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Aqueous amine enables sustainable
monosaccharide, monophenol, and pyridine
base coproduction in lignocellulosic
biorefineries

Li Xu1, Meifang Cao1, Jiefeng Zhou1, Yuxia Pang1, Zhixian Li 1, Dongjie Yang1,
Shao-Yuan Leu2, Hongming Lou 1 , Xuejun Pan 3 & Xueqing Qiu4

Thought-out utilization of entire lignocellulose is of great importance to
achieving sustainable and cost-effective biorefineries. However, there is a
trade-off between efficient carbohydrate utilization and lignin-to-chemical
conversion yield. Here, we fractionate corn stover into a carbohydrate fraction
with high enzymatic digestibility and reactive lignin with satisfactory catalytic
depolymerization activity using a mild high-solid process with aqueous die-
thylamine (DEA). During the fractionation, in situ amination of lignin achieves
extensive delignification, effective lignin stabilization, and dramatically
reduced nonproductive adsorption of cellulase on the substrate. Furthermore,
by designing a tandem fractionation-hydrogenolysis strategy, the dissolved
lignin is depolymerized and aminated simultaneously to co-produce mono-
phenolics and pyridine bases. The process represents the viable scheme of
transforming real lignin into pyridine bases in high yield, resulting from the
reactions between cleaved lignin side chains and amines. This work opens a
promising approach to the efficient valorization of lignocellulose.

In pursuit of reducing the dependence on depleting fossil resources
and meeting the rising energy requirements, it is an attractive but
challenging opportunity to process inedible biomass into various
biobased products and bioenergy in lignocellulosic biorefineris1–3.
Given the structural features of lignocellulose components, achieving
fermentable sugar release for biofuel production is a well-known and
sought-after illustration for structural carbohydrate utilization (cellu-
lose and hemicelluloses, accounting for 60–85wt%)4. Valorizing lignin
(accounting for 15–30wt%) composed of phenylpropanoid units into
useful chemicals is another key to amplifying the economic viability of
future biorefineries5.

According to the developing trend of biorefineries, the central
conception is increasingly shifting from the traditional carbohydrate-
first strategy toward the recent lignin-first scenario6. Historically, stu-
dies on lignocellulosic biorefinery focused exclusively on optimizing
the utilization of carbohydrates (e.g., for cellulosic ethanol produc-
tion) under harsh processing conditions7. Lignin was always con-
sidered a collateral product to extract some extra value. Within this
context, the processability of the isolated lignin into valuable mono-
mers was largely restricted owing to its highly condensed structures
(more interlinked C–C bonds)8,9. Recently, recognizing the enormous
potential of lignin as themost abundant aromatic reservoir in nature, a
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new biorefinery scheme has emerged, termed lignin-first, in which
active stabilization approaches are developed to avoid condensation
reactions that lead to more recalcitrant lignin structures10. This
emerging biorefinery paradigm, which targets deriving more value
from lignin than carbohydrate-first processing, is generally accom-
plished by the use of protection-group chemistries or reductive sta-
bilization of reactive lignin intermediates6. To name a few, α, γ-diol
group of β–O–4′motif was stabilized by adding formaldehyde to form
1,3-dioxane rings11, stable acetal was formed between diols and
unstable C2-aldehyde fragments12,13, the Cα alcohol of β–O–4′ was
oxidized to a ketone14, and early-stage catalytic conversion of lignin
was achieved by Reductive Catalytic Fractionation (RCF) with
2-propanol as an H-donor15,16. Although carbohydrates could be
upgraded to dissolving pulp in lignin-first biorefining17, the enzymatic
hydrolyzability of pretreated lignocellulose did not perform as well as
those obtained in carbohydrate-first strategy. In other words, a high
cellulase dosage (~30 FPU/g glucan11,13,18 or more15,19,20) is usually
required to enable efficient enzymatic carbohydrate conver-
sion. Therefore, the development of an effective strategy to upgrade
the entire lignocellulose is still in demand.

On the other aspect, although considerable research efforts have
been devoted to the efficient transformation of lignin into chemi-
cals,mostproducts are limited toC,H, andO-containing compounds21.
N-participated lignin conversion, which targets sustainable
heteroatom-functionalized monomer production, is of great impor-
tance to expanding the product pool of lignin to meet value-added
biorefining demands22. The N-functionalized products is seen as vital
synthetic scaffolds for pharmaceuticals, agrochemicals, and polymer
materials23–25. To date, N-containing chemicals, including
pyrimidines26, indoles27, benzylamines28, cyclohexylamines29,
quinolines30, and quinoxalines31, have been synthesized successfully
from lignin model compounds, but not directly from real lignin.

In this work, we attempt to develop amildpretreatment approach
with anamine-watermixture to realize awin-win for both carbohydrate
and ligninutilization, anddiethylamine (DEA) is selecteddue to its high
basicity and nucleophilicity (~105 times more nucleophilic than NH3 in
H2O)

32,33. This process simultaneously produces a carbohydrate frac-
tion that is susceptible to enzymatic hydrolysis and a high-quality lig-
nin that delivers high monomer yields upon catalytic amination and
depolymerization. The N-functionalization of products is achieved in a
direct manner via a consecutive fractionation-hydroprocessing step.
Moreover, most of lignin depolymerization methodologies only focus
on theutilizationof the aromatic nuclei in lignin over the years. Present
day, we put forward a biorefinery concept termed Upgradation of
Lignin SideChains,wherein the high-value conversion of cleaved lignin
side chains should be taken into account, which is often overlooked in
other conceptions. This biorefinery paradigm will be helpful for
advancing the economic feasibility of lignin-to-chemicals valorization
and pivotal for further progress in this exciting research area.

Results
Evaluation of pretreatment and saccharification efficiency
Corn stover (CS) was chosen as the lignocellulosic feedstock in our
work. CS was pretreated at 130 °C for 1 h using aqueous diethylamine
(DEA) at different concentrations. The pretreatments using ammonia
(≥28% in H2O) and deep eutectic solvent (DES) were performed for
comparison. As shown in Fig. 1a, after water washing to remove soluble
lignin from the lignocellulosic matrix (route A), two fractions, a
cellulose-rich solid with high enzymatic digestibility and a lignin-rich
liquid, were produced from the DEA pretreatment of CS. In this sec-
tion, the pretreatment efficiency and the enzymatic hydrolyzability of
the pretreated solid were evaluated.

Notably, a high biomass loading of 30wt% was employed in the
pretreatment. The high-solid loading possessesmany advantages over
low-solid loading (≤10wt%), such as higher energy efficiency34,35, lower

pretreatment reagent consumption and environmental impact36, and
less liquid waste generation. However, high solid loading limits the
mass transfer in the system, often resulting in unsatisfactory and
inhomogeneous pretreatment in many methods. As shown in Fig. 1c
and Supplementary Fig. 1, low delignification (12.3%) and high biomass
recovery (89.7%) were observed in the high-solid DES fractionation. In
contrast, ammonia and amine fractionation performed much better
under high-solid conditions. The lignin removal and solid recovery in
ammonia pretreatment were 60.9% and 62.9%, respectively, and the
cellulose content reached 59% (Supplementary Fig. 2). In DEA-based
fractionation, the lignin removal was low (31.8% or 20.0%) under the
condition without water (1.41ml DEA/g, namely pure DEA) or with too
much water (0.05ml DEA/g, namely DEA:water = 5:95 v/v), while good
delignification was observed at a DEA content in the range of 0.21
(DEA:water = 20:80 v/v) to 1.22ml/g (DEA:water = 80:20 v/v). Pretreat-
ments with 0.79 (DEA:water = 60:40 v/v) and 0.48ml DEA/g (DEA:-
water = 40:60 v/v) resulted in a similar lignin removal (~74%), which
outperformed ammonia and DES. It was found that the pretreatment
efficiency of DEA-based fractionation relied on the presence of water.
We surmised that DEA had stronger reactivity toward lignin and
facilitated the dissolution of lignin out of the lignocellulose matrix
more efficiently in the presence of water. The projection map of the
molecular electrostatic potential in Supplementary Fig. 3 confirmed
the formation of electrostatic potential penetration between electron-
rich nitrogen (N) atoms andwatermolecules, which endowedN inDEA
with stronger nucleophilicity. Additionally, water is necessary for DEA
ionization to form its superior basicity. As shown in Fig. 1d, lignin was
dissolved very well in the DEA-water mixture, while lignin was almost
insoluble in pure DEA. It is widely known that lignin is a typical
amphiphilic polymer that has both hydrophobic and hydrophilic
domains. The aggregation or solvation behaviors of lignin macro-
molecules in solvents are largely determined by the interactions
between solvent molecules and different lignin groups37. The radial
distribution function (RDF) was employed to analyze the distribution
of solvent molecules around the hydrophobic benzene ring and
hydrophilic hydroxyl of lignin. The g(r) of DEA molecules to the lignin
benzene ring was always larger than that of water molecules at the
same distance, indicating that DEA molecules grouped around the
hydrophobic functional groups of lignin more compactly and then
caused the solvation of lignin hydrophobic skeletons. With respect to
lignin hydroxyl, the g(r) value of water molecules was higher than that
of DEA molecules at short distances (0–3 Å), suggesting that water
molecules tended to be more distributed in the region around lignin
hydroxyl than DEA molecules and subsequently accelerated the sol-
vation of lignin hydrophilic fractions. Thus, we attribute the greater
pretreatment efficiency of the aqueous DEA system to the stronger
reactivity of DEA toward lignin and the easy solvation of lignin.

Among the pretreated CS substrates, the CS pretreated by 40%
DEA delivered the highest fermentable sugar yield (85.9% glucose and
78.0% xylose, respectively) with a cellulase (CTec 2) dosage of as low as
8 FPU/g glucan, as presented in Fig. 1e. On the other aspect, as the
pretreatment system remained solid-state at high solid loading, DEA-
treated CS could be enzymatically hydrolyzed directly without wash-
ing and detoxification steps. As shown in Fig. 1a (route B), superb sugar
yields were achieved upon direct saccharification in a substrate load-
ing range of 4% to 8% (>87% glucose and >74% xylose, respectively).
The further increase in the solid loading to 10–14% came a fall in the
enzymatic hydrolysis, but glucose and xylose yields still maintained a
high level of 73–77% and 63–66%, respectively. The findings verified
the feasibility of one-pot saccharification of biomass by combining
DEA pretreatment with enzymatic hydrolysis. Usually, cellulase inhi-
bitors (e.g., soluble lignin-derived phenolics) generated in lig-
nocellulose fractionation are deemed an important factor restricting
the efficiency of enzymatic cellulose hydrolysis38. To investigate whe-
ther similar inhibitors were produced in DEA-based fractionation, the
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lignin-rich stream collected from the water washing of DEA-treated CS
was added to the enzymatic hydrolysis system (see Supplementary
Fig. 4). Interestingly, enzymatic hydrolysis performance was far from
being inhibited but enhanced in the presence of the soluble matters
from DEA fractionation. Taking corn cob residue as an example, a 10%
v/v addition of DEA pretreatment liquor gave an optimal boost to

cellulose hydrolysis. When the addition was further increased to
20–30%, enzymatic hydrolysis was still improved, albeit the promoting
effect went slightly down. The results strongly suggested that no cel-
lulase inhibitors were produced during the DEA-based fractionation.
On the contrary, the lignin-rich stream promoted the enzymatic sac-
charification of lignocellulose.
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(30 wt%)

Without washing and 
detoxification

Direct enzymatic 
hydrolysis

Water washing

Solid with high 
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Next, we analyzed the major factors behind the increased enzy-
matic hydrolyzability of DEA-treated CS. The changes in biomass
morphologies before and after the pretreatment were examined by
SEM imaging (Fig. 1b). Compared to a flat and smooth surface of
untreated CS, the surface of DEA-treated CS became rough, along with
exposed slenderfibers, suggesting that the ultrastructural architecture
of biomass was disrupted and fragmented effectively. These mor-
phological changes were largely due to the removal of cell wall com-
ponents (mainly lignin that highly restricts the accessibility of enzymes
to the cellulose surface by forming a physical barrier)39. There was a
positive correlation between carbohydrate conversion and delignifi-
cation (Supplementary Fig. 5). Although numerous pretreatments
reported were also effective in lignin removal or relocation, non-
productive adsorption of cellulase onto residual lignin in pretreated
substrates still exerted pronounced inhibitory effects on enzyme
performance, thereby reducing sugar yields40,41. Quartz crystal micro-
gravimetry (QCM) was employed to explore the cellulase adsorption
dynamics on different residual lignins (Fig. 1f). The results demon-
strated that irreversible adsorptionof cellulase to ligninwas cut by62%
after DEA pretreatment. The maximum enzyme adsorption on the
lignins isolated from the CS treatedwith acidic ethanol/water solution,
hot water, and NaOH was measured to be 224.3, 153.9, and 162.6 ng/
cm2, respectively, in our previous work42, which are pronouncedly
larger than that on DEA-RL (residual lignin in the DEA-treated CS). XPS
spectra of N 1s in Supplementary Fig. 6 confirmed that hydrophilic N
was incorporated into DEA-RL. The overall hydrophilicity of lignin was
increased, which was proven by the smaller water contact angle
observed in DEA-RL (see Fig. 1f). The hydrophobic interaction, which
provides a long-range attraction, was proven to be the main driver for
the adsorption behavior of enzymes on lignin42. Based on these find-
ings, weproposed the dissimilarity in adsorption of cellulase on lignins
obtained from DEA and traditional pretreatment methods (Supple-
mentary Fig. 7). The increased hydrophilicity of DEA-RL significantly
reduces its binding ability with cellulase compared to lignins from
other pretreatment methods. Next to the lignin factor stated above,
the enzymatic digestibility of cellulose itself in pretreated lig-
nocellulose is also an important aspect affecting final carbohydrate
conversion. As a semicrystalline natural polymer, its crystallinity index
(CrI) divided by the cellulose content is regarded as a good indicator
for evaluating the proportion of disordered cellulose that is suscep-
tible to enzymatic hydrolysis43. As seen from the XRD patterns (Sup-
plementary Fig. 8), NaOH-treated CS showed a slight decrease in the
CrI/cellulose values (0.99) compared to untreated CS (1.08), while
DEA-treatment decrystallized cellulose more efficiently. The smallest
CrI/cellulose value (0.64) was obtained in 40% v/v DEA-treated CS.

In conclusion, the presence of water (best at 60% v/v) is necessary
for enhancing the pretreatment efficiency of the DEA system.
Enhanced delignification, decreased nonproductive adsorption of
cellulase on lignin, and decrystallized cellulose jointly contributed to
the high fermentable sugar yield of DEA-treated lignocellulose at a low
cellulase loading.

Single-step N-participated lignin conversion
The processability of the lignin from DEA-based fractionation is
another important concern. To our delight, the coproduction of

phenolic and N-functionalized monomers was achieved via a tandem
strategy coupling amine-based fractionation with hydrogenolysis.
Specifically, N-heterocyclic compounds were produced via direct
hydrogenolysis of DEA pretreatment liquor, without the need of iso-
lating lignin. Additionally, moderate conditions (ca. 250 °C and 18 bar)
and a harmless and green solvent (H2O) were employed in our work.
Until now, considerable research efforts have focused solely on simple
dimeric or monomeric lignin models as starting materials to produce
N-containing chemicals26–29. However, due to the more sophisticated
structure of realistic lignin, those tactics that work for model com-
poundsmay not hold for real lignin28,44. In earlier works (Table 1), lignin
was first extracted from lignocellulose using acidic organic solvents
and then isolated from the solvents using plenty of water. Subse-
quently, the isolated lignin was converted to N-containing compounds
using twostrategies. In thefirst strategy, ligninwasfirst depolymerized
to lignin oil with low molecular weight, and then the resulting oil was
converted to benzylamines with amine and Pd/C under argon28. Ana-
logously, Ruijten et al. employed an RCF to replace traditional pre-
treatment for producing refined lignin oil from lignocellulose,
followed by sugar isolation and heptane/ethyl acetate extraction to
obtain a monomer-enriched fraction of the lignin oil. Finally, the Cu-
SiO2-based aminationprotocolwas applied to convert the fraction into
a tertiary amine monomer45. The second strategy involves lignin
modification prior to depolymerization. For instance, N-modified lig-
nin was produced first by a three-step process (oxidation, oximation
and acetylation), and then the modified lignin underwent a photo-
catalytic reaction to generate nonphenolic arylamine products46.
Despite the above progress, the current protocols for N-participated
lignin conversion still have some shortcomings, such as cumbersome
steps, and low N-containing monomer yield.

Herein, the single-step conversion of real lignin to pyridine bases
is proposed, whereas in earlier studies, additional refunctionalization
was necessary to harvest high-value chemicals from lignin depoly-
merization products (e.g., low-functionalized aromatics, alkanes, or
alcohols)47–49. As shown in the insert images in Fig. 2, the lignin-rich
liquor fromDEA fractionation changed from black to light yellow after
hydrogenolysis, while conversely, the NaOH pretreatment liquor
became darker (Supplementary Fig. 9). The observation indicated that
the lignin-rich stream derived from DEA fractionation was more liable
to depolymerization andupgrading than that fromNaOH treatment. In
addition, there was a decrease in the pH of the DEA pretreatment
liquor from the initial value of 11.5 to 9.5 after mild hydrogenolysis,
while no noticeable change occurred in the pH of the NaOH pre-
treatment liquor. This suggested that unreacted amines in the DEA
pretreatment streamwere consumedandengaged in lignin conversion
during the catalytic depolymerization, whereas NaOH base did not
take part in the reaction. These findings indicated that depolymeriza-
tion and amination occurred simultaneously in one pot.

Next, the distribution and yield of the products from hydro-
genolysis were analyzed using GC-MS, GC-FID, and GC×GC-MS. After
the hydrogenolysis of DEA pretreatment liquor, the mixture was
acidified and extracted with ethyl acetate. Monomeric phenolics in the
organic phase were identified by GC-MS (Fig. 2a). Among the aromatic
monomers, nearly 70% were compounds A2, A4, A5, and A8, and the
total monophenol yield (15.6wt%) was over doubled, compared with

Fig. 1 | Development of high-solid amine-based fractionation for the covalor-
ization of carbohydrate and lignin. a Two biorefinery designs with DEA-based
lignocellulose fractionation. A: Utilization of solid residues and lignin-rich stream
after water washing step. B: Direct enzymatic hydrolysis of DEA-treated CS without
any washing and detoxification. Saccharification condition: 15 FPUCTec2/g glucan,
50 °C, pH 4.8, 150 rpm, and 72 h. b SEM images of untreated and 40% v/v DEA-
treated CS. c Lignin removal in different pretreatments. d Radial distribution
function (RDF) of DEA and water molecules around hydrophobic (benzene ring)
and hydrophilic (hydroxyl) functional groups of lignin in the DEA-water mixture

solvent. Insert images: photos of 40mg of enzymatic hydrolysis lignin (EHL) in
15ml of DEA-water (40:60 v/v) and pure DEA. e Glucose and xylose yield of
untreated CS and CS treated with different pretreatment reagents. The enzyme
dosage was 8 FPU CTec2/g glucan. f QCM frequency changes during the enzyme
adsorption on lignin films, and comparison of water contact angle on DEA-RL and
CEL surfaces. CS corn stover, DEA diethylamine, DES deep eutectic solvent, DEA-RL
residual lignin isolated from40%v/vDEA-treatedCS solids, CEL cellulolytic enzyme
lignin isolated from untreated CS. Error bars represent the standard deviation.
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those from NaOH pretreatment liquor (6.8wt%). The theoretical
maximum yield of monophenols for the lignins isolated from the DEA
and NaOH pretreatment liquors was estimated to be 27.5% and 21.0%,
respectively, using the nitrobenzene oxidation method. This sug-
gested that the depolymerization efficiency of the lignins in the DEA
pretreatment liquors (57%) surpassed that of the ones in the NaOH
pretreatment liquors (32%). It is worth noting that carboxylic- or
ketone-substituted methoxyphenols or phenols (A7–A11) were
detected, indicating that theC=Ogroupswere not completely reduced
and partially survived in hydrogenolysis. There were no phenolic
monomers in the DEA pretreatment liquor before hydrogenolysis
(Supplementary Fig. 10). Furthermore, lignin-derived phenolic dimers
bearing β–O–4′, β–β′, and β–5′ interunit linkages were also present in
the hydrogenolysis products of the DEA pretreatment liquor, accord-
ing to LC-MS analysis (Supplementary Fig. 11).

The introduction of N made another category of products pre-
ferentially soluble in acidic environments and therefore remained in
the aqueous phase. Pyridine bases were identified in the hydro-
genolysis products from the DEA pretreatment liquor, including 5-
ethyl-2-methylpyridine (M5), 3-ethyl-4-methylpyridine (M10), and 2-
ethyl-6-isopropylpyridine (M9), as shown in the GC-MS profiles in
Supplementary Fig. 12, while no such products were detected in those
from the NaOH pretreatment liquor and the control experiment
(without lignin).However, due to the complexity of the products in the
aqueous phase, it was difficult to identify all lignin-derived N-con-
taining products using GC-MS. Alternatively, two-dimensional gas
chromatography (GC ×GC) was employed, which has higher resolu-
tion, larger peak capacity, and higher sensitivity than conventional
one-dimensional GC50. As a result, more N-containing monomeric
products were assigned (Fig. 2b). M5, 3-hydroxypyridine (M6), and
M10 were the prevailing products, accounting for 70%. Additionally,
some phenolic (B3 and B6) and nonphenolic arylamines (B1, B2, B4,
and B5) were also observed, which likely resulted from the aminated
structures of lignin formed in theDEA fractionation.More importantly,
the present process achieved an N-containing monomer yield of up to
21.3 wt%, which surpassed the yield reported in the literature (Table 1).

Structural characterization of the dissolved lignins
The lignins (DEA-L and AL, respectively) isolated from DEA and NaOH
pretreatment liquors were structurally characterized in terms of
molecular weight, functional groups, element composition, interunit
linkage distribution, and amine incorporation, which could help
explain the easy depolymerization of DEA-L in hydrogenolysis. The
GPC results showed that both initial DEA-L and AL showed almost
identical Mw (2400Da) (see Supplementary Fig. 13), but the hydro-
genolysis products of DEA-L displayed a lower Mw (1000Da) than
those ofAL (1500Da). This indicated thatmolecularweightwas not the
main factor that affected lignin reactivity toward catalytic
depolymerization.

Increased N content (3.1%) (elemental analysis) and N–H bending
vibrations (FTIR analysis) confirmed the N incorporation in DEA-L
(Supplementary Fig. 14). 2D HSQC NMR spectra provided more com-
prehensive structural information of the lignins (Fig. 3), including
sidechain and aromatic regions. As shown in the HSQCNMR spectrum
of CEL (a typical representative of native lignin) fromuntreatedCS, the
substructures A (β–O–4′), B (β–5′), and C (β–β′) were assigned, and
β–O–4′ accounted for 61 per 100 aromatic units. The β–O–4′ content
declined in both AL and DEA-L, but more β–O–4′ subunits were pre-
served in DEA-L (37 per 100 aromatic units, A + A′ signals) than in AL
(27 per 100 aromatic units), and DEA-L displayed lower β–β′ and β–5′
contents of 5 and 2 per 100 aromatic units, respectively. It is usually
agreed that the monomer yield has a positive relation with the β–O–4
ether content in lignin47,51. In addition, the δC/δH 40–45/2.6–3.4 ppm
signals in the side-chain region, which only appeared in DEA-L, belong
to amine and ammonia incorporation. As expected, the amine wasTa
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introduced to the α position of β–O–4′ subunits (A) by nucleophilic
attack, leading to α-aminated structures (A′). The DFT calculations of
the lignin model compound predicted that the bond dissociation
energy (BDE) for the β–O–4′ bond was 307 kJ/mol. DEA substitution at
the α-position was found to lower the BDE by 10 kJ/mol (Supplemen-
tary Note 1). In the aromatic region, DEA-L featured the lowest S unit
content (34%) and the highest H unit content (24%) compared to CEL
(S: 51%, H: 4%) and AL (S: 42%, H: 10%), suggesting that demethoxyla-
tion of S-type lignin probably occurred in DEA fractionation.

Overall, the in situ incorporation of N into lignin was achieved
during DEA fractionation. In particular, the blocking of the active α-
position formed a stabilized β–O–4′ motif to avoid undesirable repo-
lymerization and lowered the BDE of the β–O–4′ bond. These unique
aminated structures combined with a high amount of β–O–4′ subunits
and anoverall low fraction of C–C interlinkage contributed together to
the high activity of DEA-L toward catalytic depolymerization in
hydrogenolysis. In addition, aqueous amine is likely to be more
favorable for depolymerization of the lignin than NaOH solvents.

Mechanistic studies
To gain insight into the lignin reaction mechanism during DEA frac-
tionation, amodel studywas conductedusing themost common lignin
model compound (guaiacylglycerol-β-guaiacyl ether, GE). Reaction
parameters as in 40%DEA fractionationwere used for themodel study.
Afterward, the products were identified by GC-MS (see Supplementary
Fig. 15 and Supplementary Note 2). Based on the products from the
model compound, an amine-mediated reaction pathwaywasproposed
for the β–O–4′ structure during DEA treatment (Fig. 4). Similar to the
reaction of lignin in an alkaline medium1, the β–O–4′ unit was first
transformed into a pivotal intermediate—quinone methide. The inter-
mediate is especially prone tobe attacked atα-positionbynucleophilic
reagents due to its tendency to restore aromaticity. Owing to the
strong nucleophilicity of N enhanced by two nearby electron-donating
groups, DEA is a strong nucleophile and won the competition with
in situ formed lignin nucleophiles, therebypreventing the formationof
new C–C interunit linkages. Subsequently, the α-aminated inter-
mediates could experience the scission of β–O–4′ bonds via the
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formation of cyclic nitrogen intermediates. The as-formed inter-
mediates underwent a series of downstream reactions, such as ring-
opening, elimination reaction, oxidation, and ammoniation, yielding
products such as γ-amino-4-hydroxybenzenepropanol, coniferyl alco-
hol, 3-(4-hydroxyphenyl)-1-propanol, dihydroferulic acid, and conifer
aldehyde. Alternatively, the quinonemethide intermediate underwent
rearrangement to restore its aromaticity and led to an alkali-stable enol
ether motif.

After the fractionation, the stream containing lignin-derived
fragments proceeded to the hydrogenolysis stage. The hydro-
genolysis products disclosed in Fig. 2 and the oxidized products found
in β–O–4′ model studies indicated that the side chains of aromatic
substructures were partially oxidized. The products with the side
chains retaining (A7–A11) were generated via the catalytic cleavage of
interunit linkages, and on the other side, side-chain cleavage occurred,
generating a series of short-chain compoundswith C=Ogroups (Fig. 4)
and simple phenolic monomers (A1–A5). The as-formed compounds
bearing C=Ogroups then condensedwith ammonia or primary amines
to yield aldimine intermediates. Further condensation between var-
ious aldimines formed diamino/diamine imines, which readily under-
went cyclization with the elimination of ammonia or amines to
produce intermediate tetrahydropyridine52. An active hydrogen of the
tetrahydropyridine subsequently reacted with an aldimine molecule
and then underwent rearrangement by losing ammonia and/or amines
to generate the pyridine base products (M5 and M10), which were
identified by GC×GC-MS. A plausible reaction pathway with more
details between lignin-derived aldehydes and amines/ammonia to
produce 5-ethyl-2-methylpyridine is shown in Supplementary Fig. 16.
Notably, DEA could be oxidized and then undergo cope reactions to
give substituted hydroxylamine and alkene. Ammonia or primary
amines were formed via the decomposition of substituted hydro-
xylamine at high temperatures.

To further confirm the hypothesis that aromatic compounds with
oxidized end groups can be transformed to pyridine bases under
aqueous DEA and hydrogenolysis conditions, four lignin model com-
pounds bearing C=O groups, including 4-hydroxyacetophenone, 4-
hydroxy-3-methoxyphenylpyruvic acid, 4-hydroxyphenylacetic acid,
and 4-hydroxy-3-methoxycinnamaldehyde, were investigated in the
similar reaction environment. From Supplementary Note 3, products
such as phenol, guaiacol, p-cresol, 4-ethylphenol, 2-methoxy-4-
methylphenol, and 4-ethylguaiacol were detected from the side-chain
cleavage of the model compounds. More importantly, numerous
pyridine base products were generated. The results revealed that
pyridine bases were synthesized via the pathway of the scission of the
oxidized side chain followed by the reactions between the cleaved side
chain and amines.

Finally, the role of Cu(OAc)2 was unmasked through a comparison
of the products obtained in hydrogenolysis with and without
Cu(OAc)2. As shown in Supplementary Fig. 17, the hydrogenolysis
liquor without Cu(OAc)2 appeared darker in color and had a higher pH
(10.7), compared to those with Cu(OAc)2, suggesting that a copper
catalyst facilitated lignin depolymerization and the amination of the
products. GC-MS analysis revealed that the hydrogenolysis liquor
without Cu(OAc)2 contained fewer A2, A4, and A5 compounds but
more compounds bearing C=O groups (A7 and A9). In addition,
Cu(OAc)2 significantly increased the content of pyridine bases in the
hydrogenolysis liquor. From the synthesis mechanism of substituted
pyridines above, we speculated that Cu(OAc)2 played an important
role in cleaving the oxidized side chains of the lignin. The cleaved side
chains were subsequently aminated to yield substituted pyridines. In
the presence of Cu(OAc)2, a similar cleavage of the C–C bond was
observed in the reaction of different lignin models with amines/
ammonia53. Additionally, a Cu-based catalyst has been used to catalyze
the amination of monomers and dimers in lignin oil45. On the other
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hand, Cu(OAc)2 may be involved in the activation of substrates that
lead to the synthesis of pyridine derivatives.

Discussion
In the carbohydrate-first strategies, the liberation of lignin from the
lignocellulose matrix is the primary target to accelerate carbohydrate
valorization. However, harsh processing conditions were generally
applied to reach extensive delignification, which in turn negatively
affected the reactivity of the resultant lignin due to condensed struc-
tures and thereby the yield of lignin-to-aromatic conversion. To avoid
lignin repolymerization, moderate conditions of 130 °C and 1 h were
employed for DEA treatment in our study. Under suchmild conditions,
ligninwas isolated in high yield, because aqueousDEA facilitated lignin
migration and dissolution, and lignocellulose ultrastructure decon-
struction. More importantly, the incorporation of N into lignin sub-
structures, especially at the α-active position of the β–O–4′ motif,
efficiently suppressed lignin condensation and preserved more
β–O–4′ structures. Therefore, high-reactivity lignin with easily
degradable structures enabled an efficient catalytic depolymerization
in hydrogenolysis to produce value-added monomers in high yield.

The lignin-first concept pays muchmore attention to the optimal
utilization of lignin. The addition of extra protective reagents during
biomass fractionation, e.g., aldehydes, to trap the benzyl carbocation
intermediate is the state-of-the-art stabilization approach11,18. Although

lignin with protection groups prominently promoted lignin-derived
monomer production, the lignocellulosic substrates generated in
lignin-first biorefineries cannot be enzymatically hydrolyzed as effec-
tively as those from carbohydrate-first strategies. Our fractionation
strategy not only facilitated catalytic lignin conversion but also
improved the enzymatic hydrolyzability of carbohydrates due to high
delignification, decrystallization of cellulose, and sharply reduced
nonproductive adsorption of cellulase on the in situ N-modified lignin.
Furthermore, the lignin-rich DEA pretreatment liquor could enhance
the enzymatic hydrolysis performance of lignocellulosic substrates.

To expand the product portfolio and improve the economic via-
bility of biomass refineries, the production of lignin-derived N-con-
taining chemicals has become a rising research interest. Pyridine bases
are widely used heterocycles in the fields of dyes, polymers, and
medicinal chemistry54. In this study, pyridine baseswere synthesized in
high yield from real lignin. Compared with other complicated
N-participated lignin conversion pathways, pyridine bases were pro-
duced via a simple tandem strategy in this study, DEA-based fractio-
nation of lignocellulose followed by direct hydrogenolysis of the
lignin-rich stream. Furthermore, a satisfactory yield (21.3 wt%) of
N-containing monomeric compounds based on realistic lignin was
obtained, which was significantly higher than the yield of <10wt% in
previous studies28,45,46,55,56. The pyridine bases were formed in two
steps. First, the reactions between the aldehydes and ketones derived
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from the lignin side chains and ammonia/amines generated imine
intermediates. These intermediates then undergo condensation,
cyclization, and rearrangement to yield the target products. The
majority (70%) of the final products were identified as 2-methyl-5-
ethylpyridine, 3-ethyl-4-methylpyridine, and 3-hydroxypyridine.

The DEA process in this study achieved the efficient covalor-
ization of lignin and polysaccharide fractions (see mass balance flow
in Fig. 5), which reconciled the dilemma of carbohydrate- and lignin-
first biorefineries. The fractionation technology with a DEA-water
yielded 30wt% lignin monomers, 90% xylose, and 86% glucose.
Approximately 13% glucan and 8% xylan were not recovered during
the DEA pretreatment. The common degradation products of car-
bohydrates reported in other works57,58, such as furfural,
5-hydroxymethylfurfural (5-HMF), and levulinic acid, were not
detected in the DEA pretreatment liquor (Supplementary Fig. 18). To
investigate potential side reactions between xylan and amines, we
treated xylose in a 40%v/vDEA solution (SupplementaryNote 4). The
GC-MS analysis confirmed the presence of cyclopentene derivatives,
furan derivatives, and N-heterocyclic compounds in the product
mixture. Apart from producing small molecule compounds, brown
nitrogenous polymers may be generated through Maillard reactions
between carbohydrates and amines59.

In addition to the mass flow of lignocellulosic components, a
Sankey chart of DEA was established, as presented in Fig. 5. During the
processing of CS, ~6% of DEA was lost due to its low boiling point.
Another 1% and 2% of DEAwere consumed in the amination of residual
lignin and dissolved lignin, respectively. Approximately 91% of the
unreacted DEA in the pretreatment liquor proceeded to the next step.
In hydrogenolysis, 13% of DEA participated in the amination reactions,
yielding a large amount of N-functionalized compounds. The remain-
ing DEA could be recycled from the phenol and pyridine products via
rectification, as confirmed by the Aspen simulation (Supplemen-
tary Fig. 19).

We next conducted a preliminary techno-economic analysis (TEA)
of the N-participated lignin valorization to evaluate the economic
viability of the proposed method, with a particular focus on deter-
mining the minimum pyridine selling price (MPSP)3. Based on our
experimental design, an Aspen process flow diagram for pyridine base
production from lignin is presented in Supplementary Fig. 19. This
model integrates two main steps: (1) the catalytic depolymerization
and amination of lignin; (2) the separation and purification of the
products. The MPSP in the simulation system was $2.8/kg (Supple-
mentary Table 4), lower than the market prices of $3.0–3.5/kg60. The
result indicates the significant potential of our innovative lignin
valorization approach to drive the development of cost-effective
biorefineries. However, it should be noted that the TEA solely repre-
sents an initial assessment since the proposed technology is still in its
infancy.

Finally, we also noticed that pure ethylenediamine (EDA)was used
in some studies to achieve high enzymatic digestibility of CS and
produce lignin with extraordinary aqueous solubility61–63. However,
further processing opportunities of the lignin produced from the
pretreatments were not studied. Moreover, DEA is nearly twice as
inexpensive as EDA, and an aqueous solution of DEA was used for the
fractionation in this study, which further reduced the cost of the
solvent.

Methods
High-solid pretreatment of corn stover
Corn stover pretreatment was carried out in a 100-ml stainless steel
reactor with a Teflon lining. First, 5.4 g CS was mixed with a pretreat-
ment reagent at a biomass loading of 30wt%. The pretreatment
reagents used here included pure DEA, aqueous solution of DEA at
different concentrations, deep eutectic solvent (DES) composed of
choline chloride and glycerol (1:2, molar ratio)64, and ammonia solu-
tion (≥28%). The reactor was heated to 130 °C and kept at the
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temperature for 1 h in a drying oven. After completing the reaction, the
reactor was cooled down, and the resultant mixture was rinsed out
with water (50 ml × 3). The solid and the liquid were separated using a
filter bag, and the solid was dried at 60 °C to amoisture content below
10%. The lignin-rich liquor was collected and named as pretreatment
liquor.

Enzymatic hydrolysis of the pretreated corn stover substrates
Enzymatic hydrolysis of the pretreated substrateswasperformed at 2%
w/v glucan loading with a total volume of 20ml at 50 °C, pH 4.8
(50mM NaAc-HAc buffer), and 150 rpm. Two mg of tetracycline was
added to avoid bacterial contamination. Commercial enzymes CTec2
were added at the required dosages in 8 FPU/g glucan. Following the
enzymatic hydrolysis for 72 h, an aliquot (500μl) of the hydrolysate
was taken, centrifuged, and filtered through a 0.22-μm membrane fil-
ter. Finally, the glucose and xylose concentrations in the supernatant
were analyzed using HPLC with an HPX-87H column.

Typical procedure for the hydrogenolysis of pretreatment
liquors
The hydrogenolysis of pretreatment liquors was performed under an
H2 pressureof 18 bar. Specifically, pretreatment liquor (20ml), 10%Pd/
C (50mg), and Cu(OAc)2 (30mM) were placed in a high-pressure
reactor (50ml) and stirred at 400 rpmat250 °C for240min. After that,
the reactor was rapidly cooled down in an ice-water bath. The mixture
from the hydrogenolysis was acidified to pH= 2 with 5% hydrochloric
acid, and ethyl acetate was added to extract phenolic monomers. The
organic phase was dried with a rotary evaporator, and then 3ml of
acetone and 0.5ml of n-decane (1.0mg/ml in methanol, internal
standard) were added to completely dissolve the dry residue. Lignin-
derived phenolics were identified by GC-MS and quantified by GC-FID.
For the aqueous phase after extraction, water was removed first with a
rotary evaporator, and the products were dried in an oven at 55 °C and
then dissolved in 1ml of acetone and 0.3ml of internal standard.
Before GC ×GC-TOF-MS analysis, silylation was conducted to increase
product volatility. In brief, 150μl of the sample solution was mixed
with 500μl N-methyl-N-trimethyl-silyl-trifluoroacetamide (MSTFA)
and 500μl pyridine, and themixturewas held at room temperature for
at least 2 h prior to analysis.

Data availability
The experiment data generated in this study are provided in the
Source Data file. Any other relevant data are available from the authors
upon request. Source data are provided with this paper.
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