliest decoding time relative to the
onset of card 2, we found significant outcome decoding in all pre-
frontal cortex ROIs including the frontal pole (CAUC = 1.283,
Cthresh = 0.216, p <0.001, AUC0.311 = 0.572, 95 CI [0.532 0.606]), OFC
(CAUC = 0.289, Cthresh = 0.203, p = 0.020, AUC0.277 = 0.555, 95 CI [0.526
0.586]), and in two distinct temporal clusters in vmPFC (early:
CAUC = 0.887, Cthresh = 0.457, p =0.011, AUC0.257 = 0.573, 95 CI [0.526
0.619]; late: CAUC = 0.607, Cthresh = 0.457, p = 0.031). Consistent with
our expectations based on prior work31,32 we were also able to decode
outcome in the amygdala (CAUC = 0.504, Cthresh = 0.296, p =0.020,
AUC0.202 = 0.564, 95CI [0.531 0.599]). In our set of exploratoryROIswe

Fig. 3 | Parallel versus sequential temporal organization for value-based
representations. A Uncertainty estimates around peak decoding accuracies. To
compare across ROIs, differences between decoding accuracy and the median
(50th percentile) of the permutation-based null distribution, respective to the
decoding analysis of each ROI, is depicted. Points and the violin plots show the
distribution of differential bootstrapped test accuracies against chance. Box plots
depict themedian (black point), interquartile range (thick bar), and 95 CI (thin bar)
of the bootstrapped distribution (n = 500 bootstraps). B Decoding of expected
value across contacts in eachROI, after the onset of card 1. Lines depictmean cross-
validated receiver operating characteristic (ROC) area under the curve (AUC), and
error bands depict SEM across folds. Horizontal red lines depict the 95th percentile
of the permuted null distribution at each time point, and periods of statistical
significance are shown in the shaded gray region (cluster corrected FWE <0.05).

C The timing of significant outcomedecoding within each ROI follows a temporally
cascading pattern. Horizontal boxes depict periods of significant decoding and
vertical bars indicate the timepoint of maximum significant ROC AUC. D Outcome
decoding follows a sequential temporal organization across regions. Same as (B)
but for outcome decoding in the period after card 2 is presented, when the parti-
cipant has all information to know if their guess was correct and consequently if
theywonon that trial. Lines depictmean cross-validated ROCAUC, and error bands
depict SEM across folds. E Same as (A) but for outcome decoding confidence
(n = 500 bootstraps). F Outcome decoding exhibits both temporal and spatial
structure. Peak decoding times across ROIs follows a trend along a posterior to
anterior axis as indexed by the y-plane centroid of contacts respective to each ROI.
Source data are provided as a Source Data file.
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could decode outcome in both hippocampus (CAUC = 0.771,
Cthresh = 0.271, p =0.002, q =0.007, AUC0.116 = 0.567, 95 CI [0.536
0.596]) and angular gyrus (CAUC = 0.704, Cthresh = 0.271, p =0.002,
q =0.007, AUC0.054 = 0.597, 95 CI [0.540 0.636]) (Fig. 3E). We found
evidence that outcome encoding was spatially distributed in Frontal
Pole (see Supplementary Materials and Fig. S9).

Strikingly, we observed a spatiotemporal pattern in which the
most posterior regions were decoded earliest, and this progressed
sequentially to the most anterior region (Fig. 3F). Here we character-
ized the anteroposterior location of each ROI by computing a pro-
jected centroid between the contacts respective to a given ROI, along
the coronal (y) plane.We further testedwhether therewas a significant
difference in the timing of decoding between pairs of ROIs, ordered by
the relative latency of the peak of their respective decoding accuracy
curves. For regions that exhibited two significant temporal clusters,we
tested for differences in decoding latencies by using the most tem-
porally proximal cluster with respect to pairwise ROIs. We found sig-
nificant differences in timing between all pairs of temporally (and thus
spatially) proximal ROIs, with outcome decoding at staggered laten-
cies across regions: angular gyrus [0.008–0.064 s; y = −56], hippo-
campus [0.086–0.150 s; y = −17] (U = 957, p = 2.44e−18), amygdala
[0.188–0.236 s; y = −3] (U = 825, p = 5.73e−17), and vmPFC
[0.194–0.299 s; y = 15] (U = 1108, p = 8.33e−7). While the period of
outcome decoding in OFC [0.257–0.289 s; y = 23] was significantly
shifted later relative to vmPFC (U = 688.5,p = 8.14e−4), and earlier than
frontal pole [0.236–0.345 s, y = 51] (U = 620.5, p = 0.030), its temporal
span fully overlappedwith bothneighborsdespite their peakdecoding
latencies respecting this anteroposterior gradient. In further analyses,
we clarify that the late-epoch outcome decoding in Frontal Pole is
driven by sub-region 9m, a relatively dorsorostral aspect of the ROI
(Figs. S8B and S9C).

Decoding of expected risk in OFC
Weparticularly hypothesized thatwewouldbe able todecode E.Risk in
the anterior insula andprefrontal regions suchasOFCgivenpriorwork
implicating the role of these regions in uncertainty computations4,33,34.
We also had strong temporal hypotheses of when in the trial E.Risk
representations would be held: specifically in the period after the
offset of card 1 (but before the onset of card 2) given that the com-
putationof E.Risk takes as input the information fromEV,which itself is
computed once card 1 is shown.Whilewewere able to decode E.Risk in
OFC (CAUC = 0.270, Cthresh = 0.206, p =0.028, AUC0.293 = 0.551, 95 CI
[0.525 0.585]; Fig. 4A) in the predicted period after card 1 is offset

[0.287–0.317 s] (Fig. 4B), we did not find significant decoding of E.Risk
in anterior insula (CAUC = 0.043, Cthresh = 0.296, p =0.397). In our
exploratory analysis wewere able to decode expected risk in posterior
insula ([0.102–0.154 s], CAUC = 0.456, Cthresh = 0.302, p =0.022;
q =0.103, AUC0.122 = 0.574, 95 CI [0.526 0.611]) and in the supramar-
ginal gyrus of the intraparietal lobule ([0.449–0.499 s], CAUC = 0.362,
Cthresh = 0.234, p = 0.016, q = 0.103, AUC0.457 = 0.564, 95 CI [0.526
0.602]; see Fig. S2B).

Error computations across domains share amixture of temporal
configurations
We observed direct evidence of a mixture of parallel and sequential
temporal ordering when we examined reward prediction error (RePE)
and risk prediction error (RiPE) representations. We found significant
decoding of RePE in OFC (CAUC = 0.353, Cthresh = 0.190, p =0.012,
AUC0.287 = 0.554, 95 CI [0.519 0.582]) and anterior insula (early:
CAUC = 0.382, Cthresh = 0.314, p = 0.049, AUC0.293 = 0.562, 95 CI [0.526
0.598]; late: CAUC = 0.379, Cthresh = 0.314, p =0.033, AUC0.397 = 0.560,
95 CI [0.519 0.601]; Fig. 5A), consistent with our hypotheses implicat-
ing both regions in representing this computational term. We
observed that RePE representations extended to the posterior insula
[0.269–0.299 s] (Fig. S3A), which we did not a priori predict to be
implicated in this computation. Though the cluster in posterior insula
did not survive correction (CAUC = 0.425, Cthresh = 0.309, p =0.025,
q =0.091, AUC0.291 = 0.573, 95 CI [0.5290.615]), it overlapped in timing
with the period of significant decoding in OFC [0.273–0.327 s] and in
the anterior insula with an early partially overlapping cluster
[0.277–0.307 s] (relative to OFC: U = 160, p = 0.941; Fig. 5B), which was
followed by a later non-overlapping temporal cluster [0.339–0.405 s]
(relative to OFC: U = 952, p = 2.86e−18; Fig. 5C). Interestingly, in an
exploratory analysis we found significant early decoding of RePE in
cingulate gyrus [0.002–0.078 s] (CAUC = 1.162, Cthresh = 0.288,
p <0.001, q = 0.011, AUC0.030 = 0.589, 95 CI [0.555 0.626]; Fig. S3A)
which taken together with the decoding profiles in OFC, anterior
insula, andposterior insula exhibit amixedpatternof earlydecoding in
one region followed by a multi-regional set of simultaneous RePE
decoding (cingulate relative to OFC: U = 1092, p = 1.71e−19).

We held strong hypotheses that we would be able to decode risk
error in the anterior insula, given prior work using the same experi-
mental paradigm4,17. Consistent with this hypothesis, we were able to
decode RiPE in anterior insula (CAUC = 0.378, Cthresh = 0.239, p =0.016,
AUC0.493 = 0.540, 95 CI [0.511 0.564]) and OFC (CAUC = 0.436,
Cthresh = 0.156, p <0.001, AUC0.222 = 0.543, 95 CI [0.522 0.566]; Fig. 5D),

Fig. 4 | Expected risk can be decoded from the distributed contacts in orbito-
frontal cortex. AUncertainty estimates around peak decoding accuracies, same as
in Fig. 3A, but for E.Risk. Points and the violin plots show the distribution of dif-
ferential bootstrapped test accuracies against chance. Box plots depict themedian
(black point), interquartile range (thick bar), and 95 CI (thin bar) of the boot-
strapped distribution (n = 500 bootstraps). B Timecourse of expected risk

decoding in OFC. Lines depict mean cross-validated ROC AUC, and error bands
depict SEM across folds. Horizontal red lines depict the 95th percentile of the
permutednull distribution at each time point, andperiods of statistical significance
are shown in the shadedgray region (cluster correctedFWE <0.05). Sourcedata are
provided as a Source Data file.
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the samepair of regions forwhichwe could decodeRePE, aswell as the
putamen in an exploratory analysis (CAUC = 0.438, Cthresh = 0.316,
p =0.024, AUC0.449 = 0.549, 95 CI [0.517 0.584]; Fig. S3B). Moreover,
we hypothesized that the timing of decoding for risk error should
occur later than that for RePE, given that in the computational for-
mulation the risk error (RiPE) term takes as input the RePE (see
“Computational analysis”). Consistent with this prediction, we were
able to decode RePE earlier in the epoch after card 2 compared to RiPE
using activity from the anterior insula. Further, the temporal pattern of
risk prediction error decoding across ROIs followed a similar config-
uration characterized by early decoding in one region, here for RiPE in
OFC ([0.206–0.293 s]; followed by late representation across multiple
regions including anterior insula ([0.431–0.499 s]; timing relative to
OFC: U = 1620, p = 7.68e−24; Fig. 5E, F), and the putamen
[0.429–0.499 s], with no differences in timing between the latter two
regions (U = 647.5, p =0.425).

Our analyses of error computations across reward and risk
domains revealed a further temporal configuration, in which we were
able to decodemultiple computational variables in overlapping periods
within OFC. In this region we were able to decode all computational
variables designed experimentally to arise in the period after the onset
of card 2: outcome (Fig. 3D), RePE (Fig. 5C), and RiPE (Fig. 5F), with
overlapping temporal extents [0.273–0.289 s]. However, in following
analyses we found across variables that distinct sub-regions of OFC
drove the reported decoding effects (see Supplementary Materials and
Fig. S9), suggestive of intra-regional parallel processing of multiple
computational variables during the same period, across sub-regions.

Anterior insula representations of reward error can predict
risk error
Among regions of theoretical interest, we predicted that the OFC and
anterior insula would stand out to be of particular relevance for repre-
senting multiple computations given their established involvement in
both reward and risk processes (e.g. refs. 4,33,46). Consistent with this
prediction, we were able to decode both reward error (RePE) and risk
error (RiPE) in both anterior insula and OFC, despite the two regions
being distinguished by the sequential versus simultaneous decoding of

these variables, respectively. Highlighting again the conceptual impor-
tance of characterizing the temporal organization of neural repre-
sentation, herewedirectly tested for evidence that neural activity inOFC
and anterior insula could hold a representation of one input variable for
the purpose of a seconddownstreamcomputation; specifically, whether
the representation of RePE might be relevant for decoding RiPE.

We ran a generalized decoding analysis to directly test for the
possibility that the neural representation of one input variable (e.g.,
RePE) can be leveraged for the purpose of computing another down-
stream variable (e.g., RiPE). We first focused specifically on signals in
the anterior insula given prior work emphasizing its role in risk error
computations4,17,37, and the evidence that we were able to decode both
variables individually in the anterior insula, inwhich the timing of RePE
decodingprecededRiPE (Fig. 5). Consistentwith the idea that thebrain
needs to first compute the reward prediction error before using this
information to compute the risk error, we hypothesized that activity in
the time window of RePE representation would be able to predict
activity related to RiPE at a relatively later period in the same epoch.
We constrained our decoding analysis here to the period in the trial
relevant to RePE and RiPE representations (0.200–0.500 s after the
onset of card 2) and tested for generalization both across variables
(i.e., trained on reward error and tested on risk error) and across time.
Indeed, we found evidence of significant cross-validated generalized
decoding in anterior insula by which a model trained on RePE in a
relatively earlier period [0.200–0.391 s] was able to predict RiPE later
in the epoch [0.383–0.499 s] (CAUC = 62.504,Cthresh = 28.641, p =0.014;
red cluster in Fig. 6A). Indeed, the temporal extent of significant cross-
variable training and testing overlapped with the decoding periods for
RePE and RiPE, respectively, as described in the section “Error com-
putations across domains share amixture of temporal configurations”.
We continued to find evidence of significant generalization when tes-
ted against a more stringent statistical threshold (trained on RePE:
[0.200–0.283 s]; tested on RiPE: [0.439–0.489 s]; CAUC = 6.554,
Cthresh = 0.460, p < 0.001, orange cluster in Fig. 6A), and when we did
not constrain the time window for analysis (see Fig. S4).

Our predictions regarding the contribution of simultaneous
decoding ofmultiple variables in OFCwere less concrete. On one hand

Fig. 5 | Reward error and risk error decoding share temporal structure.
Decoding curves and periods of significance for reward prediction error (A–C;
RePE) and risk prediction error (D–F; RiPE). In (C) and (F) lines depict mean cross-
validatedROCAUC, and error bandsdepict SEMacross folds. In bothRePE andRiPE
we see a mixture of cascading and parallel decoding (see also Fig. S3). Timing of

RePE (B) and RiPE (E) decoding periods across ROIs. RiPE decoding is shifted later
with respect to RePE in anterior insula. Panel descriptions follow that described in
Fig. 3, with (A, D) depicting n = 500 bootstraps. Source data are provided as a
Source Data file.
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this parallel temporal configuration could reflect an interaction
between RePE and RiPE within the same distributed population, in
whichcase theneural representation for one variablewould contribute
to decoding another variable. Alternatively, our finding of simulta-
neous decoding across variables could reflect their separable repre-
sentations in OFC. In support for this latter alternative, when we
conducted the same generalized decoding analysis we did not find
evidence of cross-variable decoding at any time point in OFC, both
when we trained on outcome and tested on RePE (Fig. S5A) and when
we trained on RePE and tested on RiPE (Fig. S5B). We proceeded to
directly test the possibility that independently distributed codes
within the OFC were implicated in the representation of each com-
putational variable. For a given variable, we characterized the con-
tribution of each OFC contact source to the significant cross-validated
decoding scores reported above using a leave-one-feature-out

approach for measuring feature weights, averaging over the period
of overlap between outcome, RePE, and RiPE [0.273–0.289 s]. We then
tested whether the representational vectors capturing the distributed
code in OFC correlated across variables. We found no significant cor-
relation between features weights that encoded outcome and RePE
(r = −0.206, p =0.214), nor between RePE and RiPE (r =0.126,
p =0.455), further supporting the notion of independent representa-
tions of outcome, RePE, and RiPE in OFC (Fig. 6B). Indeed, when we
investigated sub-regional contributions to computational representa-
tions in OFC (see Supplementary Materials), we found that distinct
sub-regions of 47o, Area 11, and Area 13 (Fig. S8A) contributed to the
parallel decoding of outcome, RePE, and RiPE, respectively (Fig. S9A).

Discussion
We set out to investigate how the human brain represents a host of
computational variables relevant for decision-making in both value
and uncertainty domains. Specifically, we aimed to elucidate the
temporal properties of neural representations supporting computa-
tions of reward and risk expectations and errors. We were able to
decode all our computational variables of interest in wide-spread
regions. Critically, we distinguished two modes of temporal organi-
zation by which computations are represented in the brain. In the
reward domain, expected value and reward outcome differed in their
temporal profiles with expected value encoded in parallel within a
similar time frame across regions, while outcome representations
followed a sequential spatiotemporal cascade from posterior to ante-
rior brain regions. Thus, while expected value and outcome are
encoded in overlapping distributed value-based networks13,47,48, these
two distinct value-related variables exhibit very different spatio-
temporal properties. Moreover, error computations for both reward
and risk shared a similar temporal profile reflecting a mixture of
sequential and parallel encoding. We demonstrate the importance of
elucidating the timing of different types of computational repre-
sentations by presenting evidence that the distributed code in anterior
insula relevant for reward prediction error precedes and directly
contributes to decoding risk prediction error. In contrast, repre-
sentations related to outcome, reward prediction error, and risk pre-
diction error are spatially distinct, but temporally parallel, across sub-
regions of OFC. Together, our findings highlight distinctive patterns of
timing by which the brain represents reward and risk variables, as well
as potential functional roles of neural representation in regions such as
the anterior insula and OFC.

We recorded human neural activity across the brain using intra-
cranial electroencephalography, which is well situated to describe an
intermediate level of analysis with broad spatial coverage across the
brain41,49 and relatively high specificity within a region38. We took a
multivariate decoding approach in which we examined whether the
distributed activity across contacts within a specific ROI was able to
decode our computational variables of interest, and we applied this
approach across multiple regions. We weremotivated theoretically by
existing work on reward and risk encoding in human iEEG33,34,39, which
had taken an encoding approach and focused predominantly on
a single or a small subset of regions. We extend this work not only by
exploring a larger set of regions, but importantly by elucidating the
temporal organization of reward and risk representation across
the brain.

Critically, we leveraged an experimental design in conjunction
with a normative model of reward and risk which separated, in time
over the span ofmultiple sequential trial events, when the information
relevant for each computational process was available. We could
therefore examine specific periods of neural data with respect to each
computational variable in the span of a single trial. It is worth noting,
however, that our approach of examining specific, hypothesized per-
iods for a given variable constrains our conclusions about the temporal
organization of that variable across regions to within our specified

Fig. 6 | Generalizing and independent representational roles in anterior insula
andOFC.AAmodel trained onmultivariate signal in anterior insula encoding RePE
early in the epoch after the presentation of card 2 can generalize across time and
computations to decode RiPE later in the same epoch. Significant decoding areas
are highlighted by the red (p =0.014; one-sided non-parametric test) and orange
(p =0.002; one-sided non-parametric test) contours (cluster-corrected formultiple
comparisons; FWE <0.05). B OFC feature weights were not correlated across
variables, both those respective to the decoding of outcome and RePE (r = −0.206,
p =0.214; two-sided non-parametric test) and to the decoding of RePE and RiPE
(r =0.126, p =0.455; two-sided non-parametric test). Axes denote the normalized
featureweights averaged over the same period for all variables [0.273–0.289 s after
the onset of card 2]. Error depicts 95 CI. Source data are provided as a Source
Data file.
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timewindows, and does notpreclude the possibility of a variable being
represented at other periods in a trial. Nevertheless, this approach
allowed us to look at the unique decodability of a set of computational
variables which are not often decoupled in other experimental con-
texts. By regressing out variance attributable to other computational
variables in each decoding scheme, we further ensured that the neural
data going into each decoding model did not carry residual informa-
tion correlating with variables other than the variable of interest.
Moreover, our task structure allowed us to investigate the degree to
which neural activity could decode our computational variables at the
level of a single trial50 with high temporal specificity, and allowed us to
control for the effect of learning dynamics on neural representations.
We could therefore examine isolated, learning-independent compu-
tational features.

Our findings of both parallel and sequential modes of temporal
organization are consistent with experimental work in other domains
of cognitive neuroscience generally18,20 and in the domain of value-
based decision-making specifically15. We found a unique temporal
cascade in the regions that represented the outcome of each trial in a
manner that respected an anteroposterior gradient. Signal in the
angular gyrus ROI in the posterior parietal cortex could be used to
decode outcome first; this then proceeded sequentially across ROIs to
the frontal pole over the period in which all information for knowing
the outcomewas available.While previousworkhas reportedoutcome
correlates over widespread regions of the brain47,51–53, here we exploi-
ted the high temporal resolution of human iEEG to show that outcome
representations across the brain have a distinct spatiotemporal profile.
The gradient-like organization from posterior to anterior regions of
the brain is consistent with similar architectures reported across
multiple regions for diverse cognitive processes54–56; herewe show that
this topographical arrangement is widespread (from parietal to pre-
frontal regions) and temporally ordered in the representation of
reward outcome. In the context of this task, the outcome (i.e., the
accuracy of the initial guess) is unique in that explicit feedback is not
presented to the participants. Instead representing the outcome
entails processing information conditioned on the guess, card 1, and
finally card 2. Exploiting multiple pieces of observable information to
derive the resulting outcome could potentially drive this widespread
cascade in representation.

Indeed our finding that computations are structured in time
across areas raised the question ofwhether the functional connectivity
between different regions encoded computational information.
Across all variables, we did not find significant differences in the cross-
correlation between regions and high versus low levels of that variable
(see Supplementary Materials). However, our approach is only one of
several ways to address the question of directed functional con-
nectivity relevant to processing these computations. Future work in
human electrophysiology is well-positioned to elucidate the mechan-
isms driving directed connectivity. For example, cortico-cortical
evoked potential manipulations57,58 directly perturb neural activity
and therefore might provide a casual picture of how information
propagates across the brain.

Regions in which we were able to decode expected value (EV)
showed overlapping temporal spans of significant decoding, after the
onset of the first card when enough information was available for
participants to form a conditional expectation of the probability of
guessing correctly on that trial. Spatially, our findings of EV decoding
were consistent with previous work that reported representations of
EV in vmPFC39, amygdala29,32,59, and hippocampus60,61. Further, our
findings are convergent with recent work that similarly decoded value-
based variables from intracranial electrophysiology data despite dif-
ferent experimental contexts. For example, otherwork fromour group
has shown that EV can be significantly decoded in the vmPFC and
amygdala in a Pavlovian conditioning task, with similar effect sizes (as
determined by relative decoding accuracy31). Work from independent

groups have also reported similar significant decoding accuracy levels
when decoding value (e.g., likeability) ratings from vmPFC and OFC62.
Here we extend this previous work by showing that EV is coded in the
distributed, multivariate activity within each relevant region, and
showing that the code is held in a parallel temporal configuration. The
EV term as defined in this context requires holding multiple pieces of
information in the form of the reward probabilities associated with
eachpossible second card, and the internal process of integrating over
this information. One possible interpretation of simultaneous EV
representation across regions is that this reflects the top-down nature
of EV computation in which the relevant information (i.e., each pos-
sible draw for the second card and their respective likelihood of
reward) does not require further external input but relies instead on
held knowledge of the instructed task set. Interestingly, this temporal
configuration has been discussed as a potentially important neural
organization across cognitive domains63 and scales of analysis64,65.

We also sought to investigate the potential functional advantages
conferred by temporally organized computational representations in
the brain. One possibility is that multiple regions might all hold a
similar piece of computational information (e.g., reward prediction
error), but that different regions use this same information for differ-
ent purposes. For example, our ability to decode RePE from activity in
cingulate cortex rapidly after the onset of card 2 is consistent with the
literature on error signals in dorsal anterior cingulate cortex (dACC),
both measured with intracranial66 and scalp67 EEG. This fast temporal
signature, in conjunction with prior work on cingulate encoding of
error signals in other domains66, suggests that the fast decoding of
RePE we find in cingulate cortex might reflect a more general error.

In contrast, we show that the encoding of RePE in anterior insula
serves a specific functional role that directly relates to later RiPE
computations in the same region. We show a relationship between the
neural code supporting RePE and RiPE, both indirectly via the shifted
temporal profile between RePE and RiPE decoding in anterior insula
over the same period, and directly with our generalized decoding
analysis in which the neural representation of reward error at an earlier
period can significantly decode risk error later. This finding speaks to
the notion of neural representations progressively “building” compu-
tations, consistent with a line of evidence emphasizing the role of
specific neural activity in composing computations from their
components51,52,68. Here we extend beyond established associations
between anterior insula and risk error4,37 and show that the distributed
activity in anterior insula plays a further crucial role in leveraging input
computations (i.e., RePE) to decode risk error. In other words, we
adopt the notion of neural representations of computations being
compositional, and present evidence of this across the value and
uncertainty domains. This nonetheless does not preclude the possi-
bility of independent representations of multiple types of computa-
tions in non-overlapping distributed activity within a region, as we
show in separable representations of outcome, RePE, and RiPE in OFC.

Further highlighting the importance of resolving computational
timing at a fast timescale, wewere able to decode expected risk later in
the trial prior to the onset of the second card consistent with the
description of expected reward and risk in our normative model. Our
results were also congruent with previous human34 and animal68–70

electrophysiology studies on the relative timings between expected
reward and risk encoding, in which expected reward is encoded
shortly after cue presentation whereas expected risk encoding is evi-
dent in activity starting before the period in which the outcome is
known. However, the temporal ordering of how multiple regions
represent expected risk remains equivocal fromour results, due to the
lack of representation across multiple ROIs. While we found robust
decoding of expected risk in OFC, contrary to our hypotheses we did
not find that signal from the anterior insula could decode this variable.
This stands in contrast to a previous fMRI study using the same task4

which reported spatial distinctions between expected risk and risk
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error correlates all within the anterior insula. One possible explanation
for this discrepancy is that our recording contacts lie along the inferior
plane of the anterior insula, more consistent with the reported BOLD
correlates of risk prediction error than to that of expected risk.
Another possibility speaks to potential discrepancies in the computa-
tional information encoded in human electrophysiology versus fMRI,
an avenue of research to be exploremore thoroughly in future studies.

While invasive electrophysiology confers the advantage of precise
timing and high spatial specificity, critical here for isolating temporal
effects across wide-spread regions of interest, the limitations of this
neural modality need to be carefully considered. Like other work
involving populations from which data collection is challenging, our
current study is limited by a relatively small sample size and accom-
panying concerns about generalization. We carefully considered the
design of the study to ensure that the task was simple and straight-
forward enough for patients to understand and complete. For exam-
ple, our task was paced so that each trial event could be read and
understood by the patients, and we collected and statistically con-
trolled behavioral measures of task attention on each trial. We also
took efforts during data collection to ensure patients were fully
engaged with the task and only administered the task in periods dis-
tant from seizures. Finally, our behavioral analyses validated that
patients understood the structure of the task (e.g., that trials were
independent, which was important for our decoding scheme), and
behavioral metrics of task performance (e.g., report accuracy) were
similar to that reported in previous literature on healthy controls12.
Further supporting the inference that the neural circuits implicated in
our results generalize to the broader population, it is alsoworth noting
that our findings corroborate reported findings in the literature as
discussed above.

The approach of pooling across our patient sample to create a
pseudo-population of recording sites follows from other work in
invasive electrophysiology42,62 and allowed us to sample from diverse
regions across the brain. As with other studies employing this pseudo-
population approach, an assumption underlying the interpretation of
our findings is that neural signals actually recorded from separate
patients can be treated as if they were recorded from a representative
“pseudo-population” brain. Further, it results in different ROIs con-
taining different numbers of measurements and thus differing
amounts of explanatory power between decoding models across
regions (see also ref. 62). Specifically, regions that are under-sampled
given a fewer number of recording sites may yield non-significant
decoding accuracy due to decreased statistical power, especially if the
true underlying neural representation is spatially widespread but
weakly informative when only surveying each recording site
individually71. Indeed we chose to aggregate bilateral ROIs with this
consideration of increasing our sampling of each ROI, though we
conducted additional analyses probing laterality differences in our
reported decoding results across ROIs (see Supplementary Materials).
Of course, since electrode placement is guided only by clinical con-
siderations, failure to observe an effect can potentially arise in our
study simply due to not having electrodes in a region relevant for a
particular computation, an inherent limitation to invasive electro-
physiology. Therefore, non-invasive imaging techniques that provide
greater spatial coverage such as fMRI are an important complement to
intracranial electrophysiology. Our findings should be contextualized
in light of these considerations, and future work endeavoring to pool
across larger samples, for example by acquiring data on the same task
across multiple sites, will be important to mitigate these limitations.
Larger samples will also be conducive to expanding our findings on
temporal organization, for example by validating that a particular
representation is specific to the time window we specified for that
variable in our analyses, revealing whether the encoding of a variable
can extend over the course of multiple periods within a trial, and
elucidating phasic versus tonic properties of distinct representations.

Here we provide one picture by which the brain encodes multiple
features relevant for value-based decisions, in which neural repre-
sentations of computational variables are temporally organized and
spatially distributed. Our findings also contribute to an emerging lit-
erature describing how neural implementation of different reward and
risk computations unfold in time interactively. Importantly, while our
normative model afforded us the ability to look at computational
representations isolated from learning dynamics, further work
extending our approach to subjectively computed computational
variables, for example through learning or belief updating mechan-
isms, will enrichen our understanding of how the human brain repre-
sents the many facets of information important for complex decisions
in the world.

Methods
Participants
Our sample included patient participants (n = 10, 7 female, age range
22–56, mean= 37.70, s.d. = 9.93) who underwent neurosurgical
implantation of intracranial depth and surface electrodes to enable
chronic evaluation and localization of seizure foci for the treatment of
refractory epilepsy. Within our full sample, 6 subjects were implanted
only on the right side, 3 were implanted on the left, and 1 was
implanted bilaterally. All data were collected in periods free from sei-
zure activity at least 1 h before and after the experiment and data were
visually inspected for interictal activity characterized by stereotyped
transients in the raw recording. All research protocols were approved
by theUniversity of Iowa InstitutionalReviewBoard. Subjects provided
written consent prior to participation in research and could rescind
consent at any point without consequence to theirmedical evaluation.

Experimental paradigm
Participants were presented with two cards drawn sequentially and
without replacement on each trial. The cardswere shuffled fromadeck
of cards comprising 10 cards (ace to ten) and excluding face cards.
Participants were instructed to treat an ace card as denoting “1”. The
cards were reshuffled after every trial. Prior to the drawing of the first
card, participants were instructed to predict whether the second card
would have a higher or lower numerical value than the first.

Participants were given up to 7 s to respond. Their guess was dis-
played on the screen for a duration of 1000ms, and a pre-card fixation
cross was shown for 1500ms. We then drew the first card which was
displayed for 2000ms before a 1500ms inter-stimulus period in which
only their initial guess remained on the screen. The second card was
then shown for another 2000ms. Upon the presentation of the second
card, all information necessary to determine the accuracy of the initial
guess was available to the participant. Finally, participants were
prompted to report whether they had won (guessed correctly) or lost
(guessed incorrectly). Note that the initial guess of the participant
remained on the screen throughout the presentation of both cards as
well as the report period to reduce memory demands. A schematic of
the trial structure and event timings are presented in Fig. 1A. To
incentivize participants to respondboth to the initial guess and the final
report, participants were instructed that they would receive a reward
outcome in the form of 10 game points if their guess was correct and a
deduction of 10 points from their cumulative total if their guess was
incorrect. Correct or incorrect reporting of their guess accuracy at the
end of the trial further resulted in gain or loss of 5 points, respectively.
While these outcomeswere displayed during the initial instructions and
training block, during the task period inwhich datawere analyzed these
outcomes were not presented to the participant.

Procedure
Participants remained in the epilepsy monitoring unit of the Epilepsy
Center at the University of Iowa Hospitals and Clinics for 2–4 weeks
after implantation, under clinical direction. The experiment reported
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here was delivered during this monitoring period. The epilepsy mon-
itoring unit included a recording facility in an electromagnetically
shielded room. Participants were awake and in a hospital bed or arm
chair for the duration of the experiment, including during the delivery
of task instructions. Participants were simultaneously provided verbal
instructions and written instructions programmed into the task code
which comprised static messages describing what the participants
needed to do during the task (see section “Experimental paradigm”) as
well as interactive exercises to reinforce key task details, familiarize
participants with the behavioral demands of the task (i.e., guesses and
accuracy reports), and elucidate the incentive structure of a trial.
Participants responded using left/right keyboard presses for both the
guess and report; left/right mappings were randomized on every trial.
To motivate participants to attain the most points they could, parti-
cipantswere instructed that they competed against previous players to
rank on a leaderboard based on the total accumulated points at the
end of the task. After participants were instructed and verbally con-
firmed they understood the task, they proceeded to complete 1 (n = 4)
or 2 (n = 6) sessions comprising 90 trials per session; the number of
completed sessions was based on participant willingness. We thus
recorded a total of 16 sessions and 1440 trials across the sample. A
subset of the participants (n = 2) hadprevious exposure to instructions
and experience with the task as they completed pre-implantation
functional MRI scans. The experiment was delivered using the
Psychtoolbox-3 toolbox (v3.0.14).

Recording
We used a combination of depth electrodes comprising low impe-
dance clinical contacts (2.2mm–10mm intervals), acquired using the
Neuralynx (Bozeman, MT) Atlas system, and simultaneous multi-
contact subdural grid electrodes embedded in a silicon membrane
(Ad-Tech Medical Instrument, Racine, WI). The electrophysiological
data were recorded at a sampling rate of 2 kHz with 24-bit resolution
and bandpass filtered during acquisition between 0.1 to 500Hz.

Imaging and contact localization
Before and after electrode implantation, we collected high-resolution
structural MRI data of the brain for each participant. For the first
subset of participants (n = 5), pre-implantation structural images were
acquired from a 3T GE Discovery MR750w scanner with a 32-channel
head coil (T1: FSPGR BRAVO 1.0mm2, slice thickness = 0.8mm,
FOV = 256mm2, TR = 8504ms, TE = 3.288ms, FA = 12°, TI = 450). The
second subset (n = 4) completed pre-implantation structural scans on
a 3T GE SIGNA Premier scanner with a 32-channel head coil (T1: FSPGR
BRAVO 0.8mm2, slice thickness = 0.8mm, FOV = 256mm2, TR = 8576
ms, TE = 3.364ms, FA = 12°, TI = 900). One participant completed their
pre-implantation scanon a 1.5TSiemensAvantowith a 32-channel head
coil (T1: MPRAGE 1.0mm2, slice thickness = 1.5mm, FOV = 256mm2,
TR = 2200ms, TE = 2.96ms, FA = 8°, TI = 450). Patients completed a
post-implantation T1 scan on a 3T Siemens Skyra with a T/R head coil
(MPRAGE 0.98mm2, slice thickness = 1mm, FOV = 256mm2, TR =
1900ms, TE= 3.44ms, FA = 10°). Preoperative structural MRI images
were co-registered to post-implantation structuralMRI images, guided
by post-implantation computed tomography (CT) scans (in-plane
resolution 0.5 × 0.5mm, slice thickness 1–3mm), using custom
MATLAB (Mathworks, Natick, MA) scripts and affine registration from
FSL FLIRT (v6.0)72, and all images were processed to 1mm3 isotropic
resolution. Visual comparison with intra-operative photographs was
conducted to verify accuracy. Electrode contacts were localized with
CT-guided post-implantation structural MRI images, then transferred
onto the pre-implantationMRI space specific to each participant. Each
participant’s structural MRI was then co-registered to the MNI tem-
plate brain using ANTs (v2.3.1)73, and resulting contact locations are
shown against the template (see Fig. S1A) using the Nilearn toolbox74.

Preprocessing
Intracranial electroencephalography (iEEG) recordings were pre-
processed using custom scripts relying on functions from the MNE-
Python (v1.2.3)75 and scikit-learn (v1.3.0)76 toolboxes. The data were
trimmed to include only periods in which participants were doing the
task, downsampled to a sampling rate of 500Hz (i.e., 1 sample every
2ms), and line noise was removed using a 60Hz notch finite impulse
response filter. The data were high passfiltered at 1 Hz, entered into an
independent components analysis (ICA77) denoising step, and then
low-pass filtered at 250Hz. The ICA-based denoising approach
involved computing an ICA on the continuous contact timeseries,
extracting the absolute value weight matrix from the ICA decom-
position, and comparing the distribution of weights over contacts
against an uniform distribution using the Kullback-Leibler divergence
(Dkl

78); given evidence that systematic sources of noise and volume
conduction effects can affect multiple contacts and to isolate spatially
specific sources79–81. Independent components corresponding to
weight distributions reflecting uniform distributions, defined with
respect to a Dkl threshold, were visually inspected and removed from
the data. This was done at two-stages: across all contacts on all elec-
trodes within-subject (Dkl threshold = 0.2) to detect global sources of
noise, and across all contacts along each electrode (Dkl threshold =
0.05) to detect local sources of noise permeating across an electrode.
Finally, contacts sharing an electrodewere re-referenced along bipolar
pairs, identified by adjacent contacts from the same electrode, to
further isolate local activity around the contact locations and mitigate
the effects of volume conduction79,82. Bipolar pairs were excluded if
both contacts were inwhitematter as defined by a segmentation of the
template brain using FSL’s FAST algorithm83. The template-space
coordinates between bipolar pairs were interpolated for visualization
(see Figs. 1C and S1B). The preprocessed data were epoched at within-
trial events: the guess response, the onset of card 1, the offset of card 1,
the onset of card 2, and the report response. Epochs for all events were
defined by a period spanning −200ms to +500ms around the event
onset, with the period before event onset defined for baseline cor-
rection. The epoched bipolar timeseries were entered into all sub-
sequent neural analyses.

Behavioral analysis
To survey the degree to which participants paid attention and com-
pleted the task, we analyzed behavior using mixed-effects regression
models to differentiate between within- and between-subject sources
of variance, specifying random intercepts and slopes for all terms, for
eachparticipant (shown inWilkinson-Rogers notation). Herewe used a
threshold for statistical significance as α =0.05 and interpret effects in
which the associated p value is below 0.05 as statistically significant.
We justify this threshold to remain congruent with the non-parametric
statistics reportedbelow for theneural analyses, inwhichwedefine the
significance cut-off at the 95th percentile of the permuted null
distribution.

First, we tested whether their reported accuracy R different sig-
nificantly from chance (50% accuracy), with accurate responses in the
behavioral report data defined as correctly selectingwhether theywon
or lost on a trial:

R� 0:5 = 1 + ð1 j subjectÞ ð1Þ

Using a mixed-effects logistic regression model, we tested whether
report accuracy tended to decrease over the span of the task by
regressing the report accuracy onto the trial number (scaled between
0 and 1) within a block. Here and below proportionality represents the
log-odds (i.e., logit) function on the dependent variable:

pðR= CorrectÞ / t + ð1 + t j subject Þ ð2Þ
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To examine whether participants were influenced on each trial by
previous computational quantities, we modeled the guess choice on a
trial (G; whether the second card would be higher or lower) as a
function of the computational variables of interest on the previous
trial: expected value (EV), reward prediction error (RePE), expected
risk (E.Risk), and risk error (RiPE):

pðGt = LowerÞ / EVt�1 + RePEt�1 + E:Riskt�1 + RiPEt�1

+ ð1 + EVt�1 + RePEt�1 + E:Riskt�1 + RiPEt�1 j subject Þ
ð3Þ

We assessed whether participants’ choices were influenced by pre-
vious events (e.g., win-stay/lose-shift across high/low guesses). To do
so, we re-parameterized their choice on a given trial in terms of switch
(different from the guess on the previous trial) or stay, and regressed
switch/stay responses onto the outcome of the previous trial:

pðGt ≠Gt�1Þ / OUTt�1 + ð1 +OUTt�1 j subject Þ ð4Þ

To further test whether participants understood the independent
nature of each trial, we constructed models examining guess choice
and left/right key press (K) stickiness, extending two trials back:

pðGt = LowerÞ / Gt�1 +Gt�2 + ð1 +Gt�1 +Gt�2 j subject Þ ð5Þ

pðKt = RightÞ / Kt�1 +Kt�2 + ð1 +Kt�1 +Kt�2 j subject Þ ð6Þ

Computational analysis
Before the onset of the first card, the prediction about the number on
card 1 (and thus the probability of reward given the guess) does not
vary with the initial guess, so is denoted following12 as a constant P0
and excluded from subsequent analyses. Upon the onset of the first
card, participants are able to compute the EV: the expectation of the
probability of reward conditioned on the value of card 1 and their
guess:

EV = E½PðOUT jCard1, Guess Þ� ð7Þ

This term can be computed in a normativemanner given the relatively
limited set size of 10 total values and the knowledge that cards are
drawn without replacement, meaning that the second card cannot
be the sameas thefirst. For example, if the participant guessed that the
second card will be higher and drew a 9 on the first card, it is intuitive
that the probability of getting a reward (i.e., that their guess will
be correct) will be low given that eight of the nine remaining cards
available to draw as the second card are lower than the first. The
computation of this EV term also allows for an error term at this stage,
defined as the deviation between the EV (the expectation about the
probability of reward given the guess), and the constant P0 (the
probability of reward given the guess). In practice this error term is
perfectly correlated with the EV term since P0 is a constant, and is not
included in subsequent analyses.

Note that prior to the onset of card 1we can formalize an expected
risk term. Before participants see the first card, they can already form
an expectation about the risk around the eventual expected value by
integrating over the squared difference between all possible EV across
the 10 values available for card 1 and the constant P0:

E:Riskcard1 = E½ðEV� P0Þ2� ð8Þ

However, as with P0, E.Riskcard1 does not vary across trials since it is not
conditioned on the value of card 1. Nevertheless, it is useful for illus-
trating the risk prediction error, a higher-order uncertainty defined as
the difference between the square deviation from expected value (i.e.,

risk or unsigned prediction error10) and expected risk at the onset of
card 1:

RiPEcard1 = ðEV� P0Þ2 � E:Riskcard1 ð9Þ

We designed the task to include a brief period of 1.50 s in which the
first card is offset from the screen but before the second card is shown
(Fig. 1A), with the assumption that expectations about the risk around
card 2 would be computed in this period12. Here we similarly define
E.Riskcard2 in terms of the expectation about the variance/risk around
the expected value, where risk is again defined as the squared devia-
tion of the outcome OUT from expected value (i.e., reward prediction
error):

E:Riskcard2 = E½ðOUT� EVÞ2� ð10Þ

Finally, when the second card is presented, the participant is able to
computationally resolve their previous estimates of the probability of
reward since the combination of their guess, the value of card 1, and
now the value of card 2 provide all necessary information to know the
outcome, and thus the computation of reward prediction error:

RePE =OUT� EV ð11Þ

The RePE accordingly informs the risk prediction error term at card 2:

RiPEcard2 = RePE
2 � E:Riskcard2 ð12Þ

Region of interest definition
We specified a set of 5 a priori regions of interest (ROI) spanning
frontal and subcortical regions given our strong hypotheses of the role
of the prefrontal cortex (PFC), insula, and amygdala in value- and
uncertainty-based computations, using the Harvard-Oxford (H-O)
probabilistic atlas84 to delineate contacts respective to each ROI. The 5
apriori ROIs includedFrontal Pole, OFC (“FrontalOrbital Cortex” in the
H-O atlas), and ventromedial prefrontal cortex (vmPFC, labeled “Sub-
callosal Cortex” in the H-O atlas). We modified the ROI names for OFC
and vmPFC from their original labels in the H-O atlas to better speak to
relevant findings from previous literature that have used these labels.
We also hypothesized that the anterior area of the insula (Insular
Cortex) would be particularly relevant for risk representations given
findings from prior work4 using the same experimental paradigm.
Since theH-Oanatomicalmask for the Insular Cortex comprised voxels
spanning both anterior and posterior aspects of the insula, we split the
anatomical mask at the mid-point of the anterior-posterior (Y) plane
(y = 4.66) ensuring that all contacts ascribed to anterior and posterior
were respectively located on positive and negative coordinates in
template space along the Y plane.

Because the Frontal Pole and OFC ROI delineations from the H-O
atlas were spatially extensive, and as a result comprised the largest
number of included contacts in our sample (see Supplementary
Table 1), we investigated whether computational variables that were
able to be decoded from themultivariate activity in these regions were
driven by particular nested sub-regions of these ROIs. Our analytic
approach and the results of this investigation are presented in the
Supplementary Materials. We were also interested in exploring whe-
ther reward and risk representations could be held in wide-spread
regions across the brain outside of our main hypothesized ROIs. We
thus included an additional set of 6 ROIs comprising: Posterior Insula,
Putamen, Cingulate gyrus, Hippocampus, Angular Gyrus, and Supra-
marginal Gyrus. The contact locations within each labeled ROI and
their corresponding Brodmann area labels are provided with the
source data. ROIsweredefined anatomically according to theH-O atlas
as implemented in FSL and mask boundaries were defined at a voxel
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threshold of 10 (p = 0.1). Contacts within the boundaries of the thre-
sholded probabilistic maps of multiple ROIs were assigned according
to themax probability. Contacts across bilateral ROIs were aggregated
for the results reported in the main text, though see Supplementary
Materials for an additional investigation into laterality differences.

Decoding analysis
Feature preprocessing. We set up an encoding model to preprocess
each of our features (contacts) for the decoding model. At the within-
subject level before concatenation across subjects (see section
“Pseudo-population design”), for each feature we defined a general
linear model (GLM) to regress out covariates of no interest, as well as
computational variables aside from the current variable of interest for
decoding. The confound design matrix of the GLM importantly
included an intercept modeling the average contact activity across
trials for that subject; regressing this design out of each neural feature
therefore removes subject-specific variance in the neural data in pre-
paration for our pseudo-population decoding analysis. We included
indicator vectors for the onset of the cards, the offset of card 1, and
mean-centered parametric vectors for respective (i.e., not currently
decoded) computational variables: EVcard1, OUTcard2, RePEcard2,
E.Riskcard1Off, and RiPEcard2 along with the observed risk O.Risk (i.e.,
squared RePE), aligned to the trial event denoted in the subscripts.
Becauseof the design of the computationalmodel, wewere concerned
that any effects purportedly related to RiPEmight have been driven by
its correlation to O.Risk. O.Risk was consequently included in the
design matrix to regress its associated variance out of our neural fea-
tures when decoding RiPE, after orthogonalizing O.Risk and RiPE such
that the variance of the RiPE term was only the component unique to
RiPE and not shared with O.Risk.

Because of collinearity between OUTcard2 and RePEcard2
(Fig. S6B), we orthogonalized the latter latent variable with respect
to the former observed variable such that the residual variance in
RePEcard2 was unrelated to OUTcard2. Likewise, we orthogonalized
RiPEcard2 with respect to O.Riskcard2 (Fig. S6C). Note that despite
RiPE and O.Risk being computed at both card 1 and card 2 onsets
(see “Computational analysis”), because RiPEcard1 and O.Riskcard1 are
perfectly correlated, when we orthogonalized RiPEcard1 with respect
to O.Riskcard1 the latter retained all the variance and RiPEcard1 was
zeroed out (i.e., no variance retained; see Fig. S6D). The implication
is that our RiPE results are only driven by its variance at card 2
(RiPEcard2; Fig. S6E) whereas variance in O.Risk is driven by both
card1 and card2. Finally, the per-trial report accuracy was also
included as a covariate, aligned at the report response event. We
regressed each feature vector against this set of covariates
(excluding the variable of interest for decoding), and replaced each
feature by its respective residual vector.

Pseudo-populationdesign. For eachROI and participant, we set up an
expanded pseudo-population design to create the feature matrix for
decoding. First, we concatenated the epoched potentials across trial
events (the epoch period and set of 5 trial events are described in
“Preprocessing”), resulting in a dimensionality of 251 time points (at
2ms resolution) by 5 events per trial in the neural data. For participants
with 2 recording sessions, we further concatenated the trials across
sessions. This was done separately for each contact within an ROI,
resulting in a per-subject design matrix of dimensionality: nEvents ×
nContacts × nTimepoints. To prepare the feature matrix and target
vector for our decoding analyses, we split each participant’s data into
cross-validation (CV) train/test folds, and separately concatenated the
design matrices across all subjects for each fold. This ensured balance
in the per-subject contribution to decoding, across CV folds. To create
the final pseudo-population matrix, we concatenated across subjects
(for each fold) along the nEvents and nContact dimensions for each
ROI; this approach avoids the assumption that each trial occurs at the

same time across participants and results in a largely sparse feature
matrix (see Fig. S7).

Decoding model and procedure. The variable of interest to be
decoded was binarized into to +1 and −1 around 0 (i.e., the mean) as
the target vector for classification analyses. The target vector and
feature matrix were split into 10 folds for cross-validation (CV)
along the nEvents dimension, and each fold was normalized (i.e.,
centered and scaled to unit variance) by computing statistics on the
training set and applying to both training and test sets85. All feature
preprocessing (see “Feature preprocessing”) and normalization was
conducted prior to the between-subject concatenation described in
“Pseudo-population design”. We specified logistic regression
decoding models with L2 regularization to account for potentially
high dimensionality in the feature matrix. The 10-fold CV decoding
analysis was run at each time point in the nTimepoints dimension
independently and the resulting decoding curve was submitted for
statistical analyses (see “Statistical analysis”). We employed the
receiver operating characteristic (ROC) area under the curve (AUC)
as our classification accuracy metric for increased robustness
against cutoff values of the probabilistic predictions of our logistic
classifier. ROC AUC is a valid metric of effect size in multivariate
logistic regression86, including robustness to outliers, flexibility
to number of classes, and invariance to order-preserving
transformations87,88, though see caveats of interpreting effect
sizes in decoding analyses89. Decoding curves were low-pass filtered
(1st-order Butterworth filter at 0.1 Hz) for visualization; all statistics
are conducted on non low-pass filtered data.

Statistical analysis. We used a non-parametric maximum cluster sta-
tistic approach90 to determine temporal clusters of significant
decoding while keeping FWE <0.05. Within a ROI and for a given
computational variable, we permuted the target vector labels 1000
times and tested the model on the permuted labels to simulate a null
distribution of mean CV accuracy, at each timepoint. Each permuta-
tion’s shuffled mean CV accuracy was thresholded at the 95th per-
centile of this distribution and the maximum above-threshold AUC of
the resulting clusters was extracted; these comprised themax. cluster-
statistic null distribution. The procedure was applied to the un-
shuffled decoding curve and each above-threshold cluster was
deemed significant if its cluster statistic (CAUC) was above the 95th
percentile of the max. cluster-statistic null distribution (Cthresh),
keeping FWE <0.05. Cluster-wide p values reported in the main text
are calculated as 1� Pc

i =100 with Pc
i denoting the ith percentile of

cluster c’s above-threshold statistic along themax. cluster-statistic null
distribution. Effect sizes for each cluster are also reported using the
ROCAUC at the peak time point within the cluster (AUCtime). Results in
exploratory ROIs were FDR-corrected against the full set of 11 ROIs and
corrected p values are reported as q values. To evaluate whether sig-
nificant clusters differed in latency, we conducted non-parametric
Mann–WhitneyU-rank tests to compare the timings respective to each
significant cluster, for pairs of temporally adjacent clusters as ordered
by the latency of the peak decoding accuracy. The Mann–Whitney U-
statistic and p value of the test are reported alongside the [min,max] of
the time span of significant clusters.

Confidence intervals. To provide measurements of uncertainty
around the reported decoding accuracy for each ROI and variable, we
employed an established bootstrapping procedure85,91,92 adapted to a
cross-validation scheme similar to93 and summarized here.Within each
iteration across our 10 folds, we evaluated the uncertainty around the
decoding estimates by resampling the test dataset with replacement
(n = 500) and computing the out-of-sample accuracy (ROC AUC) on
the sampled test set, then averaging across the folds. The 95% CI
around the reported out-of-sample decoding accuracy was computed
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using the 2.5th and 97.5th percentiles of the distribution over boot-
strapped accuracy estimates, respectively.

Feature importance. We used a leave-one-feature-out procedure for
determining the contribution of each contact to the overall decoding
accuracy for a given ROI and variable. The weight of a given feature
(i.e., contact) was defined as the change inmeanCVROCAUCbetween
a full model and one in which only that feature was dropped, and
resulting features weights were of dimensionality nContacts ×
nTimepointsper ROI. To test for differences in the contribution of each
OFC contact in decoding distinct variables, we z-scored the feature
weights and averaged the normalized feature weights over the over-
lapping period of significant decoding across variables (OUT, RePE,
and RiPE) per contact. We then computed Pearson’s correlation (r)
values between the average normalized feature weights respective to
eachvariable in a testedpair (i.e., OUT andRePE; RePE andRiPE) across
contacts.

Decoding generalization
For our across-variable and temporal generalization decoding18,94

analysis focusing on Anterior Insula and OFC, we applied the same
feature preprocessing steps and leveraged the same pseudo-
population design reported above. Following the procedure repor-
ted in the section “Decoding model and procedure”, we ran a 10-fold
CV test using L2-regularized logistic regression classifiers and report
ROC AUC. Here we trained the classifier on the binarized RePE target
vector at each time-point, and without further tuning model weights,
tested the model on its ability to generalize on the out-of-sample
binarized RiPE target vector across each time-point, with performance
measured by the average across-fold ROC AUC. We constrained the
timewindow for generalized decoding analysis to 0.200–0.500 s after
the onset of card 2, to encompass the time points in which we were
able to decode RePE and RiPE alone (i.e., without generalization) in
both ROIs and the a priori hypothesis that RePE (and thus the extent to
which it can informRiPE) can only occur after the onset of card 2when
the outcome is known. To test for robustness, we repeated this pro-
cedure without constraining the time window, thus using the entire
epoch after the onset of card 2 (see Fig. S4). For the OFC ROI, we also
ran this procedure trained on Outcome and tested on RePE given our
finding that OFC contacts significantly decode both these variables in
overlapping periods after the onset of card 2. We applied the same
max. cluster-statistic approach described in the section “Statistical
analysis” but extended the cluster based inference to two dimensions,
and report results exceeding the 95th and 99th percentiles of the
permuted null distribution, both keeping FWE <0.05 at the cluster
level. We report cluster-wide p values with respect to the max. cluster-
statistic null distribution.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data and materials from this study have been deposited in the Open
Science Framework (OSF) database. Identifier: https://doi.org/10.
17605/OSF.IO/RKG4Q. The following databases were used in the
study: Harvard-Oxford probabilistic atlas and MNI152 standard space
template from the FSL toolbox (v6.0; https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/Atlases), and the Neubert cingulate and orbitofrontal cortex
atlas (http://www.rbmars.dds.nl/CBPatlases.htm). Source data are
provided with this paper.

Code availability
Custom code is available at this Github repository. Identifier: https://
doi.org/10.5281/zenodo.10525236.
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