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Indication of critical scaling in time during
the relaxation of an open quantum system

Ling-Na Wu 1,2,4, Jens Nettersheim3,4, Julian Feß3, Alexander Schnell 1,
Sabrina Burgardt3, Silvia Hiebel3, Daniel Adam3, André Eckardt 1 &
Artur Widera 3

Near continuous phase transitions, universal power-law scaling, characterized
by critical exponents, emerges. This behavior reflects the singular responses of
physical systems to continuous control parameters like temperature or
external fields. Universal scaling extends to non-equilibrium dynamics in iso-
lated quantum systems after a quench, where time takes the role of the control
parameter. Our research unveils critical scaling in time also during the
relaxation dynamics of an open quantum system. Here we experimentally
realize such a system by the spin of individual Cesium atoms dissipatively
coupled through spin-exchange processes to a bath of ultracold Rubidium
atoms. Through a finite-size scaling analysis of the entropy dynamics via
numerical simulations, we identify a critical point in time in the thermo-
dynamic limit. This critical point is accompanied by the divergence of a
characteristic length, which is described by critical exponents that turn out to
be unaffected by system specifics.

Phase transitions emerge from the collective behavior of large quan-
tum systems in the thermodynamic limit1. A continuous phase transi-
tion is signaled by the divergence of a characteristic length scale ξ,
when the control parameter approaches a critical value. As a result, the
behavior near the transition becomes independent of the microscopic
details of a system, giving rise to universal critical exponents1, like the
one describing the divergence of ξ as a function of the control para-
meter. Despite the fact that the distinction between different phases of
matter, like liquid or crystalline, is an essential and well-known aspect
of nature, phase transitions and their critical behavior remain an active
field of research until today. Subjects of interest include, for instance,
quantum phase transitions happening in pure quantum ground states
at absolute zero2 and topological phase transitions beyond Landau’s
paradigm3.

Recently, the transient evolution of isolated quantum systems
gained considerable interest, as it can be realized in engineered
quantum systems such as ultracold atomic quantum gases. Prominent
effects that were studied include the transition between eigenstate
thermalization and many-body localization4–6, non-equilibrium phase

transitions in the long-time (or prethermal) behavior of (almost)
integrable quantum systems7,8, or the observation of discrete time
crystals in interacting Floquet systems9,10. Another fascinating example
is the prediction and observation of dynamical quantum phase
transitions11–15 and universal scaling behavior16–20 occurring at a critical
time during the transient non-equilibrium evolution of isolated quan-
tum systems. Here time plays the role of the control parameter. The
underlying non-equilibrium dynamics can be initialized, for example,
by a quantum quench, i.e., a rapid parameter variation starting from
the ground state of the previous Hamiltonian.

In the following, we describe another example of critical behavior
with respect to time, reminiscent of a continuous phase transition
associated with the dynamics of a quantum system. It happens during
the relaxation of an open system and corresponds to the divergence of
a localization length ξ at a critical time. It is, thus, different from the
dynamical quantum phase transitions associated with the non-analytic
behavior of the return probability in isolated systems, as they were
described previously15. Importantly, it is also different compared to
non-equilibrium phase transitions occurring in the long-time
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behaviour of driven-dissipative quantum systems in response to con-
trol parameters other than time (see, e.g., ref. 21).

In contrast to isolated quantum systems, open quantum systems22

are characterized by the coupling to an environment, called a bath,
with which they exchange both energy and information. Markovian
baths rapidly dissipate information, so that the dynamics of the system
can be described by an idealized time-local master equation
_ρðtÞ=L½ρðtÞ�, where the dynamics is generated by a time-independent
Liouvillian superoperator L acting on the instantaneous density
operator ρ(t) describing the system’s state at time t. If the coupling to
the environment is weak compared to the level spacing in the system,
ρ(t) quickly becomes diagonal with respect to the energy eigenstates
∣mi, ρðtÞ ’ P

mpmðtÞ∣mi mh ∣. The probabilities pm(t) for being in state
∣mi then follow a Pauli rate equation _pm =

P
m0≠m½Rmm0pm0 � Rm0mpm�,

with Rmm0 denoting the rate for a bath-induced transition from ∣m0i
to ∣mi22.

Results
In systems of ultracold atoms, dissipation canbe engineered in various
ways, including, for instance, the coupling of the atoms to a cavity23,
spontaneous emission of lattice photons24,25, particle loss (e.g. via
controlled ionization26), or the coupling to a background gas27. We
realize such an open system by the spin degrees of freedom of indi-
vidual ultracold Caesium atoms (133Cs), which are immersed as impu-
rities in a bath comprising ultracold Rubidium atoms (87Rb) [see the
sketch in Fig. 1a andMethods for details]. The hyperfine states of both
species form stable quasi-spins with quantum numbers F = 3 (F = 1) for
Cs (Rb). In the presence of a weak, constant external magnetic field B,
the spins possess an equidistant ladder spectrum EmF

=mFΔ, where
Δ = gFμBB/ℏ, with Landé factor gF, reduced Planck constant ℏ and Bohr
magneton μB. The corresponding energy eigenstates ∣mF

�
are char-

acterized by the magnetic quantum numbermF = − F, −F + 1,…,F. While
theCs ∣mF =3

�
state is the ground state of the isolatedCs atom, it is the

highest excited Cs state of the open Cs-Rb system. Controlling the
initial Cs-state population allows experimentally initializing the open-
system dynamics with almost arbitrary excitation energy of the Cs
spin. Elastic Rb-Cs collisions quickly thermalize the Cs atoms’ center-
of-mass motion, while inelastic spin-exchange (SE) processes give rise
to bath-induced transitions, where the Cs spins are changed by single
quanta of angular momentum, mF ! m0

F =mF ± 1 with corresponding

rates R± ,mF
� RmF ± 1,mF

28, see Fig. 1b and Methods (mF is used
throughout for the Cs spins). The combination of a large atom-number
imbalance, the ratio of elastic to inelastic collision rates, and a rela-
tively large mean-free path realize an almost ideal Markov bath,
yielding a collision probability of a Cs impurity with the same Rb atom
of well below a percent (see Supplementary Information Note 1). We
initially prepare the Cs impurity in an excited spin state defined by the
probability distributionpmF

ð0Þ, andmonitor the subsequent relaxation
dynamics pmF

ðtÞ; see Fig. 1c for an example. As an important obser-
vable, we extract the evolution of the total entropy of our spin system
[blue curve in Fig. 1c],

SðtÞ= �
X

mF

pmF
ðtÞ lnðpmF

ðtÞÞ: ð1Þ

In Fig. 2a and b, we show the measured evolution of S for various
different initial conditions (specified in the insets). This paper’s blue
and red background colors indicate unidirectional and bidirectional
spin-exchange. For highly excited initial states, that means for the Rb-
Cs compound states of large positive mF (for more details, see Meth-
ods),wefind inboth scenarios that the entropy evolution is highly non-
monotonous. The entropy first increases to reach a peak value Speak at
a time tpeak, before eventually relaxing to a steady-state. This is
remarkable and rather different from the behavior found for initial
states close to equilibrium, for which we observe that the entropy
simply increases in time until it saturates at its steady-state value [see
pink curve in Fig. 2b]. Even more remarkably, for various different
initial conditions, i.e., different mF-states and their combinations (see
Supplementary Figs. 1 and 2 for a discussion of the role of the initial
state and its energy), this peak value almost reaches the maximal
possible entropy, Smax = lnM ≈ 1:95 with M = 7 being the number of
spin states, indicated by the dashed line.

Experimentally, the total signal ofmF populations as well as of the
entropy value is the average over Cs-atom signals locally interacting
with the inhomogeneous density distribution of the bath. Importantly,
since the Cs impurities undergo approximately ten elastic collisions
between two spin-exchange collisions and, moreover, the Cs mean-
freepath in theRb cloud is of theorder of theRb cloud’s extension (see
Supplementary Note 1), each Cs atom samples the whole

Fig. 1 | Realizing anopenspin system. a IndividualCs atom(red) interactingwith a
bath of spin-polarized Rb atoms via inelastic spin-exchange (SE) collisions. b The
Cs-Zeeman states experimentally realize an equidistant seven-level (mF∈ 3, 2,...,−3)
spin system defining mF = − 3 as ground state for the Rb-Cs compound (for more
details, see Methods). SE collisions with the Rb atoms give rise to dissipative spin
dynamics, increasing (decreasing) internal energy and angular momentum for

endoergic (exoergic) processes. The twelve SE rates between the Cs Zeeman states
depend on the externalmagnetic field and the bath temperature. cBath-driven and
time-resolved quantum-spin evolution for individual Cs atoms initially prepared in
amixture of ∣mF = 1

�
and ∣mF = 2

�
. Sketches in the back panel show themicroscopic

collision processes of exoergic and endoergic SE collisions. The lateral plane shows
the resulting entropy evolution, featuring a maximum at Speak = 1:944≈ ln 7 = Smax.
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inhomogeneous density during its relaxation. Therefore, the spin-
population dynamics reflects a homogeneous broadening rather than
local dynamics. Furthermore, since the number of mF states is bound
for the Cs impurity, an average can only lower the total entropy signal,
so that the measured values close to the maximum value are a
lower bound.

Discussion
The approach of Smax implies that the system transiently approaches
the maximally mixed state ρmax =M

�1P
mF

∣mF

�
mF

�
∣, corresponding to

a completely delocalized spin distribution pmF
= 1=M. In the limit of

largeM, such behavior implies a divergenceof both S and the “length” ξ
that characterizes the number of states ∣mF

�
covered by the prob-

ability distribution pmF
. The latter can, e.g., be defined as the partici-

pation ratio, ξ � ðPmF
p2
mF

Þ�1
.

This, in turn, directly corresponds to the divergence of a relevant
length scale ξ that is found when a system approaches a critical point
like at a continuous phase transition. Here, however, the continuous
control parameter is the time t and its critical value is tpeak. In this
sense, a transient approach of the maximally mixed state ρmax

resembles the behavior of a phase transition in time in the limit of
large M.

To answer the question whether the observed dynamics is indeed
a finite-size precursor of a phase transition, we define two model sys-
temsof variable system sizeM [see Fig. 2middle and lower side panels]
and numerically perform a finite-size scaling analysis to extract the
behavior for M→∞. Both models consist of M states labeled by m =0,
1,…,M − 1, which form an equidistant energy spectrum εm =mΔ. A
unidirectional model generalizes the high-magnetic-field regime to
larger M. Here, only transitions ∣mi ! ∣m0 =m� 1i occur, corre-
sponding to a zero-temperature bath. The rates R−,m possess a para-
bolic dependence onmmimicking the experimental rates. Such a rate
inhomogeneity is required for reaching high peak entropies, since for
unidirectional transport a right-moving probability distribution can
only become broader if the velocity at its right end is larger than at its
left end. In a bidirectional model, corresponding to the case of low
magnetic fields, it is sufficient to assume state independent rates.
Figure 2c, d depict the entropy evolution for both models withM = 20

for various initial conditions. Again Speak ≈ Smax is found for highly
excited initial states.

To compare data for different initial conditions, we introduce the
scaled control parameter

βeff �
dS=dt
dE=dt

=
dS
dE

, ð2Þ

withmean energy E, having thedimensionof an inverse temperature. It
is monotonically related to the time t (see Supplementary Fig. 3 for
more details) and becomes zero at t = tpeak, while it takes negative
(positive) values for t < tpeak (t > tpeak). Despite superficially resembling
an effective inverse temperature, wewould like to stress that the useof
this parameter does not imply that the system assumes a Gibbs-like
state with effective time-dependent inverse temperature βeff during its
transient evolution. In Fig. 3a, c, the measured entropy is plotted as a
function of βeff. For those initial conditions giving rise to close-to-
maximum peak entropies, marked by bullets, the data collapse in the
vicinity of βeff = 0. Such behavior is equally visible when plotting the
scaled localization length ξ/M [Fig. 3b, d]. The insets show results for
initial conditions corresponding to less excited states, for which the
data does not collapse.

Assuming a continuous phase transition in the thermodynamic
limit, M→∞, the localization length in this limit, ξ∞, is expected to
diverge like ξ1 / β�ν

eff at the transition pointβeff = 0,where ν is a critical
exponent. As a consequence, the behavior of a large finite system
should asymptotically depend on the ratio of ξ∞ and the system sizeM
only, or, equivalently on ðξ1=MÞ�1=ν = βeffM

1=ν 1. In particular, the
length ξ for a system of finite large size M is expected to behave as
ξ/M = g(βeffM1/ν) close to the transition point βeff = 0, with some scaling
function g. In Fig. 4 we show ξ/M for different system sizes M as a
function of both the dimensionless control parameter Δβeff as well as
the scaled control parameter ΔβeffM, corresponding to a critical
exponent of ν = 1. Remarkably, in the latter case, we find an almost
perfect collapse of the data, suggesting universal scaling as it is found
at a continuous phase transition.Wenote that the peak of ξ/Mdoes not
fully reach 1. However, since the maximum of ξ/M remains constant
with increasing system size, ξ diverges at tpeak in the thermodynamic

Fig. 2 | Entropy evolution. Blue (red) background indicates regimes where uni-
directional spin transitions, applying a high magnetic field (B = 460 mG) and
bidirectional spin transitions, utilizing a lowmagneticfield (B = 25mG) are possible.
While in the former case, endoergic transitions are suppressed completely33, in the
latter case, they are allowed and raise mF for Cs, but with reduced probability
compared to exoergic processes, which lower mF. a, b Experimentally measured
entropy evolution starting from different initial states shown in the insets (colors
match). Bullets (●) are used for trajectories with high peak entropy
(Speak ≥0:98Smax) and triangles (▴) otherwise. Error bars representing 1σ standard

deviation statistical fluctuations are smaller than the symbol size. Solid lines are
obtained from simulations, dashed lines indicate maximum possible entropy Smax.
c, d Like a, b but for theoretical models with 20 states. Panels between the level
schemes shownormalized transfer rates for the experimental system (dots) and the
theoretical models (lines). For the unidirectional model (in blue background),
R�,m = γM sinðπðm+ 1Þ=MÞ, where γ is the coupling strength. For the bidirectional
model (red background), thick horizontal lines correspond to the state-
independent-rate model, with R+,m ≡R+ = γM (orange) and R�,m �
R� = γM expð10=MÞ (blue).

Article https://doi.org/10.1038/s41467-024-46054-9

Nature Communications |         (2024) 15:1714 3



limit, similar to the critical behavior found at a continuous phase
transition.

The universal behaviour of the dynamics observed in the large-
system limit can be understood better by mapping the thermo-
dynamic limit to a continuum limit: For a hypothetical system of fixed

size L, the variable x = Lm/M becomes continuous for M→∞ and the
rate equation for the probability distribution pm approaches a dif-
ferential equation for the probability density ρ(x) = (M/L)pxM/L. Close
to the transition, the observed exponent ν = 1 can then be explained
by starting from a maximally delocalized distribution, ρ(x) = 1/L, and

Fig. 4 | Finite-size scaling. Scaled Localization length ξ/M for different system sizes
M for the unidirectional (a, b) and the bidirectional (c, d) model as a function of
βeffΔ (a, c) and the scaled parameter βeffΔM corresponding to ν = 1 (b, d). The insets

show the maximal ξ as a function of the system size and the mean distance δ of the
data for system sizeM with that for system sizeM = 2000.

Fig. 3 | Control parameter. Experimentally measured (symbols) and simulated
(lines) entropy (a, c) and localization length (b,d) plotted as a function of βeff [data,
colors, and symbols like in Fig. 2a, b]. The main (inset) panel shows the results for

the initial conditions far from (close to) equilibrium. Error bars represent statistical
fluctuations of 1σ standard deviation. The error bars for ξ/M are too small to
be seen.
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studying the evolution for small positive and negative times pertur-
batively. More details can be found in Supplementary Note 3 and
Supplementary Figs. 7 and 8), where we also present further analyses,
showing universal scaling of the specific-heat-like quantity
C =dE=dðβ�1

eff Þ, and discussing the phase transition with time t (rather
than βeff) playing the role of the control parameter (Supplemen-
tary Fig. 4).

Since the maximum entropy Smax corresponds to a unique state,
the maximally mixed state ρmax, after approaching S≈ Smax, the
dynamics is expected to become (approximately) independent of the
details of the initial state. This happens long before the spin systemhas
thermalized29. Such a prethermal memory loss is observed in the
experiment for both magnetic field regimes. In Fig. 5a–c, we show the
entropy evolution and the population dynamics of two spin states
versus the shifted time t−tpeak in the regime of unidirectional rates
(corresponding plots for the bidirectional regime are presented in
Supplementary Fig. 5). We can see that the data with a high peak
entropy (Speak ≥0:98Smax, indicated by bullets) show similar behavior
for both the entropy evolution and spin dynamics after the system
reaches peak entropy (τ ≡ t−tpeak > 0).

To quantify this observation, we introduce the distance

χ ijðτÞ=
1
M

XM

m= 1

pðiÞ
m ðtðiÞpeak + τÞ � pðjÞ

m ðtðjÞpeak + τÞ
���

��� ð3Þ

between two trajectories with different initial conditions, pðiÞ
mF

ð0Þ and
pðjÞ
mF

ð0Þ, and peak times tðiÞpeak and tðjÞpeak. For the experimental data we

compare each trajectory pðiÞ
mF

to the optimal trajectory pmax
mF

ðtÞ defined
by Speak = Smax. In Fig. 5d,weplot the correspondingdistance χ i � χ imax

versus βeff. For those trajectories featuring large peak entropies, χi
becomes small at the transition βeff = 0. In comparison, for trajectories
with Speak <0:98Smax (indicated by triangles) χi remains large after the
transition.

Prethermal memory loss is also found in the theoretical models
(see Supplementary Fig. 6). Here we have easy access to many initial
conditions and, therefore, we can compute the mean distance χ �
meanij2U ðχ ijÞ of those trajectories whose peak entropies Speak are close
to the maximal entropy, i.e., for which Speak=Smax > 1� δS with

Fig. 5 | Prethermal memory loss. a Experimentally measured (symbols) and
simulated (lines) entropy for different initial conditions (color coding as in Fig. 2a)
and b, c the corresponding population pmF

for the two spin states (b) ∣mF =0
�
and

(c) ∣mF = � 2
�
as a function of shifted time (by the peak entropy time tpeak) for the

unidirectional model. The dependency of χ (see text for the definition) on the

control parameter βeff is shown in d for the experiments and in e for the theoretical
model. Horizontal grey dashed lines mark the maximal entropy Smax in a, the
population 1/7 inb, c that corresponds to Smax, and 1 in e. Vertical dashed linesmark
t = tpeak and βeff = 0, respectively. Error bars represent statistical fluctuations of 1σ
standard deviation.

Article https://doi.org/10.1038/s41467-024-46054-9

Nature Communications |         (2024) 15:1714 5



threshold δS≪ 1. Fig. 5e plots normalized χ versus βeff for different
system sizes with δS =0.2. One can see that for increasing M a sharp
transition forms at βeff = 0.

In summary, we have investigated the far-from-equilibrium
relaxation dynamics of an open quantum system given by a large
spin coupled to a bath.We find that for highly excited initial states, the
system transiently approaches the maximally mixed state ρmax, as
signaled by a peak in the entropy evolution approximately reaching
the maximally possible value Smax. We show that, when reaching the
entropy peak, the dynamics shows distinct features that signal critical
scaling with respect to time: (i) In the limit of large system sizes, the
localization length ξ characterizing the spin state, diverges at the
transition. (ii) A finite-size scaling analysis reveals a power-law scaling
ξ ∼β�ν

eff near the transition, with respect to the scaled control para-
meter βeff, which is monotonically related to time and allows to com-
paredata for different initial states by locating the transition to βeff = 0.
(iii) The extracted critical exponent takes the same value ν = 1 for all
model parameters considered, suggesting universal scaling behavior
independent of the microscopic details of the system. Thus, we con-
clude that critical behavior with respect to time can not only occur in
the evolution of isolated systems described by pure states but also
during the dynamics of an open system induced by dissipation. It will
be interesting to further investigate the nature of such dynamical cri-
tical scaling in open quantum systems, including its non-equilibrium
universality classes (to the exploration of which our results provide a
first step and a new approach). Another subject for future theoretical
and experimental exploration is the collective behaviour of many
atoms in contact with the bath as it results both from quantum sta-
tistics as well as from potential interactions. Also, the regime of
stronger system-bath coupling, where non-markovian effects are
expected, offers an intriguing perspective.

Methods
Initial state preparation
Experimentally, the Rb bath is prepared by laser-cooling in amagneto-
optical trap (MOT) and subsequent cooling by evaporation while the
sample is trapped in a crossed dipole trap at a wavelength of λ = 1064
nm. The bath’s internal state is prepared via an optical pumping in
∣FRb = 1,mF ,Rb = 1

�
and then transferred via the radio-frequency transi-

tion ∣FRb = 1,mF ,Rb = 1
� ! ∣FRb = 1,mF ,Rb =0

�
to a magnetic-field insen-

sitive state. This allows us to accumulate Cs atoms from the atomic
background vapor by laser cooling in a MOT only approximately
200μmapart from the Rb sample. Subsequently, a crossed dipole trap
with a wavelength of λ loads the atoms from the MOT. Degenerate
Raman sideband cooling30 reduces the Cs temperature further while at
the same time populating the bare atoms’ absolute ground state.
Microwave-driven Landau-Zener transitions near-resonant to the
∣FCs = 3

� ! ∣FCs = 4
�
hyperfine transition (h × 9.1GHz) prepare the Cs

atoms in the desired initial state.
The interaction between Cs and Rb is initialized by transporting

the Cs atoms into the bath via a species-selective optical lattice31.
The interaction stops after applying a resonant laser pulse that
pushes the Rb atoms out of the trap. Eventually, state-selective
fluorescence imaging32 yields the internal state and position of the
Cs atoms.

Experimental parameters
The bath temperature T and density n for each measurement are
inferred from time-of-flight measurements of the Rb cloud on the one
hand; and from comparing the seven measured mF-state trajectories
with hundreds of simulated state trajectories on the other hand. Each
simulation contains slightly different bath parameters. The bath
parameters yielding the smallest least-squares (χ2) error for all trajec-
tories and the independent time-of-flight measurement was used for
the respective measurement data set. The individual parameters of

eachmeasurement and the corresponding initial population are listed
in the Supplementary Tables 1 and 2. For simplicity, Table 1 shows the
mean temperature and mean density of all best-fitting parameters for
the unidirectional, respectively, bidirectional experimental system.
Moreover, themagnetic field is calibrated viamicrowave spectroscopy
on the ∣FRb = 1,mF ,Rb = 0

� ! ∣FRb = 2,mF ,Rb = 1
�

transition of the
Rb bath.

Inter-species spin-exchange processes
The Zeeman energy for a bare Cs atom reaches its minimum for
∣mF = 3

�
, defining the single-atom ground state. However, the situation

reverses when the Cs atom is immersed in a bath of Rb atoms in the
∣mF ,Rb = 0

�
state. For this Rb-Cs combination, spin-exchange collisions

can exchange one quantum of angular momentum between one atom
of the bath and the Cs atom while the total angular momentum is
preserved. At the same time, Zeeman energy is exchanged. Due to
different atomic Landé factors, the Zeeman splitting of Rb is twice the
splitting of Cs. Therefore, the spin- and energy exchange direction is
essential and corresponds to two complementary processes in the
bath. The process ∣mCs

F ,mRb
F

� ! ∣mCs
F � 1,mRb

F + 1
�
is exoergic, and the

energy amount corresponding to one Cs atom’s Zeeman energy
_Δ=μBg

Cs
F B is released as kinetic energy and dissipated by subsequent

elastic collisions in the bath. The complementary process
∣mCs

F ,mRb
F

� ! ∣mCs
F + 1,mRb

F � 1
�

is endoergic, and the kinetic colli-
sional energy of the Cs atom and bath atom must provide the energy
amountℏΔ for this collision tooccur. The collisional energy isMaxwell-
Boltzmann distributed. For the ultracold temperatures of the bath, the
rates for exothermal and endothermal SE collisions, R− and R+,
respectively, have markedly different rates with R− >R+. As a con-
sequence, the definitions of ground and highest excited states invert,
and the former bare-atom ground (highest-excited) state, i.e.,
∣mF = +3

�
(∣mF = � 3

�
), defines the impurity’s highest excited

(ground) state.

Spin evolution calculation
The evolution of the probability in eigenstate ∣mi, pm, is described by
the rate equation

_pm =R+ ,m�1pm�1 +R�,m+ 1pm+ 1 � ðR�,m +R+ ,mÞpm: ð4Þ

where R±,m ≡Rm±1,m denotes the transfer rate from eigenstate ∣mi to
eigenstate ∣m± 1i. For the unidirectional model discussed in the main
text, R+,m = 0. For the bidirectional model with state-independent
rates, R±,m ≡R±.

For simulating the experimental spin dynamic, the rates are given
by Ri = hniσiðB,TÞ�v, with i =mF ± 1,mF, mean relative velocity of the
colliding atoms �v, Cs-Rb density overlap 〈n〉 and state-dependent
scattering crossing section σi. The ratio of the mean rates R+ ,mF

=R�,mF

in Table 1 shows an experimentally accurately blocking of the endo-
thermal rates R+ ,mF

by choice of a large magnetic field.

Data availability
All data supporting the finding of this paper are available in a Zenodo
repository: 10.5281/zenodo.10526596.

Table 1 | Experimental parameters (magnetic field B, tem-
perature T, atom density n) and ratio of mean
rates R+ ,mF

=R�,mF
.

Parameter Unidirectional Bidirectional

B [mG] 460 ± 2 25 ± 2

T [nK] 920 ± 24 492 ± 31

n [1013cm−3] 0.46 ±0.02 0.51 ± 0.09

R+ ,mF
=R�,mF

≈10−5 0.21
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Code availability
The codes that support thefindings of this paper are available from the
corresponding author A.E. upon request.
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