
Article https://doi.org/10.1038/s41467-024-45951-3

Finite-momentum Cooper pairing in
proximitized altermagnets

Song-Bo Zhang 1,2,3 , Lun-Hui Hu 4,5,6 & Titus Neupert3

Finite-momentum Cooper pairing is an unconventional form of super-
conductivity that is widely believed to require finite magnetization. Alter-
magnetism is an emerging magnetic phase with highly anisotropic spin-
splitting of specific symmetries, but zero net magnetization. Here, we study
Cooper pairing in metallic altermagnets connected to conventional s-wave
superconductors. Remarkably, we find that the Cooper pairs induced in the
altermagnets acquire a finite center-of-mass momentum, despite the zero net
magnetization in the system. This anomalous Cooper-pair momentum
strongly depends on the propagation direction and exhibits unusual sym-
metric patterns. Furthermore, it yields several unique features: (i) highly
orientation-dependent oscillations in the order parameter, (ii) controllable 0-π
transitions in the Josephson supercurrent, (iii) large-oblique-angle Cooper-pair
transfer trajectories in junctions parallel with the directionwhere spin splitting
vanishes, and (iv) distinct Fraunhofer patterns in junctions oriented along
different directions. Finally, we discuss the implementation of our predictions
in candidate materials such as RuO2 and KRu4O8.

Cooper pairs are fundamental to the phenomenon of super-
conductivity and play a vital role in the emergence of its unique
properties such as perfect electrical conductivity andMeissner effect1.
Conventionally, Cooper pairs consist of electrons with opposite spins
and momenta, thus carrying zero total momentum. The interplay of
magnetism and superconductivity gives rise to various intriguing and
exotic phenomena, making it one of the current research focuses in
condensed matter physics2–8. In particular, a finite magnetization can
induce Cooper pairs with finite center-of-mass momentum9,10, which
can be observed, e.g., in a 2D superconductor subjected to an applied
magnetic field11–14 or a ferromagnetic medium close to a
superconductor15–20 (see Fig. 1a, c for an illustration). The finite-
momentum pairing manifests as an oscillating order parameter in real
space. In Josephson junctions, the ground state usually has no phase
difference across the junction and is referred to a 0-junction. However,
the finite magnetization may produce an intrinsic π phase difference,

forming a so-called π-junction21,22. Notably, a switchable π state of
Josephson junction holds important applications in superconducting
circuits and qubits23–25.

While it is widely believed that finite-momentum Cooper pairing
requires a non-zeronetmagnetization, in thiswork,wechallenge this by
revealing that magnetic systems with zero net magnetization can after
all support Cooper pairs with finite momentum by sacrificing uni-
formity. As a proof-of-concept, we take altermagnetic metals as an
example. Altermagnetism is an emerging magnetic phase beyond con-
ventional ferromagnetism and antiferromagnetism and features highly
anisotropic spin splitting in electronic bandswith specific symmetrybut
zero net magnetization (e.g., a d-wave-like magnetism)26–32 (see Fig. 1b).
This novel phasemay be caused by Fermi-surface instabilities26–28. It can
also arise directly from symmetries of the crystal potential and does not
require strongly correlated systems29,31,32. It breaks the combined sym-
metry of translation and C2 spin rotation that flips the spin (which is
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required for classical collinear antiferromagnets), but preserves a joint
symmetry of spatial rotation and C2 spin rotation. Notably, alter-
magnetism has been found to exhibit many intriguing properties and
functionalities, such as high-efficiency spin current generation33, giant
tunneling magnetoresistance34,35 and anomalous Hall effect36, thereby
arousing considerable theoretical and experimental interest. Impor-
tantly, it has also been discovered in a growing number of collinear
magnetic materials28–32,36–41 including RuO2

28,31, KRu4O8
31, κ-Cl29,37 and

Mn5Si3
42.

In this work, we study systematically the Cooper pair propaga-
tors in an altermagnetic metal and the superconducting proximity
effect in planar junctions formed by the altermagnet and conven-
tional s-wave superconductors. Remarkably, we find that the
proximity-induced Cooper pairs in the altermagnet receive a finite
momentum although the system has zero net magnetization. Such
anomalous Cooper-pair momentum strongly depends on the pro-
pagation direction of the Cooper pair. It exhibits a highly anisotropic
symmetric pattern and vanishes in particular directions (see Fig. 1d),
as inherited from the intrinsic anisotropic spin splitting of the
altermagnet. Moreover, it manifests several unique and measurable
features: first, it gives rise to damped periodic oscillations in the
order parameter as a function of doping in the altermagnet or

distance from the altermagnet-superconductor (AM-SC) interface,
which occurs for any junction orientation. The periodicity and
decaying behavior depend strongly on the junction orientation,
contrasting with those in ferromagnetic junctions (see Fig. 1e, f).

Second, the finite-momentum pairing results in anomalous 0-π
transitions in a planar Josephson junction bymodulating the doping in
the altermagnet, the length or orientation of the junction, which
occurs in the absence of a net magnetization. Note that a π-junction
may also occur in Josephson junctions formed by antiferromagnets,
which however requires odd layers of the antiferromagnet and thus a
finite magnetization43. Third, we find that when the junction is along
the direction where the spin splitting of the altermagnet is maximized,
the superconducting transport is dominated by Cooper pairs moving
along the junction direction. Whereas when the junction is along the
direction where the spin splitting vanishes, the transport is dominated
by Cooper pairs moving at large oblique angles from the junction
direction. As a result, when reducing junction width, the current den-
sity in the former junction remains qualitatively unchanged, whereas it
changes dramatically in the latter junction. To our knowledge, this
effect has not been seen in previously known ferromagnetic and
antiferromagnetic counterparts. Finally, we demonstrate that the dis-
tinct dominant Cooper-pair transfer trajectories in junctions oriented
along different directions also result in different Fraunhofer inter-
ference patterns when subjected to an external magnetic field.

Results
Effective model
In altermagnets, the spin splitting of electronic bands changes sign in
momentum space and the net magnetization is zero due to the pre-
sence of rotational symmetry. To illustrate our main results, we con-
sider an altermagnetic metal with d-wave-like magnetism in two
dimensions (2D). This can be realized, for instance, in thin films of
RuO2 and KRu4O8

32. In the long-wavelength limit, the altermagnet can
be described by35

HðkÞ= tðk2
x + k

2
yÞ+ Jkxkysz , ð1Þ

where k = (kx, ky) is the wavevector, the Pauli matrices {sx, sy, sz} act on
spin space, t parameterizes the usual kinetic energy and is taken to be
the unit of energy, i.e., t = 1, J is the strength of altermagnetic order
arising from the anisotropic exchange interaction31,32. The spin com-
ponent in the z-direction is a good quantum number. Note, however,
that our main results of finite-momentum pairing, order parameter
and Josephson supercurrent, discussed below, hold for the case with
the spin polarization in other directions.Without loss of generality, we
work in the eigenbasis of sz. The model respects [C2∣∣C4z] symmetry,
i.e., a four-fold rotation in real space ((x, y)→ (y, − x)) together with a
two-fold rotation in spin space ((↑,↓)→ (↓,↑)), which is indicated by
the relation syH*ðkx ,kyÞsy =Hðky,� kxÞ. Thus, the system has zero net
magnetization. Moreover, the two spin-polarized bands of the model
are given by ϵηðkÞ= tðk2

x + k
2
yÞ+ηJkxky, where η = ± 1 distinguishes spin-

up and spin-down, respectively. It has a band structure similar to those
for KRu4O8 and RuO2

31,33 (see Fig. 1b). The spin splitting ( Jzkxky) is
highly anisotropic and vanishes along the kx- and ky-axes, leading to the
d-wave-like magnetism.

We note that the direction of the altermagnetic ordermay deviate
from the crystal axis by anangle α, which can bedescribed by rewriting
the altermagnetic term as J½cosð2αÞkxky + sinð2αÞðk2

x � k2
yÞ=2�sz in

Eq. (1). This deviation will only cause an angle shift of 2α in the pro-
pagation direction dependence of the Cooper-pair momentum and
hence in the junction orientation dependence of the order parameter
and Josephson supercurrent. It does not alter our main results quali-
tatively. For concreteness, we consider α = 0 and focus on the realistic
case with ∣J∣ ≲ 1 in the following.

Fig. 1 | Contrast of finite-momentum pairing in the ferromagnetic and alter-
magnetic metals. a, b Schematics of the band structures of the ferromagnet and
the altermagnet, respectively. Blue and red distinguish the two bands of opposite
spins. In the calculation for the ferromagnet, we replace Jkxkysz with a constant
magnetization Jsz in Eq. (1) and consider the long-wavelength limit with spatial
rotation symmetry in the normal kinetic energy part. c Polarplots of the Cooper-
pair momentum q as a function of the propagation direction θ in the ferromagnet.
d the same as (c) but for the altermagnet. The Cooper-pair momentum is strongly
anisotropic and vanishes when propagating along a crystalline axis (θ = nπ/2 with
n∈ {0, 1, 2, 3}). e Periodicity (in units of πℏ/Eex) of the order parameter with respect
to y0=vF as a function of junction orientationφ in the ferromagnet. y0 is the distance
from the ferromagnet-superconductor interface, vF is the Fermi velocity and Eex is
the exchange energy of the ferromagnet. f Periodicity with respect to

ffiffiffi
μ

p
y0 as a

function of φ in the altermagnetic junction. Other parameters are t = 1 and J =0.8.
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Finite Cooper-pair momentum
In a ferromagnetic metal with proximity-induced superconductivity,
the Fermi surface splitting of opposite spins leads to a momentum of
Cooper pairs, which is nonzero in any direction (Fig. 1c). We ignore
spin-orbit coupling which is typically small in ferromagnetic systems.
In contrast, because of the sign-changing nature of spin splitting and
vanishingly small net magnetization, unique physics arises in the
altermagnet with superconductivity, which we demonstrate numeri-
cally and analytically below.

We analyze the Cooper-pair propagator44 to study finite-
momentum pairing and supercurrents induced in the altermagnet.
We consider s-wave spin-singlet pairing, which is the case most easily
realized experimentally. The Cooper-pair propagator, i.e., the simul-
taneous propagation of two electrons with opposite spins from one
position r1 to another position r2 at zero temperature, can be calcu-
lated as the Cooperon bubble diagram45, yielding

Dðr2; r1Þ=
ðJ + J�Þ3=2

π2r2ðJ + + J�Þ
ðeiqr + e�iqrÞ: ð2Þ

where J ± = 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ± J sinð2θÞ

p
, θ is the angle between the propagation

direction r̂ and the x-axis, q=
ffiffiffiffiffiffi
2μ

p
ðJ + � J�Þ, and μ is the chemical

potential of the altermagnet and tunable by a gate voltage. We have
denoted by r = r2 − r1 the displacement of Cooper pair. We provide
more details of derivation in the Methods and Supplementary
Information45.

Strikingly, we observe a finite momentum q of the Cooper pair
from the Cooper-pair propagator in Eq. (2). The Cooper-pair momen-
tum comes in pairs with opposite values (q, − q), due to the rotational
symmetry of the system. Moreover, it exhibits a fourfold rotational
symmetry in the propagation direction θ, inherited from the alter-
magnet. Its magnitude ismaximized when the propagation is diagonal
to the crystalline axes, i.e., θ =π/4 + nπ/2 with n∈ {0, 1, 2, 3}, whereas
vanishes when the propagation is along a crystalline axis, i.e., θ = nπ/2
(see Fig. 1d). For small ∣J∣≪ 1, q is approximately

q ≈ J
ffiffiffi
μ

p
sinð2θÞ=2J ffiffiffi

μ
p

xy=r2: ð3Þ

Note that the Cooper-pair momentum occurs in the absence of a
net magnetization and is proportional to the square root of the che-
mical potential

ffiffiffi
μ

p
in the altermagnet, in sharp contrast to that in

ferromagnetswhich requires afinitemagnetization anddecreaseswith
increasing μ2,15,16. As a result of this anomalous anisotropicmomentum,
the Cooper pair exhibits damped oscillations as it moves in real space,
which is sensitively dependent on the propagation direction. This
anisotropic behavior further gives rise to the unique features in the
proximity-induced order parameter, Josephson supercurrent, and
transfer trajectories of Cooper pairs in junction systems, as we
illustrate below.

Proximity-induced order parameter
Equipped with the Cooper-pair propagator, we first study the order
parameter induced in the altermagnet connected to an s-wave
superconductor. To this end, we consider a planar AM-SC junction
with the interface at y0 =0 along the x0-direction, as sketched in the
inset of Fig. 2a. The coupling of the superconductor and alter-
magnet λ is constant along the interface. Here, the superscript 0

indicates that the interface coordinate x0 is rotated by an arbitrary
angle φ from the crystalline x-axis of the altermagnet. The resulting
local order parameter can be calculated from the Cooper-pair
propagator as

hjΨðr0Þji= λ
Z W=2

�W=2
dx0

1Dðr0; x0
1,0Þ, ð4Þ

where r0 = ðx0, y0Þ andW is the junctionwidth.We have ignored the side
boundary effect, which is justified for wide junctionsW ≫ y0. For large
widths and chemical potentials,W ≫ y0 ≫ 1=ð ffiffiffi

μ
p

JÞ, we find that hjΨðr0Þji
becomes independent of W and position x0 along the interface45.
However, it exhibits damped oscillates around zero with distance y0

from the interface, as shown in Fig. 2a. These behaviors occur for any
junction orientation. Under these considerations, we derive
hjΨðr0Þji≈hjΨð0, y0Þji as

hjΨðr0Þji≈ λϒθm

ðy0Þ3=2μ1=4
cos F θm

ffiffiffi
μ

p
y0 +

π
4

� �
, ð5Þ

where ϒθ0 = ð2J0+ J0�=πÞ3=2=½ðJ0+ + J0�Þj∂2F θ0=∂θ
02j1=2�, J0± = 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ± J sinð2θ0 +2φÞ
p

and F θ0 =
ffiffiffi
2

p
cscθ0ðJ0� � J0+ Þ. The angle θm is given

by the minimum point of F θ0 . Physically, it is the angle of the Cooper-
pair trajectory whose propagator dominates the integral in Eq. (4).
Particularly, θm =π/2 indicates that the dominant trajectory is normal
to the AM-SC interface, while θm = 0 (or π) indicates that the dominant
trajectory is approximately parallel to the interface. We discuss this
picture in more detail later. We provide more details of derivation in
the Supplementary Information45.

FromEq. (5), we see that the amplitudeof hjΨðr0Þjidecays from the
AM-SC interface as ∼ ðy0Þ�3=2. This decay stems from the fact the
Cooper-pair propagator decays with propagation distance r0 as
∼ ðr0Þ�2 [cf. Eq. (2)] and from the strong interference between the
Cooper-pair propagators from the superconductor. The magnitude
also decreases slowly as ~ μ−1/4 due to the interference between the
propagators.

On top of the decay, hjΨðr0Þji oscillates periodically as
ffiffiffi
μ

p
y0

increases. The periodicity can be written as

P =2π=jF θm
j: ð6Þ

It decreases monotonically with increasing ∣J∣. More interestingly,
P increases monotonically as we rotate the junction orientation from

a

SC
AM

numerical:
analytical:

numerical:
analytical:

numerical:
analytical:

y'
m

yy
x'

xxxxxxxxxx

b c

m

y'

= 0

= 0.25 

= 0.1 

Fig. 2 | Local order parameter near the altermagnet-superconductor (AM-SC)
interface. ahjΨð0,y0Þji (in units of λ/π2) as a function of distance y0 from the
superconductor for junction orientations φ =0, 0.1π, and 0.25π, respectively. We
take J =0.8 for illustration. The dashed curves are the plots of the formula in Eq. (5).
Inset depicts the AM-SC junction with the interface at y0 =0 along x0-direction.
b Periodicity P in hjΨð0,y0Þji with respect to

ffiffiffi
μ

p
y0 as a function of φ. c Angle θm of

dominant propagation trajectories [sketched in the inset of (a)] as a function of φ.
Other parameters are μ = 1.0 and W = 1000.
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φ =0 to π/4, as shown in Fig. 2b. At φ =0, we find that the propagator
dominating hjΨðr0Þji moves in a trajectory nearly parallel to the
interface, i.e., θm ≈0. Hence, we have F θm

= � J. At φ =π/4, we
find instead θm =π/2, indicating that the dominant propagator
moves in the trajectory normal to the AM-SC interface. Accordingly,
F θm

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2 + JÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2� JÞ

p
≈� J=2. Thus, we have Pjφ=π=4=

Pjφ=0 ≈ 2. hjΨðr0Þji oscillates more rapidly in junctions along a crys-
talline axis (φ =0) than that diagonal to crystalline axes (φ =π/4).
These behaviors are well corroborated by numerical calculations in
Fig. 2a. It is also worth noting that hjΨðr0Þji is a periodic function of
junctionorientationφwith a periodπ/2. For given large distance y0 and
filling in the altermagnet, hjΨðr0Þji even oscillates around zero with φ
within a period. This angular dependence of the order parameter is a
direct consequence of the anisotropic momentum of Cooper pairs in
the altermagnet [cf. Eq. (3)] and is one of the central predictions in this
work. It is generic and independent of the details of the super-
conductor and junction interface.

Anomalous 0-π transitions in the supercurrent
The unique finite-momentum pairing in the altermagnet also manifests
as interesting transport signatures in Josephson junctions. We consider
a planar Josephson junction formed by sandwiching the altermagnet
with length L by two superconductors along the y0-direction. Similar to
the AM-SC junction, we assume constant coupling amplitudes λj (with
j∈ {1, 2}) along each interface, λjðx0Þ= λjeiϕj , where ϕj is the pairing
phase in the j-th superconducting lead. The supercurrent can be eval-
uated as the derivative of free energy with respect to the pairing phase
difference δϕ =ϕ1−ϕ2 across the junction. In terms of Cooper-pair
propagators, the δϕ-dependent part of free energy can be written as45

Fδϕ
= � 4λ1λ2

Z
dx0

1dx
0
2 Re eiδϕDðx0

2, L; x
0
1, 0Þ

h i
: ð7Þ

Plugging Eq. (2) into Eq. (7), we obtain the supercurrent as
IsðδϕÞ= ðe=_Þ∂Fδϕ

=∂δϕ = Ic sinðδϕÞ, where the critical current reads

Ic =
4e
_
λ1λ2

Z W=2

�W=2
dx0

1dx
0
2Dðx0

2, L; x
0
1, 0Þ: ð8Þ

A positive Ic corresponds to a 0-junction, whereas a negative Ic
indicates a π-junction where the system has an intrinsic π phase
difference across the junction at the ground state. Here, we ignore
the correction from side boundary reflections. This is justified for
L≲W, as we show in the Supplementary Information45. For large
widths and chemical potentials W ≫ L≫ 1=ð ffiffiffi

μ
p

JÞ, we can evaluateR
dx01Dðx0, L; x0

1, 0Þ in a similar way as the order parameter. It turns out
to be constant in x0. This allows us to find Ic analytically as

Ic =
4e
_

λ1λ2W

L3=2μ1=4
ϒθm

cos F θm

ffiffiffi
μ

p
L+

π
4

� �
: ð9Þ

The agreement between the formula in Eq. (9) and numerical calcula-
tions is shown in Fig. 3. It is interesting to note that Eq. (9) takes the
same form as the order parameter in the altermagnet, cf. Eq. (5). This
suggests that the measurement of Ic, as a function of junction length,
chemical potential, and junction orientation can give access to the
information about the proximity-induced order parameter, such as its
dependence on position (measured from the AM-SC interface),
chemical potential and junction orientation.

Strikingly, Ic exhibits pronounced oscillations around zero as a
function of junction length L and chemical potential μ in the alter-
magnet, as shown in Fig. 3a, c. The periodicity in L is given by
Py =2π=ð

ffiffiffi
μ

p F θm
Þ, while the periodicity in

ffiffiffi
μ

p
reads Pμ = 2π=ðLF θm

Þ:
They are the same as those in the order parameter. Thus, similarly, Ic
oscillates more rapidly in junctions along a crystalline axis where the

spin splitting of the altermagnet vanishes. In addition, Ic is a periodic
function of junction orientation φ with period π/2. For large given L
and μ, we also observe oscillations of Ic around zero as a function of φ
within a period (see Fig. 3e). The oscillations become denser whenφ is
close tonπ/2 with nbeing an integer becauseF θm

changes faster there.
Experimentally, one could fabricate curved devices with a series of
superconducting lead pairs, similar to those used for anisotopic
magnetoresistance measurements46,47, which allows an effective rota-
tion of the junction orientation.

As discussed earlier, positive (negative) Ic corresponds to a 0 (π)
state of the Josephson junction. These oscillations indicate 0-π tran-
sitions of the Josephson junction when we vary the junction length L,
chemical potential μ, or junction orientationφ, as shown in Fig. 3b, d, f.
These results are also independent of the details of the s-wave super-
conductors andAM-SC interfaces (note that the interfacecouplings λ1,2
only alter themagnitude of the current). It is also worth noting that the
π-junction and 0-π transitions in the altermagnetic junction occur in
the absence of a net magnetization. This is again in sharp contrast to
ferromagnetic or antiferromagnetic junctions where a π-junction
requires a finite net magnetization15–20,43,48,49.

Dominant Cooper-pair transfer trajectory
Our analytical result in Eq. (9) illustrates not only the anomalous 0-π
transitions, but also intriguing features in the main trajectory direction
of Cooper pairs transferring across the junction. The dominant Cooper-

a

numerical:
analytical:

c

b

d

e f

IcL
/W

I sL
/W

IcL
/W

I sL
/W

Ic/
W I s/
W

=0 
=0.25 

0 0 0 

Fig. 3 | Josephson0-π transition. aCritical supercurrent density IcL/W (Ic is in units
of 4eλ1λ2/π2ℏ) as a function of μ forφ =0 and L = 20. The dashed curve is the plot of
Eq. (9) with the same parameters. Ic oscillates around 0 as L increases. The light
green shadows represent the π-junction regions as indicated. b Current-phase
relation for μ =0.2, 0.4 and 0.6, respectively [marked by the colored stars in (a)].
c Ic/W as a function of junction length L forφ =0 andπ/4, respectively.We takeμ = 1
for illustration. The dashed curves are the plots of Eq. (9) for φ =0 and π/4,
respectively. d Current-phase relation for L = 2.5, 5, and 8, respectively [marked by
the colored stars in (c)]. e IcL/W as a function of φ for μ = 1 and L = 25. The dashed
curve is the plot of Eq. (9) with the same parameters. The light green shadows
represent the π-junction regions. fCurrent-phase relation forφ =0, 0.1π and 0.25π,
respectively [marked by the colored stars in (e)]. Other parameters are the same as
Fig. 2 for all plots.
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pair transfer trajectory is described by the angle θm, as we mentioned
before. In Fig. 2c, we calculateθm as a function of junction orientationφ.
Wefind thatθm changesmonotonically from0 (or equivalentlyπ) toπ/2
as we rotate the junction from the direction where the splitting of the
altermagnetic vanishes (i.e., crystalline axis,φ= nπ/2withn∈ {0, 1, 2, 3})
to the diagonal direction where the spin splittingmaximizes (i.e.,φ =π/
4 +nπ/2). This indicates that themain transfer direction of Cooper pairs
changes substantially. In particular, when the junction is oriented
diagonal to the crystalline axes, we find θm =π/2 +nπ. Thus, the trans-
port is dominated by Cooper pairs that move in the junction direction
(see a sketch in Fig. 4c). In contrast, when the junction is parallel to a
crystalline axis, we find θm =nπ. The transport is instead dominated by
Cooper pairs that move at large oblique angles from the junction
direction (see a sketch in Fig. 4a). We remark that such a large-oblique-
angle Cooper-pair transfer is closely associated with the vanishing of
Cooper-pair momentum in specific directions and is absent in ferro-
magnetic or antiferromagnetic junctions.

As a result of the distinct dominant transfer trajectories of Cooper
pairs, the transport properties in junctions along and diagonal to the
crystalline axes respond differently to the change of junction widthW.
Specifically, for junctions along a crystalline axis, the amplitude of the
current density Ic/W is significantly suppressed by reducing W since
fewerCooper pairsmove at largeoblique angles. Theoscillations in the
order parameter and hence0-π transitions of the supercurrent are also
strongly suppressed for smallW≲ L. In contrast, for junctions diagonal
to the crystalline axes, Ic/W is nearly insensitive to the change of W.
Accordingly, the oscillations and 0-π transitions can be observed even
for W≲ L. These results are well confirmed by our numerical calcula-
tions in Figs. 4b, d, whereweperform the direct integration of x0 and x0

1
from −W/2 to W/2 in Eq. (8).

Fraunhofer interference pattern
Finally, we apply a perpendicular magnetic field B to the Josephson
junction and study how it influences the supercurrent. The application
of a magnetic field will induce spatial variations in the phase of pairing
potentials along the AM-SC interfaces, thus significantly altering the
interference between the Cooper-pair propagators and supercurrent
across the junction. We provide the details of the calculation in
the Supplementary Information45.

In Fig. 5, we compute numerically the Fraunhofer interference
patterns which measure the maximum supercurrent maxðIsÞ in
response to the applied magnetic field, for varying chemical potential.
It is striking to see that the junctions oriented along themaximum and
vanishing Fermi surface spin-splitting directions exhibit distinct
Fraunhofer patterns (see Fig. 5a, b). Explicitly, in the junction along the
direction where the Fermi surfaces aremost split (φ =π/4), we observe
a conventional Fraunhofer pattern, in which the maximum super-
current is located at zero field (see Fig. 5b, d). This feature is similar to
that in ordinary Josephson junctions as the dominant Cooper-pair
transfer trajectory consistently aligns with the junction direction. In
contrast, at the0-π transition points of the junction along the direction
where the spin-splitting vanishes (i.e., x- or y-axis), a finite supercurrent
can be induced and enhanced by the applied magnetic field, as shown
in Fig. 5c. This result is closely related to the fact the dominant Cooper-
pair propagators are moving at large oblique angles across the junc-
tion. Note that in this case, the local critical-current density jcðx0Þ may
significantly vary with the change of the interface coordinate x0, which
is different from ordinary planar junctions where Cooper pairs pro-
pagatemainly in the junction direction and thus jcðx0Þ is approximately
a constant. These contrast Fraunhofer patterns provide us with
another compelling signature to detect the unique superconducting
transport properties of the altermagnetic junctions.

Discussion
To summarize, we have shown that Cooper pairs in the altermagnet
acquire a finite momentum despite the system having zero net mag-
netization. This anomalous momentum is highly anisotropic with
respect to the direction of Cooper-pair propagation. We have further
shown that it gives rise to several unique features: (i) The order para-
meter oscillates with the gate voltage on the altermagnet and/or with
the distance from the superconductor, which depends sensitively on
the junction orientation; (ii) In planar Josephson junctions, although
there is no net magnetization, 0-π transitions occur as a function of
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by Cooper pairs moving at large oblique angles (sketched by dashed arrows).
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gate voltage on the altermagnet, length or orientation of the junction;
(iii) In junctions parallel to the direction where the spin splitting of the
altermagnet vanishes, the superconducting transport is dominated by
Cooper pairs moving at large oblique angles away from the junction
direction; (iv) Josephson junctions oriented along different directions
exhibit distinct Fraunhofer interference patterns in response to
external magnetic fields. These results are generic and do not rely on
the details of the s-wave superconductors and junction interfaces.

Compared to the previously studied platforms for realizing finite-
momentum pairings, such as Rashba superconductors and Dirac sur-
face states with proximity-induced superconductivity, our proposal
does not require a magnetic field (or net magnetization). In the alter-
magnetic system, the Cooper-pair momentum depends substantially
on the propagation direction θ and the larger oblique-angle Cooper
transfer can dominate the superconducting transport, which does not
exist in the ferromagnetic junctions. Additionally, the Cooper-pair
momentum exhibits a rather different dependence on the chemical
potentialμof the system.We summarize the comparisons between the
typical ferromagnetic and altermagnetic systems in Table 1.

There has been a growing number of candidate materials pre-
dicted and confirmed as altermagnet. Among them, a prime example is
the collinear RuO2 that has been widely studied theoretically and
experimentally28,31,36,50–52. RuO2 processes a strong anisotropic spin-
splitting (on the eV scale) in the electronic band structure, which has
been verified in ARPES experiment recently53. Thin films of RuO2 have
also been realized and, interestingly, with signatures of intrinsic
superconductivity51,52. Using typical parameters for this material,
Ja2 = 1 eV, ta2 = 2.5 eV, lattice constant a = 4.5Å and doping
μ =0.3–0.5 eV28,35, we estimate the shortest periodicity (at φ =0) with

respect to the junction length asPy = 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t3=ðμJ2Þ

q
∼ 16–20 nm.Thus, it

is feasible to observe the oscillations of order parameter and Joseph-
son current in superconducting junctions with lengths longer than
20nm. Similar to RuO2, KRu4O8 has a d-wave-like altermagnetic order

but is described by Jðk2
x � k2

yÞsz=231. It is precisely related to Jkx ky sz by

45-degree rotation about z-axis. The spin splittingmaximizes in the kx-
and ky-axes while vanishes in the kx = ± ky directions. Thus, our results
also apply to this material but with swapping the directions parallel
and diagonal to the crystal axis. For KRu4O8, we take the parameters
ta2 = 0.05 eV, Ja2 = 0.037 eV, a = 9.9Å and μ = 0.03–0.1 eV31 and esti-
mate the shortest periodicity (at φ =π/4) a Py ∼6–11 nm. Therefore,
the oscillations could be observed in KRu4O8-based junctions with
shorter lengths compared to those of RuO2.

So far, we have focused on the altermagnet metals with d-wave
magnetism. Our main results, however, can be easily generalized to
other planar altermagneticmetals, e.g., with g- or i-wavemagnetism. In
particular, we expect pronounced oscillations in the induced order
parameter with respect to junction length or doping for any junction
orientation. The periodicity of the oscillations is determined by the
junction orientation. It is the largest (smallest) when the junction is
aligned with the direction where the spin splitting of the altermagnet
vanishes (maximizes). In Josephson junctions, anomalous 0-π

transitions occur despite the zero net magnetization. Moreover, the
superconducting transport is dominated by Cooper pairs moving at
large oblique angles away from the junction direction when the junc-
tion is in the direction where the spin splitting vanishes. Thus, the
current density becomes sensitive to the width of the junction.

Our work not only sheds light on the exploration and under-
standing of finite-momentum Cooper pairing in the absence of net
magnetization but also uncovers exotic superconducting phenomena
in the altermagnet. While our focus lies on the most typical scenario
where the altermagnet has the Fermi surfaces at the Γ point and the
superconductivity of s-wave singlet pairing, it would be interesting to
extend our study to the case with valley degrees of freedom in the
altermagnet32 or involving triplet pairing, in particular, in the presence
of spin-orbit coupling. It would also be promising to explore topolo-
gical superconductivity and nonreciprocal superconducting phe-
nomena, such as the diode effect, in altermagnets without net
magnetization.

Recently, we became aware of a numerical study54 whichdiscusses
0-π Josephson transitions.

Methods
Cooper-pair propagator
The Cooper-pair propagator describes the simultaneous propagation
of two electrons with opposite spins initially from a position r1 at time
t1 to another position r2 at time t2. Using Wick’s theorem and the
Matsubara formalism, we can evaluate it as a convolution of two
electron Green’s functions

Dðr1; r2; iνmÞ= 1
2β

P
ωs

Tr ½G0ðr1, r2,� iωsÞsyGT
0ðr1, r2,iωs + iνmÞsy�, ð10Þ

where G0ðr1, r2, iωsÞ is the non-interactingMatsubara Green’s function.
It is a 2 × 2 matrix in the spin basis (ψ↑,ψ↓). ωs = (2s + 1)πkBT and
νm = 2πmkBT (with s and m being integers) are Matsubara frequencies
for fermions and bosons (here electron pairs). The Feymann diagram
for the pair propagator is shown in Fig. 6. Assuming translation
symmetry and considering the static limit, the Cooper pair propagator

Table 1 | Comparison of different approaches to generate finite-momentum Cooper pairing

Systems Rashba55 Dirac surface states18,19 Altermagnet (this work)

Finite momentum q Hk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2
R +μ

2=m
q

H∥/vF
ffiffiffiffiffiffi
2μ

p
sinð2θÞ

Magnetic field (magnetization) in-plane field in-plane field no field

θ dependence no no yes

Large oblique-angle transport no no yes

μ dependence large μ, smaller q no larger μ, larger q

It summarizes theoretical results (e.g.,finitemomentumq, requirements ofmagnetic fields (magnetization), dependence on the chemical potential μ andpropagation directionθ, and large oblique-
angle transport) for three systems: (1) Rashba superconductor with s-wave pairing under in-plane magnetic field H∥. αR is the Rashba spin-orbit coupling, μ is the chemical potential andm is the
effective mass. (2) Dirac surface states with proximity-induced s-wave pairing under in-plane magnetic field H∥. vF is the Fermi velocity. (3) Altermagnet with proximity-induced s-wave pairing.

( )

( )

Fig. 6 | Diagram for the propagator for an electron pair. The vertex correction
due to the scattering of the electrons is not considered for simplicity. The red
arrows indicate opposite spins carried by the electron pair.
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at zero temperature can be found as

DðrÞ=Dðr,0Þ= 1
2

Z 1

0

dϵ
2π

dϵ0

2π
T ðr, ϵ, ϵ0Þ+ T ðr,� ϵ,� ϵ0Þ

ϵ+ ϵ0
: ð11Þ

where r = r2 − r1,

T ðr,ϵ, ϵ0Þ= Tr g0ðr, ϵÞsygT
0ðr, ϵ0Þsy

h i
, ð12Þ

and g0(r, ϵ) is the Fourier transform of the spectral function matrix
given by

g0ðr,ϵÞ=
Z

d2k

ð2πÞ2
eik�rA0ðk,ϵÞ: ð13Þ

For the altermagnet, the spectral function matrix is obtained from the
Green’s function as

A0ðk,ϵÞ � �2 Im Gret
0 ðk,ϵÞ� �

=2π
P

η= ± 1
δ
�
ϵ� εk,η

� 1 +ηsz
2 , ð14Þ

where η = ± 1 distinguishes the two bands εk,η of opposite spins.

Local order parameter
We derive the order parameter hjΨðr0Þji by integrating Eq. (4) in the
main text. When the interface (junction) width and chemical potential
in the altermagnet are large, i.e., W≫y0≫1=ðJ ffiffiffi

μ
p Þ, the local order

parameter hjΨðr0Þji (not close to the edges at x0 = ±W=2) becomes
independent ofW and position x0 along the interface. This result holds
for interfaces in any orientation. Thus, it suffices to calculate the order
parameter at x0 =0 which reads

hjΨð0,y0Þji
= 2λ

π2

RW=2
�W=2 dx

0
1

ðJ0+ J0�Þ3=2
r 02ðJ0+ + J0�Þ cos

� ffiffiffiffiffiffi
2μ

p
r0
�
J0� � J0+

��
,

ð15Þ

where J0± = 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ± J sinð2θ0 + 2φÞ

p
. Converting the integral over x0 to an

integral over the angle θ0 (i.e., dx0 = � csc2θ0dθ0), we have

	

Ψð0, y0Þ


�= 2λ

π2

1
y0

Z π�α

α
dθ0

ðJ0+ J0�Þ3=2
J0+ + J0�

cosð ffiffiffi
μ

p
F θ0y0Þ, ð16Þ

where α = arctan ð2y0=W Þ and F θ0 =
ffiffiffi
2

p
cscθ0ðJ0� � J0+ Þ. For large

y0≫1=J
ffiffiffi
μ

p
, the function cosð ffiffiffi

μ
p

y0F θ0 Þ oscillates rapidly as θ0 varies.
Thus,we can apply the saddle point approximation to the integral over
θ0 and obtain the analytical result in Eq. (5).

Josephson supercurrent
We derive the formula for Josephson supercurrent. The pairing inter-
action of the planar Josephson junction can be written as

Hp = �
Z

d2r0
�
Δðr0ÞΨyðr0Þ+Δ*ðr0ÞΨðr0Þ�, ð17Þ

whereΨðr0Þ � ψ"ðr0Þψ#ðr0Þ andΔðr0Þ is thepairing potential.We assume

Δðr0Þ= λ1ðx0Þδðy0Þ+ λ2ðx0Þδðy0 � LÞ, ð18Þ

with jx0j<W=2 and that the magnitude of λj >0 (with j∈ {1, 2}) is con-
stant along the superconducting lead, λjðx0Þ= λjeiϕj .

The supercurrent is given by the derivative of the free energywith
respect to the pairing phasedifference δϕ =ϕ1 −ϕ2 across the junction.
The free energy contributed by the pairing interaction, Fp = 〈∣Hp∣〉,

reads

Fp = �
Z

dx0 λ1ðx0Þ
	

Ψyðx0, 0Þ



�+ λ2ðx0Þ	

Ψyðx0, LÞ


��

+ λ*1ðx0Þ	

Ψðx0, 0Þ


�+ λ*2ðx0Þ	



Ψðx0, LÞ


�i:

ð19Þ

Here, hjΨðr0Þji is the local order parameter, induced from the two
superconducting leads by proximity effect. It can be written as
hjΨðr0Þji= hjΨðr0Þji1 + hjΨðr0Þji2 with

hjΨðr0Þji1 =
R
dx0

1λ1ðx01ÞDðr0; x01,0Þ,
hjΨðr0Þji2 =

R
dx01λ2ðx01ÞDðr0; x0

1,W Þ: ð20Þ

Plugging Eq. (20) into Eq. (19), the supercurrent Is ≡ (e/ℏ)∂Fp/∂δϕ is
found as

IsðδϕÞ= � i
2e
_
λ1λ2

Z W=2

�W=2
dx0dx0

1

× ½eiδϕDðx0, L; x01, 0Þ � e�iδϕDðx0, 0; x01, LÞ�
ð21Þ

Exchanging dummy variables, we replace Dðx0, 0; x01, LÞ by
Dðx0,L; x01,0Þ. Using the fact that the propagator is real-valued, we
derive eventually IðδϕÞ= Ic sinðδϕÞ with the critical supercurrent given
by Eq. (8).

Data availability
The datasets generated during this study are available from the cor-
responding authors upon request.

Code availability
The custom codes generated during this study are available from the
corresponding authors upon request.
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