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Functional host-specific adaptation of the
intestinal microbiome in hominids

M. C. Rühlemann 1,2 , C. Bang1, J. F. Gogarten3,4,5,6, B. M. Hermes7,8,
M. Groussin 1, S. Waschina 9, M. Poyet8, M. Ulrich4,5, C. Akoua-Koffi10,
T. Deschner11, J. J. Muyembe-Tamfum12, M. M. Robbins13, M. Surbeck 14,15,
R. M. Wittig16,17, K. Zuberbühler18,19, J. F. Baines7,8, F. H. Leendertz4,5 &
A. Franke 1

Fine-scale knowledge of the changes in composition and function of the
human gut microbiome compared that of our closest relatives is critical for
understanding the evolutionary processes underlying its developmental tra-
jectory. To infer taxonomic and functional changes in the gut microbiome
across hominids at different timescales, we perform high-resolution metage-
nomic-based analyzes of the fecal microbiome from over two hundred sam-
ples including diverse human populations, as well as wild-living chimpanzees,
bonobos, and gorillas. We find human-associated taxa depleted within non-
human apes and patterns of host-specific gut microbiota, suggesting the
widespread acquisition of novel microbial clades along the evolutionary
divergence of hosts. In contrast, we reveal multiple lines of evidence for a
pervasive loss of diversity in human populations in correlation with a high
Human Development Index, including evolutionarily conserved clades. Simi-
larly, patterns of co-phylogeny between microbes and hosts are found to be
disrupted in humans. Together with identifying individual microbial taxa and
functional adaptations that correlate to host phylogeny, these findings offer
insights into specific candidates playing a role in the diverging trajectories of
the gut microbiome of hominids. We find that repeated horizontal gene
transfer and gene loss, as well as the adaptation to transient microaerobic
conditions appear to have played a role in the evolution of the human gut
microbiome.

Human gut microbiome research has demonstrated that numerous
factors, including diet, environment, and lifestyle influence the
structure of the human gut microbiota, which in turn have pro-
found impacts on human health and disease1–3. To date, the
majority of these studies were conducted on sample collections
from high-income countries, however growing efforts to include
humans from diverse global populations are underway, thereby
providing an additional angle to investigate and evaluate shared
and specific microbiome properties across human populations3–6.

These efforts provided an opportunity to discover signatures of
host geography and lifestyle that go beyond conventional differ-
ences in diversity parameters in the gut community. For instance,
they revealed elevated rates of horizontal gene transfer (HGT) that
correlate with the Human Development Index (HDI, a statistical
composite index of indicators encompassing life expectancy, edu-
cation, and income7;) of a population, suggesting that gut micro-
biota constantly acquire new functions in conjunction with host
lifestyle changes8. However, the mechanisms that link changes in
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gut microbial structure with host behavior and ecology remain
largely unexplored.

Additional critical insight into understanding patterns of diversity
and composition among human gut communities can be obtained
from comparative surveys of the hominid gut microbiota. Humans,
chimpanzees, bonobos, and gorillas show increasingly divergent gut
microbiota, with more distantly related species exhibiting more
divergent community composition (phylosymbiosis9;). At the same
time, the phylogeny of some of their individual microbial lineages
parallels their own phylogeny (codivergence10,11;). Both patterns of
phylosymbiosis and codivergence are suggestive of long-term effects
of hominid evolution on their communities of symbionts12–14. Notably,
results from comparative marker-gene analyzes suggest co-
diversifying members of the hominid gut microbial communities
(both prokaryotic and phage) are lost and replaced with human
lineageswhen animals leave their natural environments and aremoved
into captivity15,16. However, poor taxonomic resolution and a lack of
functional characterization precludes a deeper understanding of pro-
cesses driving these changes.

Functional analyzes from shotgun metagenomic data revealed a
conservedphylogenetic signal acrosswild non-humanprimates (NHP),
despite dietary changes over an individual’s lifespan and between
species, suggesting that the evolution of gut microbiota within wild
NHP is partially constrained by host genetics and physiology17. A
comparative meta-analysis of microbial functions in NHP and diverse
human populations observed a comparable loss of biodiversity in
captive NHP and human populations from regions with higher HDI18,
supporting previous findings19. However, overall, the functional char-
acterization of NHPmicrobiota in previous studies has been limited to
only selected microbial taxa without addressing broader-scale func-
tional changes and specific alterations, especially in African great apes
and humans. As such, robust comparative functional analyzes are still
needed for a comprehensive understanding of how gut microbiota
have evolved with hominids and shaped the current structure and
functional capabilities (and deficits) of the human gut microbiome.

To better elucidate host-microbiome interactions in the hominid
gut in an evolutionary context, we present a large-scale comparative
study of wild non-human apes (NHA) and humans from geographically
distinct populations spanning two continents. Functional shotgun
metagenomic sequencing was performed on feces samples of wild-
living great apes from six African countries, including two gorilla
species, three chimpanzee subspecies, and bonobos, and combined
with published data from gorillas and chimpanzees from the Republic
of Congo20. Additionally, we sequenced human fecal samples from two
African populations21 from rural villages of the Taï region in Côte
d’Ivoire (HDI2021 = 0.5507;) and the Bandundu region near Salonga
National Park, Democratic Republic of the Congo (HDI2021 = 0.479),
along with samples from Germany (HDI2021 = 0.942), and included a
published dataset from Denmark (HDI2021 = 0.94822;) to incorporate
varying degrees of HDI. Using this extensive data resource, we created
a comprehensive catalog of high-quality prokaryotic genomes
assembled from metagenomic data, which we annotated on a taxo-
nomic and functional level. We subsequently explored patterns of
diversity and host-specificity for both taxonomic groups and func-
tions, which reveals intriguing patterns associated with human gut
microbial communities, convergent functional adaptations across
lineages, and the potential mechanisms driving these patterns.

Results
An expanded catalog of microbial genomes from the
hominid gut
Using 224 shotgun metagenomic datasets (Suppl. Data 1) from fecal
samples of humans (Côte d’Ivoire (CIV),n = 12, Dem. Rep. of the Congo
(DRC), n = 12, Denmark (DK), n = 24, and Germany (GER), n = 24) and
non-human apes, including two gorilla subspecies (Gorilla gorilla

gorilla, Gabon (GAB), n = 8; Gorilla beringei beringei, Uganda (UGA),
n = 11, and Republic of Congo (CG), n = 28), three chimpanzee sub-
species (Pan troglodytes verus, CIV, n = 55; P.t. troglodytes, GAB, n = 11,
and CG, n = 18; P.t. schweinfurthii, UGA, n = 12), and bonobos (Pan
paniscus, DRC, n = 12), we reconstructed a total of 7700 metagenome-
assembled genomes (MAGs) ensuring maximum completeness and
low contamination using multiple binning algorithms and dedicated
curation and scoring tools (23; see Methods). The most MAGs (quality
score >50%) were reconstructed for the most sampled subgroup of
great ape, P.t. verus (n = 2182), while the average number of recon-
structed MAGs per sample was the highest for P.t. schweinfurthii
(mean=74.5). Library size / number of sequencing reads was highly
correlated with total assembly size (ρSpearman = 0.644), which in turn
wasdirectly correlatedwith the number of bins recovered for a sample
(ρSpearman = 0.966).

To ensure a comprehensive reference for the analysis, the col-
lection of MAGs was combined with two large collection of microbial
reference species reconstructed from human fecal metagenomes
(UHGGv2, n = 4744 isolates and MAGs24;), and non-human primate
fecal metagenomes (n = 1295 MAGs18;), resulting in a total of n = 13,739
genome sequences; MAGs were subsequently clustered into 5777
species-level genome bins (SGBs; 95% ANI) using stringent criteria
(Suppl. Fig. S1a and S1b, Supplementary Data 2). Of these, 1074 SGBs
were not previously covered by either of the two large reference sets,
mostly originating from NHA samples (n = 956, 89.0%; Suppl.
Fig. S1c). The highest-quality genome sequence in each SGB was
chosen as its representative. Overall quality of SGB representative
genomes was high (median quality score = 94.1%; Suppl. Fig. S1d).
SGB representatives were used as comprehensive reference for the
estimation of per-sample abundances (Methods, Suppl. Fig. S1e,
Suppl. Data 3). In total 3287 SGBs, encompassing 21 bacterial and two
archaeal phyla (Suppl. Fig. S1b), were found present in the dataset.
This curated catalog of SGBs from gorillas, bonobos, and chimpan-
zees increases the number of microbial species genomes previously
reconstructed from feces by more than ten-fold, and increases
mapping success of fecal metagenomes from NHAs to reference
genomes by two- to three-fold (Suppl. Fig. S1e18). As expected, only
minor proportions of SGBs from human samples were not previously
covered by the included large reference collections, with 5.8%, 2.7 %,
1.8 and 1.7% of SGBs found in samples from CIV, DRC, DK, and GER,
respectively, falling into this group (Suppl. Fig. S1e). For both NHAs
and humans, the highest percentages of previously uncovered
diversity were observed within the phyla Bacteroidota and Spir-
ochaetota, and, to a lesser degree, within Firmicutes and Firmicutes A
for NHAs only (Suppl. Fig. S1f). Generally, recovered clusters were
highly host specific. While the 7700 MAGs spanned 1787 of the final
SGBs, only for 48 of these SGBs MAGs were reconstructed from
samples of more than a single host genus.

Within sample diversity varied considerably between host (sub-)
species and with sequencing depth (Suppl. Fig. S1g). The used SGB
collection covers large proportions of the diversity found within the
human gut (Suppl. Fig. S1e) and Faith’s phylogenetic diversity (PD)
incorporates SGB relatedness in the diversity calculation, which
enables a better estimate of total diversity of a community then sim-
pler richness estimates from taxonomic group abundances. Phyloge-
netic diversity (PD) at an even mapping depth of 1 million reads per
sample showed significantly lower diversity in humans compared to all
African great ape hosts (PWilcoxon = 1.2 × 10−13; Fig. 1a). Comparing
individual human populations to African great ape hosts revealed that
humans from GER and DRC showed lower means than all NHA group
(all PWilcoxon < 0.05), while humans from CIV and DK exhibited high
variance and were found to have significant lower diversity than all
NHA hosts (PWilcoxon < 0.05), except for G. g. gorilla and P.t. troglodytes
(PWilcoxon > 0.05). These two great ape taxa were found to have the
lowest library sizes, low numbers of recovered genomes and lowest

Article https://doi.org/10.1038/s41467-023-44636-7

Nature Communications |          (2024) 15:326 2



mapping efficiency. Taken together, this suggests that phylogenetic
diversity in these hosts may be biased by lower representation in the
reference database and that the reduced diversity could be an artefact
of this. Consequently, samples with less than 1 million mapped reads
were removed from further analyzes. This resulted in the removal of
samples from the analysis for the groups G.b. beringei (n = 1), G.g.
gorilla (nGAB= 5, nCG = 1), P.t. troglodytes (nGAB= 4), P.t. schweinfurthii
(n = 1) and humans from CIV (n = 1). Of note, the lowest and highest
mean values for within-sample phylogenetic diversity were found for
the human subgroups from Germany and Denmark, respectively, the
latter exhibiting the only significant differences between human sub-
sets (PWilcoxon < 0.05 vs. DRC and GER), contradicting previous reports
of lower alpha diversity generally found in high HDI countries3,4.
Additionally, the considerable differences in PD observed betweenCIV
and DRC highlight the diversity found between human populations
and the need to better characterize human gut microbiome diversity.
Therefore, while total diversity of some host groups was likely not
exhaustively sampled, especially considering lower abundant micro-
bial clades, the presented reference collection of high-quality meta-
genome reconstructed genomes likely represents the current best
resource for an in-depth taxonomic and functional assessment of
hominid fecal microbiomes and highlights that some human popula-
tions, including those sampled in this analysis, have lost considerable
microbial diversity in their guts.

Phylosymbiosis in hominids is strongly supported by commu-
nity structure
Phylosymbiosis, a pattern in which microbial community divergence
parallels that of the hosts, can be a sign of community-level co-evo-
lution of host andmicrobiota, indicative of host-microbe relationships
maintained over evolutionary timescales9. To investigate such pat-
terns,weused six differentmeasuresofbeta diversity. Fourwerebased
on phylogenetic or taxonomic distance metrics (weighted and
unweighted UniFrac, as well as genus level Aitchison and Jaccard dis-
tance), and two additionalmetrics considered the functional capacities
of the community (KEGG ortholog (KO) abundance and presence/
absence patterns; Suppl. Fig. 2). Strong signals for phylosymbiosis
were found for Jaccard, and unweighted UniFrac distances (P < 0.001;
QBonferroni < 0.01), as well as a less pronounced signal for Aitchison
distance and the abundance of functional groups (P <0.01,
QBonferroni = 0.0534 and QBonferroni = 0.0585, respectively; Fig. 1b and c,
Suppl. Fig. 2, Suppl. Data 4), but not for the distances based on pre-
sence and absence of KOs (P =0.055, QBonferroni = 0.33) and the
weighted UniFrac distance (P = 1). These results suggest phylo-
symbiotic divergence in the general microbial structure of hominid
microbiota (Jaccard and unweighted UniFrac are based on the pre-
sence/absence of microbial clades) which in part is paralleled by shif-
ted abundances of distinct taxonomic and functional groups, generally
in line with previous observations in other host systems9. This reduced
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Fig. 1 | Community-level specificities of human and NHA fecal microbiomes.
a Phylogenetic Diversity across host groups at a sampling depth of 1 Mio. mapped
reads per sample. b Ordination of unweighted UniFrac distances of all samples,
colored by host subgroups. c Tanglegram of host (left) and microbiome (right)
trees, the latter based on unweighted UniFrac distances. d SGB sharing coefficients
between host group. Rows represent reference host groups; columns represent the

groups with which they share overlap. Numbers in the tiles are P-values from the
analysis for enrichment (↑) and depletion (↓) in the reference group based on
random 1000 permuations (unadjusted, one-sided). All analyzes are based on
n = 211 independent samples (nHuman= 71, nChimpanzee = 91, nBonobo = 12, nGorilla = 40).
Boxplots show the following elements: center line: median, box limits: upper and
lower quartile; whiskers: 1.5 × interquartile ranges.
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signal found for taxon-level diversity might be the result of fluctuating
clade abundances and functions in response to changing environ-
mental factors, including diet, indicating a high functional plasticity of
the hominid gut microbiome in response to immediate influences,
while structural changes through acquisition and loss of microbial
clades might rather result from longer-term adaptations.

SGBs shared between host groups were analyzed in a
permutation-based framework accounting for differences in
sequencing depth and group sizes (see Methods for details). We
found that especially human-associated SGBs were strongly depleted
across multiple NHA groups (Fig. 1d), while such signal found in the
opposite direction were less pronounced, indicating the widespread
acquisition of novel microbial clades in the human intestinal micro-
biome. A similar pattern was found forG. b. beringei andmultiple Pan
subspecies, however not for G.g. gorilla. G.g. gorilla and P.t. troglo-
dytes are sympatric species and were sampled in the same environ-
ment in the Republic of Congo and Gabon. The absence of excess
strong host-specific signals between these particular taxa might
point towards an effects of a shared environment influencing
microbiome structure. Human subgroups from Europe and Africa
showed strong pairwise SGB-sharing between CIV and DRC, and DK
and GER, respectively, however not across geographic regions, sug-
gesting a strong connection of the microbiome with environment
and lifestyle differences. All human subgroups exhibit a strong
depletion of SGB-sharingwith all other host genera, which resulted in

a clear separation of the human microbiota from that of other
hominids.

Fecal microbiome of European populations marked by loss of
evolutionarily conserved core microbiota
Abundance difference in microbial clades between humans and NHAs
and between human communities with differing environments, such
as living in rural or urban regions, in regions of the world with lower or
higher HDI, can give insights into microbiome-mediated adaptations
to environmental changes in the distant and more recent past. We
analyzed and compared the abundance profiles of gut microbes
between NHAs and humans, including individuals living in rural, lower
HDI areas of Africa (CIV and DRC) as well as individuals residing in
urban, higher HDI regions within Europe (GER and DK). For all fol-
lowing taxonomic and functional comparisons, we restricted the ana-
lysis to human and Pan (chimpanzees and bonobos) samples to obtain
focused insights into the microbiota divergence since their hosts
diverged about 7-8 million years ago25.

A total of 310 microbial genera were included in the analysis, of
which 173 were found to be differentially abundant (QBonferroni<0.05,
Fig. 2a, Suppl. Data 5) in at least one of these comparisons between
human subgroups, or between humans and NHAs, and subsequently
sorted into one of four groups. We identified 57 taxa with increased
abundances among humans from high HDI regions in Europe, such as
Akkermansia, Bacteroides, and Alistipes (Fig. 2a, b). We additionally
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Fig. 2 | Taxonomic differences the microbiota of humans and NHAs. a Effect
sizes (t-values from univariate linear regression) of abundance differences of gen-
era in fecal samples of NHAs (n = 143) and humans (x-axis) and humans within
African (n = 23) and European (n = 48) populations separated aswell (y-axis). Points
are colored according to the association groups with European (dark blue) and
African humanpopulations (light blue), or to indicate enrichment inNHAs (orange)
or humans (bright blue). Taxonomic groups not found to be associated with any of
the groups (all Q > 0.05, two-sided) are shown in grey. Horizontal and vertical lines
depict the t-value threshold ( | t-value | > 4.04) for statistical significance after
Bonferroni-correction.bPer-sample andhost group abundancesof selectedgenera

foundwith unchanged abundances across all groups (top), increased abundance in
NHAs (n = 143) or humans (n = 71; rows 2 and 3, respectively), or in humans from
Africa (n = 23) or Europe (n = 48; rows 4 and 5). Points are colored according tohost
genus: Gorilla = greens, Pan = reds, oranges, and yellows, and human = blues.
c Cumulative abundance trajectories of taxa associated with human communities
and NHAs. Shown are the per-sample cumulative abundances within each host
group, grouped based on a taxon’s association with either NHAs (n = 143), all
humans(n = 71), or one of the human population subgroups. All boxplots show the
following elements: center line: median, box limits: upper and lower quartile;
whiskers: 1.5 × interquartile ranges.
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found 39 taxa that are enriched in the two African populations such as
Cryptobacteroides, Prevotella, and Succinivibrio (Fig. 2a, b). Overall, the
marker taxa of European microbiomes that we detected are in agree-
ment with previous findings26,27. Our approach allowed us to identify
bacterial taxa that exhibit differential abundance profiles between
humans and NHAs that are independent from the human populations
(Fig. 2b). We found 74 taxa, such as SIG603 that have increased
abundance in NHAs and 50 taxa with increased abundance in humans,
of which 15 do not show an association to either of the human sub-
groups, such as Coprococcus and Agathobacter. Interestingly, taxa
depleted in the microbiome of European individuals compared to
humans from Africa are more likely to be also abundant (>0.1%) in the
microbiomes of NHAs (P < 0.001; Fig. 2c), suggesting a loss of evolu-
tionary conserved clades in these populations.

Widespread changes in fecal microbiome function between
hosts and across human communities
Taxon-specific changes reflect broad-scale differences between host-
groups. A focused analysis ofmicrobial functions can give insights into
the specific driving forces of such community-level changes. We per-
formed analysis of abundance differences of 6,340 KEGG orthologs
(KOs28,) in NHA (genus Pan) vs. human fecal microbiota and humans in
European and African societies and found significant abundance dif-
ferences in 1,092 (17.2 %) and 881 (13.9 %) KOs, respectively
(QBonferroni<0.05; Fig. 3a, Suppl. Data 6).

Analysis of higher-level KEGG annotations, including e.g. com-
plete pathways overrepresented among differentially abundant KOs,
revealed seven annotations with enrichment of KOs higher abundant
in NHAs compared to humans and nine annotations conversely enri-
ched in humans. Sulfur metabolism (map00920) was generally over-
represented in differentially abundant KOs with individual effect

directions associating with both groups (QBonferroni <0.05; Fig. 3b,
Suppl. Data 7). NHA associated categories md:M00356, md:M00563
(methanogenesis) and path:map00680 (methane metabolism) clearly
indicate a higher abundance of methanogenic archaea. Additionally,
we find multiple categories involving ribosomes, including distinct
ribosome annotations of archaea, which we could confirm using the
pangenome distribution of these KOs (e.g. 92.9% of SGBs with K02866
[large subunit ribosomal protein L10e] belonging to the domain
Archaea). In humans, we find enrichments in categories covering
antimicrobial resistance (path:map01501, br:ko01504), bacterial
mobility (path:map02030, path:map02040, br:ko02035), biofilm for-
mation (path:map02026) and prokaryotic defense systems
(br:ko02048), suggesting a generally higher abundance of virulence
genes in humanmicrobiomes, independent of geography. Pangenome
distribution of the significantly different KOs additionally confirm,
these are not driven by specificmicrobial clades since they are present
across the entire phylogeny.

Enrichments of higher-level KEGG annotations between humans
from Africa and Europe were exclusively found for the European
subgroup (n = 16). These involved vitamin B12 / cobalamin biosynthesis
(md:M00122, M00924, M00925, and path:map00860) and anti-
microbial resistance genes (br:ko01504, path:map01502). Increased
antimicrobial functionsmaybe explained by a higher useof antibiotics
in human healthcare and extensive animal husbandry, as well as by
environmental pollution8. The increased abundance of vitamin B12-
producingmicroorganisms in the feces of Europeansmay be driven by
higher dietary intake of meat and dairy products from ruminants, as
these food groups contain microorganisms with this metabolic
capacity29. Additionally, we find multiple categories suggesting a
community-level shift towards oxidative carbohydrate metabolism,
e.g. glycolysis/gluconeogenesis (path:map00010), pyruvate
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Fig. 3 | Functional differences in the microbiota of humans and NHAs. a Effect
sizes (t-values from univariate linear regression) of the abundance differences of
KEGG orthologs in fecal samples of NHAs (n = 143) and humans (n = 47, x-axis) and
humanswithin African (n = 23) and European (n = 48) populations separated aswell
(y-axis). Points are colored according to the association groups with European
(dark blue) and African human populations (light blue), or according to general
enrichment in NHAs (orange) or humans (mid-blue). Taxonomic groups not found
associated with any of the groups (all Q > 0.05, two-sided) are shown in grey.
Horizontal and vertical lines depict the t-value threshold ( | t-value | > 4.77) for
statistical significance after Bonferroni-correction. b KEGG ortholog (KO) effect
sizes from the previous analysis for differential abundance between African vs.
European human population and NHA vs. Human associated taxa, respectively.
Shown KOs are ordered into functional higher-level KEGG categories that were
found enriched (QFisher’s<0.05, two-sided) among KOs with significantly different

abundances between groups. Horizontal bars indicate median t-values of all KOs in
a KEGG category as an estimate for the direction of the enrichment. c KOs found
enriched in the pangenomes of humans fromAfrica or Europe across four bacterial
families shared across continents. Shown are the Z-values of the fixed-effectsmeta-
analysis of KOs for enrichment across microbial families. KOs are sorted into
functional higher-level KEGG categories that were found enriched (QFisher<0.05,
two-sided) among KOs with significantly different prevalence (QMeta<0.05, two-
sided) between African and European pangenomes. Horizontal bars depict median
ZMeta-values of KOs within higher-level KEGG categories. d Prevalence of the uro-
canate hydratase gene (K01712) in clades found higher abundant in humans from
Europe across four microbial families. P-values (Fisher’s exact test, two-sided):
PBacteroidaceae = 4.55 × 10−7, PLachnospiraceae = 0.017, POscillospiraceae = 0.052,
PRuminococcaceae = 0.030. Stars indicate per-clade differences in gene prevalence
(Fisher’s exact test, two-sided): *P <0.05, **P <0.01, ***P <0.001.
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metabolism (path:map00620), phosphotransferase system (path:-
map02060), and V/A-type ATPase (md:M00159).

Success of taxa associated to European populations relates to
oxidative carbohydrate metabolism
Community-level changes in abundances of functional groups give
insights into some aspects of adaptations, however, they are over-
proportionally driven by highly abundant taxonomic groups. We
applied pangenome analysis to specifically identify individual genes
and functions enriched or depleted within specific microbial clades
overrepresented the gut of human individuals residing within Europe
in comparison to other human associated taxa. Analyzes were
restricted to four bacterial families, Bacteroidaceae, Lachnospiraceae,
Oscillospiraceae, and Ruminococcaceae, for which sufficient numbers
of SGBs (n > =10 in each of both groups) for pangenome analysis were
recovered. SGBs in these family represent large proportions of the
overall human microbiome (mean = 53.2%), with no significant differ-
ences between the subgroups (PKruskal-Wallis = 0.2). The analysis was
conducted at the family-level, as higher taxonomic ranks would
increase clade-specific functional biases. To account for between-
family functional differences, functional differences of SGBs asso-
ciated with Europeans were first analyzed within microbial families
using Fisher’s exact test and subsequently subjected to unweighted
meta-analysis using Z-scores to leverage shared signals.

We identified 167 enriched and 30 depleted KOs in pangenomes
associated with the European populations (QMeta,Bonferroni < 0.05;
Suppl. Data 8 and 9). Using higher-level KEGG annotations (modules,
pathways, BRITE hierarchies), we found that 11 of these annotations
were overrepresented in the dataset (QBonferroni <0.05, Fig. 3c, Table 1,
Suppl. Data 10). Among these were multiple groups involved in car-
bohydrate metabolism enriched in taxa associated with Europeans,
specifically pointing at aerobic breakdown of sugar molecules for ATP
generation (citrate cycle: md:M00009, path:map00020; pentose
phosphate pathway: md:M00004; V/A-type ATPase, prokaryote:
md:M00159), confirming patterns seen also in the community-level
analysis of functional abundances. These signals strongly suggest that
the selection for taxa in the gut of humans living within Europe is
connected to a diet rich in carbohydrates and potentially the adapta-
tion to transient microaerobic conditions in the gut environment,
using oxidative phosphorylation as a mean to release energy from
nutrients, which is more efficient than strictly anaerobic
fermentation30. However, reduced fermentation can impact short-
chain fatty acid production, which can, in turn, potentially negatively
affect the host’s intestinal epithelial cells and metabolism31. Addition-
ally, we found a pathway connected to the histidine degradation
(md:M00045). Especially gut microbial histidine metabolism has been

discussed with relevance to human health, as it was shown that an
intermediary product of histidine degradation, imidazole propionate,
was increased in type 2 diabetic individuals in a large study of almost
2000 individuals, and that this increase was directly connected to the
microbiota and overall unhealthy dietary habits, however independent
of dietary histidine intake32. The enzyme urocanate hydratase
(EC:4.2.1.49; K01712) is responsible for the interconversion between
urocanate and imidazole propionate in the histidine degradation
pathway. We find this gene significantly enriched in three of the four
bacterial families analyzed (P < 0.05, Fig. 3d), with a clear trend visible
also for Oscillospiracaee (P =0.052). This suggests a microbiome-
encoded pre-disposition to metabolic disorders in European human
communities.

We did not find any higher-level KEGG annotations significantly
enriched among the taxa not enriched in Europeans. The relative lower
fitness of these taxa may not result from a single mechanism asso-
ciated to European lifestyles, but rather frommultiple selective forces
specific to the individual clades.

Convergent host-specific adaptations are found across micro-
bial families
Shared gene gains or losses across multiple microbial clades can
indicate a response to specific host intestinal environments, leading to
functions being acquired (and selected for) multiple times indepen-
dently.Weperformed apangenome analysis of genera shared between
humans and NHAs (n = 36) to identify such patterns of convergent
adaptation. To control for higher-level clade effects, functional
repertoires (KEGG Ontology terms) were compared between SGB
pangenomes at the genus-level from NHAs (Suppl. Data 11) and
humans; results were then combined in a meta-analysis across genera.
In total, 78 KO terms were identified as carrying signatures of con-
vergent adaptation to the respective host group, with 57 of these sig-
natures associating with humans and 21 associating with NHPs
(QBonferroni<0.05; Fig. 4a, Suppl. Data 12). Among the human-associated
KOs, we found multiple functional groups hinting again at an adapta-
tion to increased oxygen by utilization of oxygen as an electron
acceptor within the respiratory chain, such as cytochrome bd ubiqui-
nol oxidase subunits (cydA, cydB), as well as adaptation to increased
oxidative stress through ferritin (ftnA) and thioredoxin-dependent
peroxiredoxin (BCP). Among theKOs enriched inNHPpangenomeswe
found an outer membrane factor (TC.OMF), a major facilitator super-
family (MFS) transporter (lrmB), 1-epi-valienol-7-phosphate kinase
(acbU), and two KOs annotated as polyketide synthases (rhiA, pksN).
Products produced by polyketide synthases have diverse functions,
including antibiotic activity, virulence, and support of symbiotic
relationships33. OMFs and MFS form transmembrane complexes for

Table 1 | KEGG functional groups with significant enrichment (Q <0.05, two-sided) in the gut microbiome of humans living in
Europe

KEGG ID Name # of KOs Mean
Z-Score

P-value Q-value

md:M00159 V/A-type ATPase, prokaryotes 9 11.19 3.23E-16 2.64E-13

path:map00190 Oxidative phosphorylation 223 5.83 1.39E-08 1.13E-05

md:M00924 Cobalamin biosynthesis, anaerobic, uroporphyrinogen III => sirohydrochlorin => cobyrinate a,c-
diamide

22 3.59 2.38E-08 1.94E-05

path:map00860 Porphyrin metabolism 139 3.51 5.08E-08 4.15E-05

md:M00045 Histidine degradation, histidine => N-formiminoglutamate => glutamate 8 5.79 4.37E-07 3.57E-04

path:map00010 Glycolysis / Gluconeogenesis 106 1.81 5.21E-06 4.25E-03

md:M00846 Siroheme biosynthesis, glutamyl-tRNA => siroheme 16 4.64 5.99E-06 4.90E-03

md:M00925 Cobalamin biosynthesis, aerobic, uroporphyrinogen III => precorrin 2 => cobyrinate a,c-diamide 17 4.36 1.07E-05 8.78E-03

path:map00630 Glyoxylate and dicarboxylate metabolism 101 1.94 3.60E-05 2.94E-02

path:map00260 Glycine, serine and threonine metabolism 109 1.74 5.87E-05 4.80E-02

path:map01230 Biosynthesis of amino acids 238 1.41 6.05E-05 4.94E-02
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the transport of a large variety of solutes34, including e.g. carbohy-
drates, metal ions, amino acids, and export of toxic compounds35,36.
How these potential adaptations relate to NHA hosts is unclear, how-
ever, theymight indicate adaptation to adiversediet37,38 ormetabolism
of plant-derived xenobiotics39.

Prevotella represented the largest genus-level clade in the dataset
(n = 212, 3.7% of all SGBs). While we found this genus across all host
species, it is largely decreased in abundance and prevalence in Eur-
opeans. We selected this genus for further analysis to elucidate poten-
tial functional mechanisms driving the observed patterns. Enrichment
analysis revealed 126 KOs with distinct prevalence patterns (Q<0.05;
Fig. 4b). The most striking difference was found for the cytochrome bd
ubiquinol oxidases subunits 1 and 2 (cydA and cydB), which were found
in 101 of 114 human-associated Prevotella SGBs (incl. UHGGv2 gen-
omes), but present inonly twooutof 72SGBs fromNHAs. It is important
to note that these prevalence differences are not driven by single
lineageswithin the Prevotella genus thatwould have distribution ranges
restricted to single hosts. Instead, they are observed across multiple
sibling clades spanning the entire phylogenetic tree of the taxon
(Fig. 4c). Cytochromebdoxidases are involved in stress responses,most
prominently in transiently microaerobic environments40. Comparison
of the Prevotella species tree (reconstructed using all SGB representa-
tives recovered from the dataset (n = 184)) and the cydA gene

phylogeny exhibit widespread incongruencies between their tree
topologies (Fig. 4c). We performed a tree reconciliation using a
duplication-transfer-loss (DTL41;) model between the Prevotella and
cydA phylogenies, which revealed frequent events of gene transfer
(�T =44.6) between branches (including distant ones) of the Prevotella
phylogeny and subsequent losses (�L = 23.2) in the NHA-associated
clades. Standardized by gene prevalence, these values are in the 71st
and 61st percentile for transfers and losses of single-copy genes found
in the Prevotella genus, respectively (Suppl. Data 13). Interestingly, the
two cydA-carrying SGBs found in NHAs are phylogenetically distant,
however, their cydAgenes arehighly similar andmost likely the result of
a transfer fromone to theother. Thegene transfer events andmappings
were robust across 1000 reconciliations with different starting seeds,
with 89.2% of all events and 67.6% of all mappings found with 100%
consistency. These results suggest that the enrichment of cytochrome
bd ubiquinol oxidases observed in humans compared to NHAs are the
result of multiple reoccurring events of gene loss and horizontal gene
transfer between Prevotella clades within the hominid gut.

Co-phylogeny is associated with enrichment of microbial traits
and disrupted in humans
Patterns of co-phylogeny between host and microbes can result from
close interaction, or even interdependence in extreme cases, and
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Fig. 4 | Cross-microbial clade functional associations with NHA and
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congruent metabolic pathways from co-evolutionary trajectories.
Using stringent selection criteria, we subjected 209 subtrees of the
SGB phylogeny for co-phylogeny analysis (seeMethods). The subtrees
spanned 46 families and 945 (28.8%) SGBs present in the dataset in
addition to 77 SGBs from the UHGGv2 catalog. We used a Mantel-test
based framework and permutation to detect co-phylogeny signals42,
(see Methods for details). When defining co-phylogeny candidates
based on a mean P-value < 0.05 across all permutations, 56 of
209 subtrees (26.8%) qualified as exhibiting co-phylogenetic patterns
(Suppl. Data 14). These subtrees cover 312 of the 1051 SGBs (30.7%)
included in the analysis and 5.84% of the total 5345 hominid SGBs
(excluding the SGBs fromManara et al.). All results and subtrees canbe
inspected online (https://mruehlemann.shinyapps.io/great_apes_
shiny_app). By visually inspecting subtrees with co-phylogeny sig-
nals,wefindmany candidatesmicrobial phylogenies thatdonot follow
host phylogeny, e.g., in a subgroup of the genus Cryptobacteroides
(Fig. 5a). Such signals suggest that co-phylogeny within the Gorilla and

Pan clades can result in statistically significant Mantel tests, despite
topological incongruences of human-derived sequences, for which no
host sister (sub-)species from the same genus is available.

Human-derived genomes were found in 149 (71.3%) of the tested
subtrees, of which 38 (25.5%) were co-phylogeny candidates. Similarly,
18 of 60 (30%) tested subtrees without human-derived representatives
exhibited co-phylogeny signals, e.g.,W0P29-013 spp. (Fig. 5a). Overall,
21.8% (n = 82 out of 377) of human-derived SGBs in the analysis were
found in co-phylogenetic subtrees, which is significantly less com-
pared to 35.7% (n = 231 out of 647) of NHA-derived SGBs (PFisher = 2 ×
10−6). Co-phylogeny signals, defined based on the ratio of SGBs in trees
exhibiting co-phylogeny patterns and the total SGBs in the family
included in the analysis, differed strongly. Six families showed exces-
sive signals of co-phylogeny and nine families a significant depletion
(QFisher, FDR < 0.05; Fig. 5b, Suppl. Data 15). The highest co-phylogeny
ratio was found for the family Dialisteraceae (Cophylo-Ratio = 100%,
Q = 4.61 × 10−7), which in the analysis were entirely represented by 14
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Fig. 5 | Cophylogeny across humans and non-human African great apes.
a Subtree phylogenies of groups with significant results in the Mantel-test based
analysis for co-phylogeny. Tip colors and shapes correspond to thehost subgroups.
Trees were rooted on a randomly selected outgroup from a related family (not
shown). b Enrichment and depletion of co-phylogeny patterns across microbial
families with at least 10 SGBs in the analysis. Bars are colored by phylum, corre-
sponding to the colors in Fig. 1. Filled bars denote significant (QFisher<0.05, two-
sided) enrichment and depletion. The dashed line represents the average co-
phylogeny ratio across all SGBs. c Per-sample proportion of SGBs with co-
phylogeny patterns across and colored by host subgroups. Group sizes are given in
the x-axis labels. d Enrichment (blue) and depletion (red) of 43 in-silico inferred
microbial traits, genome size and gene count in association with cophylogeny
signals. Effect sizes and P-values frommixed effects logistic regression accounting
for phylogenetic relatedness of SGBs. The horizontal line marks the threshold of

significant Bonferroni-adjusted P-values (two-sided). e SGB-level gene counts
across nine phyla, grouped by the presence (blue) and absence (red) of a cophy-
logeny signal. Within-phylum differences were assessed by two-sided Wilcoxon
rank-sum test. f Prevalence of inferred D-Xylose utilization by SGBs across phyla,
grouped by the presence (blue) and absence (red) of a cophylogeny signal. Within-
phylum differences in prevalence were assessed using a two-sided Fisher-test.
Group sizes of SGBs within phyla negative and positive for cophylogeny signal are
given in the x-axis labels (n = neg/pos).gTanglegramof Bifidobacteriummaximum-
likelihood phylogenies based on 120 GTDB marker genes (left) and gyrB sequence
(right). Tip colors and shapes correspond to the host subgroups. Across all panels,
stars indicate level of significance: * P <0.05, ** P <0.01, *** P <0.001. Exact P-values
can be obtained from Supplementary Data 14–16. All boxplots show the following
elements: center line: median, box limits: upper and lower quartile; whiskers: 1.5 ×
interquartile ranges.
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SGBs in the genus Dialister. Dialister are a common, but rather
neglected members of the gut microbiota which have been found
increased43,44 and decreased45 with various human diseases, hence
their relation to human health remains unclear. However, on species,
Dialister invisus, was found to be moderately transmissible between
human mother-infant pairs and within households in a large meta-
analysis46. The strongest depletions were found for e.g. the families
Lachnospiraceae and Treponemataceae, the former confirming pre-
vious results for this clade13. The latter, Treponemataceae, especially
the genus Treponema D, were found depleted in humans living in
Europe and occur in anaerobic sediments47, serving as (intermediary)
reservoirs for transmission to humans andNHPs,which can disrupt co-
phylogenetic signals by constant re-introduction to the community.

When comparing host groups, the proportion of SGBs with co-
phylogeny signal is significantly reduced in all human subgroups
compared to the NHA hosts (all QWilcoxon < 0.05; Fig. 5c). Further,
humans from Germany and Denmark exhibited even lower propor-
tions of co-phylogeny SGBs compared to the two African human
populations (QWilcoxon <0.05), but not to each other (PWilcoxon = 0.68).
The human subgroups from Africa did not differ in their co-phylogeny
proportions (PWilcoxon = 0.096). These results suggest a loss of wild
great ape-associated clades in the intestinal microbiota of humans
independent of their geographic origin and the introduction of novel
microbial partners with changing environments and lifestyle, con-
firming again findings from previous analyzes.

Signals of cophylogeny suggest a strong association and possible
adaptation with the host and the reduction of genome size and gene
content are expected patterns connected to this process48 which has
previously been shown also for microbes with codivergence patterns
in human population11. To explore whether these processes could be
detected in our dataset, we analyzed genome size and gene count, as
well as 43 microbial traits inferred from genome-level annotations for
signals in association with co-phylogeny using logistic regression,
while controlling for phylogenetic relatedness (see Methods; Suppl.
Data 16). Out of 45 analyzed traits, 13 were found significantly depleted
in clades exhibiting co-phylogeny signals (QBonferroni <0.05; Fig. 5d;
Suppl. Data 17), including genome size, gene count, capabilities to use
multiple simple sugars, and bile susceptibility. Phylum-level analyzes
confirm this overall trend especially forActinobacteriota, FirmicutesA,
Firmicutes C and Verrucomicrobiota (PWilcoxon <0.05), while Proteo-
bacteria exhibited an inverse signal (Fig. 5d). This inverse signature
might be explained by host-specific acquisition of genes found e.g. for
E. coli across different and diverse hosts49, however, these findings
need to be further investigated. A higher susceptibility to bile in clades
without co-phylogeny signal clearly suggests that bile tolerance is an
adaptation to the Intestinal environment of hominid hosts. The
depletion of the utilization of simple dietary sugars (traits: D-Xylose
(Fig. 5f), D-Mannose, Maltose, Glucose fermenter, Sucrose, Trehalose,
L-Arabinose; all Q <0.05) in co-phylogeny clades might suggest an
adaptation to host-derived complex carbohydrates or other energy
sources in the host-context.

Only one trait – the Arginie dihydolase pathway, also called
Arginine deiminase pathway (ADI) – was found enriched with co-
phylogeny signal. Argninie metabolism has been widely discussed in
the context of host-microbe interaction50, and ADI specifically was
shown to protect bacteria from acid stress in host-association51, but
was also shown to modulate host immunity52 and as specifically
acquired by Saccharibacteria in the process of colonization of
mammals53, confirming its potential association with co-phylogeny in
hominids. Previous analyzes suggested that spore-forming clades are
less likely to be exhibiting co-phylogenic patterns, due to their ability
to survive outside of the gut, facilitating dispersal between
hosts10,13,54,55. We did not find any negative correlation between spore-
formation ability and co-phylogeny patterns (Q = 1, Suppl. Data 16),
however the annotation of this trait was restricted to only two phyla

(Firmicutes and Firmicutes A) and was also rare within these clades,
being found in only 54 SGBs across the dataset. As such, whether these
results contradict previous findings cannot be concluded in this ana-
lysis and warrants future focused analyzes.

We found 67 out of 157 SGBs in Bacteroidaceae within subtrees
with cophylogeny signals (Co-pylogeny-Ratio = 43.5%), consistent with
previous findings based on gyrB amplicon data13. However, no evi-
dence for strict co-phylogenywas found inBifidobacteriaceae (nSGB=10
in the analysis, none with co-pyhlogeny signals), which is inconsistent
with findings from the same report13. Comparing the phylogeny of
metagenome-derived gyrB sequences and the GTDB marker-gene
phylogeny for Bifidobacterium spp. revealed clear incongruences
between both approaches (Fig. 5g), whichmay explain the differences
in the presented analysis and previous findings.

Discussion
Here, we present the largest curated dataset of fecal metagenomes
derived fromwild African great apes and human populations. For this,
we surveyed and reconstructed high-quality microbial genomes from
the feces wild non-human apes, including gorillas (Gorilla gorilla gor-
illa; Gorilla beringei beringei), chimpanzees (Pan troglodytes verus; P.t.
troglodytes; P.t. schweinfurthii), and bonobos (Pan paniscus) as well as
human populations from Africa and Europe. We identified signals of
phylosymbiosis across the included hominids, indicating a conserved
evolutionary relationship of microbial communities with their host
species. Moreover, by employing a comparative approach, we found
extensive changes of microbial taxonomic and functional abundances
across the intestinalmicrobiota of NHAs and humans. Previous studies
have pointed to “Western” lifestyles as an important factor influencing
the intestinal microbiota in humans. Within our human sample popu-
lation, we were able to confirm differential signals of prokaryotes
associatedwith the Europeanhumanpopulations. Importantly, using a
comparative dataset of great ape taxa showed that microbial clades
lost in Europeans in comparison toAfricanhumanpopulations are also
found in wild great ape populations. Thus, we suggest that the loss of
these taxa might be regarded as the departure from a natural diver-
gence trajectory since their last shared ancestor, cumulating in a mass
extinction event of evolutionary conserved members of hominid-
associated gutmicrobiota.While it is tempting to link these changes to
industrialization (as previous studies have done), there are many dif-
ferences between these human populations (e.g., genomic diversity,
diet, exercise, sunlight exposure, exposure to antibiotics, population
bottlenecks) and itwas certainly not possiblewith the sampling regime
here, to determine the particular factors responsible for the variation
observed between the human populations sampled here. Due to
logistic constraints, preservation methods for fecal samples from the
included hosts and host subgroups differ. While these are expected to
influence microbiome composition, previous studies show that indi-
vidual signatures are retained independent of storage methods56.
Despite this caveat, the fact that considerable variation exists between
human populations is notable and highlights the need for much
higher-resolution sampling of human-associated microbial diversity.
Similarly, our analysis suggests that there is even more undescribed
microbial diversity to be discovered across populations of wild non-
human apes.

In a pangenome analysis to identify individual genes or functions
enriched or depleted in genomes of taxa associated with different
human populations, we identified numerous functional traits involved
in aerobic respiration associated with the European populations in the
analysis. We hypothesize that taxa found to be enriched in the fecal
samples of humans fromGermany andDenmarkmight have a selective
advantage via their clade-independent ability to survive or even utilize
aerobic conditions in the intestinal tract.More specifically, we propose
that these taxa have undergone convergent adaptation to tolerate high
oxygen concentrations. Such aerotolerance could increase microbial
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fitness, whereby bacteria canwithstand high oxygen concentrations to
metabolize mucus layers for energy57. However, the depletion of this
mucus by bacteria diminishes an important physical and immunolo-
gical barrier that protects the human host against microbial assaults
and allows for direct interaction between host epithelial cells and
microbiota, potentially triggering (auto-)immune processes58,59. Nota-
bly, we showed that the introduction of novel microbes associated
with industrialization related to vast differences in the community
composition of fecal microbiota in the European populations. Thus, it
is possible that susceptibility to intestinal inflammation might be
potentiated by specific taxa found in this population. Accordingly, we
found increased abundances of well-characterized mucin-degrading
taxa, including Akkermansia and Bacteroides, in the European cohorts.
These findings are congruent with previous reports suggesting that
there is increased mucus degradation by intestinal microbiota in
human populations with direct access to industrial food systems,
whichmay relate to higher incidences of inflammatory bowels diseases
observed in developed economies6.

Comparatively, only a few pathways showed conserved enrich-
ment in the opposite direction, suggesting clade-specific mechanisms
for their loss in some human societies. In particular, we found the
taxon Prevotella is depleted in German and Danish samples but con-
served across hominids, despite representing a diversity of host clades
and diets. Prevotella is a major determining taxon of one of the human
enterotypes, a concept used to define fecalmicrobial communities60. It
remains controversial as towhether the humangutmicrobiome is best
classified using such discrete categories, or rather along a dynamic,
continuous gradient (Cheng 2019, Knight 2014). Nevertheless, pre-
vious reports have shown that individuals who access industrialized
food systems (i.e., consume so-called “Westernized” diets) generally
display a Bacteroides-dominant enterotype. Bacteroides-enterotypes
have been previously associated with a multitude of intestinal61 and
extra-intestinal inflammatory diseases62. Conversely, individuals who
rely on rural and traditional subsistence strategies (i.e., consumeplant-
rich diets) tend to exhibit a Prevotella-dominant enterotype3. This
enterotype is also displayed in about 20% of individuals living within
Western societies63. Interestingly, there are conflicting reports con-
cerning Prevotella and host health. While it has been shown that Pre-
votella may improve glucose metabolism64, other reports have linked
high abundances of Prevotella spp. with autoimmune diseases and
intestinal inflammation65. While results from model systems have
suggested Prevotella likely plays a role in autoimmunity, these studies
largely relied onmono-colonizationof germ-free animals and thusmay
be biased due to a lack of microbial interaction partners and an
aberrant host physiology65. Within human studies, no convincing link
between increased Prevotella spp. and inflammatory bowel disease has
yet been shown65.

Here, we used an evolutionarily informed framework to extend
the enterotype concept to elucidate the functional dynamics involved
in the assembly of the human gut microbiome over evolutionary
timescales. Such insights may better inform how changes in the gut
microbiomemight affect humanhealth.Wefind the taxon Prevotella to
be conserved across the sampled hominids. Moreover, the sheer
diversity of Prevotella displayed across all hominid clades clearly sug-
gests evolutionary conservation and long-standing interaction of this
microbial clade with the host, as further revealed by host-specific
microbial functions identified in the metagenomic pangenome analy-
sis. In other words, we find the Prevotella clade to be an integral
member of the intestinal microbial community of all hominids.
Therefore, we propose that the Prevotella-enterotype represents an
evolutionary ancestral community state for the human gut micro-
biome. Rather than a discrete enterotype, a reduced abundance and
diversity of Prevotellamay better regarded a key biomarker for disease
risk66 or for microbiota insufficiency syndrome67, which seems to be
partly driven by changes associated withWestern lifestyles. Additional

research and large-scale strain collections for Prevotella are needed for
in-depth analysis and evaluation of this diverse taxonomic group with
regard to host health and its role in inflammation. Such research must
consider Prevotella spp. as members of a complex consortium of
interacting microorganisms and as, we argue, a potential target for
pre- and probiotic intervention in chronic inflammatory disorders.

Lastly, we leveraged our catalog of high-quality metagenome-
assembled genomes from hominid fecal samples together with exist-
ing data to investigate co-phylogenetic patterns across the sampled
hosts.Overall, co-phylogeny showedhighly clade-specific enrichments
and depletions. In addition, human-derived MAGs were found sig-
nificantly less often among co-phylogenetic groups than MAGs from
NHAs. Since we included human-derived data from global reference
datasets24, this effect is unlikely to be an artifact of non-exhaustive
coverage of humanmicrobiomemembers.We found severalmicrobial
traits depleted among bacteria with cophylogenetic patterns. Among
these were, as expected, reduced genome sizes and gene counts, as
well as susceptibility to bile and utilization of multiple simple carbo-
hydrates. We hypothesize that these depletions mirror the specializa-
tion of microbes to colonize the hominid gut and utilize host-derived
complex carbohydrates.

Our study has limitations. The co-phylogeny analysis relies heavily
on genome-sequences recovered from shotgun metagenomic
sequencing (MAGs), which are potentially contaminated and incom-
plete, which could bias tree structure and thus, co-phylogeny esti-
mates, and also can potentially under- (or over-)estimate the
functional capacities of recovered microbial genomes. To address the
potential shortcomings of MAGs, we implemented stringent data
processing pipelines and quality control to achieve high-quality MAGs
and a host-specific pan-genome-based functional annotation frame-
work incorporating information from multiple MAGs per species
representative to reduce potential genome gaps (see Methods).
Additionally, the commonly used estimates of divergence times of the
hominid hosts included in the analysis set the timeframe of the split
from a shared ancestor to 8–19 million years ago25,68. Bacterial spe-
ciation events happen in the timeframe of 10–100 million years, or
longer69–71, and thus, co-phylogeny in hominids is expected to be
observed withinmicrobial species or possibly genera. In the presented
dataset, species-level sharing of MAGs between host genera was low
(1.68%; n = 30 out of 1,787 reconstructed SGBs, not including Manara
et al. and UHGGv2). SGBs were defined on 95% average nucleotide
identity, a measure generally regarded as appropriate72, but it is
nevertheless prone to clade specific biases, potentially further influ-
enced by altered speciation dynamics in association with (evolu-
tionary) changes in host lifestyle73, i.e. previously demonstrated
increases in horizontal gene transfer (HGT) within individual
microbiomes8. Accounting for these potential biases, we relaxed the
threshold to shared genus-level annotations for subgroups to be
included in the co-phylogeny testing, while keeping the number of
tested sub-phylogenies to a minimum through the definition of strin-
gent inclusion criteria (see Methods). Despite these considerations,
the observation of signals of co-phylogeny across hominids is sup-
ported by a robust statistical framework.

Additional limitations stem from the focus onhumans andAfrican
great apes. While the comparisons between these host-clades provide
a framework for the in-depth investigation of (evolutionary) rather
recent adaptations and between-host divergences, they potentially
neglect that could be revealed by broader-scale investigations, such as
the previously described convergence of the human gut microbiota
towards that of cercopithecines17. However, our analyzes show the
impact of the unique trajectories taken by the intestinal microbiomes
of Pan and Homo since their last common ancestor.

Our work here lays the foundation for the analysis of disease-
associated changes in the human intestinal microbiome in an evolu-
tionarily informed framework, thereby allowing researchers to
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evaluate microbiome-associated inflammatory disorders from a point
of view that considers both proximal and evolutionary influences.
Future investigations should consider in-depth analysis of horizontal
gene transfer events within or even between primate hosts to shed
further light on also cross-species dynamics and transition of
microbes. Such analyzes however require either microbial isolate
genomes or at least long-read sequencing data to increase confidence
in detection events. Additionally, time series data for host groups
sharing the same habitat, e.g. G. g. gorilla and P. t. troglodytes, could
give additional insights into cross-species sharing dynamics which
cannot be appropriately elucidated based on single-timepoint data.

In summary, we present an in-depth taxonomic and functional
description and analysis of hominid-associated fecal communities
spanning about ten million years of evolution and host-microbiome
interactions in the gut of humans and African great apes. Western
lifestyle and maybe more precisely industrialization-associated chan-
ges in human gut microbiota have been previously suggested as a
driver of microbiome insufficiency syndrome, whereby an incompat-
ibility between quickly adapting microbiota and slowly evolving host
genes leads to chronic inflammatory diseases such as metabolic syn-
drome, type 2 diabetes, and inflammatory bowel disease6,74. Thus, a
comparative analysis of human and NHA intestinal microbiota that
considers evolutionary forces as presented herein provides a powerful
platform to advance our understanding of human-associated micro-
biota and guide the development of personalized, targeted interven-
tions to prevent and treat chronic inflammatory disorders.

Methods
Ethics & inclusion statement
Ethical approval for work on human samples was obtained from the
Local Ethics Committee Germany, Kiel (reference number A156/03),
the Ivorian ethics commission (Comité national d'éthique et de la
recherche [CNER], permit number 101 10/MSHP/CNER/P) and the
Congolese ethics commission (Comité d'Éthique, Ministère de l’En-
seignement Supérieur et Universiaire, permit number ESO/CE/018/11).
All procedures performed in studies involving human participants
were in accordance with the ethical standards of the institutional and/
or national research committee and with the 1975 Helsinki Declaration
and its later amendments or comparable ethical standards.

Sampling of wild-living great apes in Africa were granted and
facilitated by the following organizations. Bwindi Impenetrable Forest
National Park, Uganda (for sampling of Gorilla beringei beringei): The
mountain gorilla survey was conducted by the Uganda Wildlife
Authority, l’Institut Congolais pour la Conservation de la Nature, the
Rwanda Development Board, the International Gorilla Conservation
Programme, the Max Planck Institute for Evolutionary Anthropology,
Conservation Through Public Health, the Mountain Gorilla Veterinary
Project, the Institute for Tropical Forest Conservation, and The Dian
Fossey Gorilla Fund and was conducted in compliance with the reg-
ulations of and permission of the Uganda National Council for Science
and Technology and the Uganda Wildlife Authority.

Budongo Forest Reserve, Uganda (for the sampling of Pan tro-
glodytes schweinfurthii): the Uganda National Council for Science and
Technology and the UgandaWildlife Authority, with additional ethical
approval given by the School of Psychology, University of St Andrews.

Kokolopori Bonobo Reserve (for the sampling of Pan paniscus),
Democratic Republic of the Congo: the Ministere de Recherche Sci-
entifique et Technologie, Democratic Republic of the Congo and was
supported by the Vie Sauvage, the Bonobo Conservation Initiative;

Loango National Park, Gabon (for the sampling of Gorilla gorilla
gorilla andPan troglodytes troglodytes): theAgenceNationale des Parcs
Nationaux, the Centre National de la Recherche Scientifique et Tech-
nique of Gabon.

Taï National Park, Côte d’Ivoire (for sampling of Pan troglodytes
verus): the Ministère de l’Enseignement Supérieur et de la Recherche

Scientifique, the Ministère des Eaux et Fôrets in Côte d’Ivoire, and the
Office Ivoirien des Parcs et Réserves. Work was supported by the
Centre Suisse de Recherches Scientifiques en Côte d’Ivoire and the
staff members of the Taï Chimpanzee Project and approved by the
ethics council of the Max Planck Society (4.08.2014).

Researchers from CIV and DRC contributing to conducting
research and fulfilling the authorship criteria were included as co-
authors. Research at sites in Africawas conducted in collaborationwith
local partners as stated in the acknowledgements section, granted by
local authorities and in agreement with local policies. Feces fromwild-
living, habituated animals were collected after defecation without
interfering with the animals. Research at great ape sites was increas-
ingly performed following the IUCN guidelines to minimize disease
risk for great apes. We did not stratify or correct for sex or gender
effects in the analysis. Our analyzes focus on the comparison of gut
metagenomes from either distinct hominid species or between human
subgroups from populations with differences in the human develop-
ment index. We expect that the effects of sex and/or gender are neg-
ligible in this context and these factors have not been explored in the
current analysis.

Fecal Sampling, DNA extraction and data generation
Sampling of wild-living great apes and human populations in Africa
were conducted at: Bwindi Impenetrable Forest National Park, Uganda
(Gorilla beringei beringi, Pan troglodytes schweinfurthii); Kokolopori
Bonobo Reserve and villages adjacent to Salonga-Sud National Park,
Democratic Republic of the Congo (Pan paniscus, Human); Loango
National Park, Gabon (Gorilla gorilla gorilla, Pan troglodytes troglo-
dytes); Taï National Park and adjacent villages, Côte d’Ivoire (Pan tro-
glodytes verus, Human). Sampling procedures for collecting feces from
humans (n = 48) and wild non-human primates (n = 109) have been
previously described15. Briefly, fecal samples were collected immedi-
ately after defecation, and, depending on the local infrastructure,
either stored in RNAlater and frozen at −20 °C or stored in a cryotube,
cooled in a thermos until return to the field laboratory, and subse-
quently snap frozen in liquid nitrogen. Appropriate government per-
mits and permission to conduct research on wild primates were
granted by the relevant authorities (see Acknowledgments for site-
specific details). Human fecal samples from the Democratic Republic
of Congo (n = 12) were stored in RNAlater and frozen at −20 °C. Human
fecal samples from Côte d’Ivoire (n = 12) were stored in a cryotube,
cooled in a thermos until return to the field laboratory and subse-
quently snap frozen in liquid nitrogen. Human fecal samples from
Germany were collected at home by the participant in standard fecal
collection tubes,mailed to the study center, and stored at−80 °C. DNA
extraction from fecal samples was performed from 200mg of stool
transferred to 0.70mm Garnet Bead tubes (Qiagen) with 1.1mL ASL
buffer, followed by bead beating in a SpeedMill PLUS (Analytik Jena
AG) for 45 s at 50Hz. Samples were heated to 95 °C for 5min and
centrifuged, retaining 200 µl of the supernatant for DNA extraction
with theQIAampDNA StoolMini Kit (Qiagen) automated on aQIAcube
system (Qiagen) according to the manufacturer’s protocol. DNA
quality was assessed byQubit andGenomicDNAScreenTape (Agilent).
Illumina Nextera DNA Library Preparation Kit was used to construct
shotgun metagenomic libraries, and subsequently sequenced with
either 2 × 125 bp reads on a HiSeq 2500 platform or with 2 × 150 bp
reads on a NovaSeq 4000 machine (Illumina).

Data processing, assembly and metagenomic binning
Raw sequencing FastQ files were quality controlled and preprocessed
using the BBMap software suite75. Host reads were removed using
bbmap.sh. A masked human reference database76 and a lenient map-
ping threshold of 95% identity was used to account for a broader host
range to also capture host contamination from the Pan and Gorilla
host. Metagenomic contigs were assembled with metaSPAdes and
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contigs >= 2000bpwere retained77. Readsweremapped to the contigs
of the respective samples using Minimap278, converted to BAM files
with Samtools79 and used to estimate per-contig mapping depth with
the jgi_summarize_bam_contig__depths binary from the MetaBAT2
binning tool80. Contig binning for individual samples was performed
with MetaBAT280, MaxBin281, and CONCOCT82. In addition, the VAMB
binning tool83 was used on a cross-mapping catalog of the merged
contigs from all samples within each host group. Individual binning
results were refined using MAGScoT23 to acquire high quality
metagenome-assembled genomes (MAGs) for each sample. Clustering
of MAGs to species-level genome bins (SGBs) was performed with
dRep84 in amulti-step approach to control for inflated SGBs due to low
MAG quality. First, MAGs were dereplicated to 97% similarity within
each host group, choosing the MAGwith the highest score (calculated
by MAGScoT based on completeness and contamination) as cluster
representative. High and good quality representatives (score > =0.7)
from all host groups together with representative sequences from the
UHGG v2 were then clustered into 95% SGBs using dRep, again
selecting the highest quality MAG as representatives. Medium quality
(scores between 0.5 and 0.7) 97% representatives from previous clus-
tering step were then compared to SGB representatives using
fastANI72, assigning MAGs with high similarity (>=95%) to the respec-
tive SGB.Medium-quality 97% representatives without hits to the high-
quality SGB librarywere then clustered into 95% SGBs and added to the
catalog in the case of at least two genomes in the cluster, discarding
singleton clusters. The final catalog of SGB representativeswas used to
quantify contig abundances in all samples using Salmon in metagen-
ome mode85. Taxonomic annotations were performed using the
GTDBtk (v2.1) and GTDB release 207v286,87. For SGBs without genus-
and/or species-level assignments, the SGB ID was used as taxonomic
label. GTDBtk marker gene alignments were used to generate a phy-
logenetic tree of all SGB representatives using the respective “infer”
function of theGTDBtk. All data processing scripts are available online:
https://github.com/mruehlemann/greatapes_mgx_scripts

Pangenome catalog creation, annotation and analysis
All MAGs underwent calling of coding sequences using prodigal
(v2.6.3)88. Protein sequences were clustered based on 95% similarity
using MMseqs89,90 and annotated using the emapper.py script of the
eggNOG-mapper v291 annotation tool with the eggNOG 5.0 reference
database92. MAG level functional profiles based on KEGG Ortholog
annotations were collapsed into SGB-level pangenomes for each host
genus (Homo, Gorilla, and Pan). In the case that no MAGs of an SGB
were recovered from a given host genus, functional profiles were
inferred fromMAGs across the other host groups, accounting for host-
specificities in the inferred accessory genomes/functions by con-
sidering a function to be present if it was present in all host-specific
pangenomes of the respective SGB with MAGs recovered from the
metagenomic data.

Calculation of microbial clade and functional abundances
All downstream data processing and statistical calculations were per-
formed in R v4.293 and using the tidyverse library94. Per-sample contig
abundances for the SGB representatives from Salmon were used to
estimate SGBabundances. Salmonoutput includes totalmapped reads
per contig and mapping reads adjusted for library size and total
sequencing depth as transcripts permillion (TPM), ameasure from the
transcriptomics field which can be directly transferred to metage-
nomic libraries. Individual contig coverages were calculated from the
number of mapped reads and the effective lengths of the Salmon
mapping output, considering contigs with >10% coverage as present.
An SGB was considered present when at least 20% of its total length
was in contigsmarked as “present” and if at least 1,000 total reads and
250 TPMmapped to it. Final SGB abundances were calculated as TPM,
calculated from the reads mapping to the SGBs present in the

respective sample, thus representing a normalized abundance across
all samples. Combining SGB abundances with taxonomic assignments,
domain- to species-level abundances were calculated as cumulative
TPM abundances within the respective taxonomic bins. Rarefactions
were calculated based on 5-fold repeated subsampling of contig level
mapped reads at 100k, 250k, 500k, 1M, 2.5M, 5M, and 10M reads,
followed by TPM calculations as described above. By rarefying reads
and not TPM we realistically simulate sampling effects introduced by
low coverage and low abundances of SGBs affecting especially samples
with small library sizes. Community level functional profiles were cal-
culated be multiplying TPM abundances of SGBs with the respective
host-genus specific functional profiles (presence of KEGG orthologs
[KOs]) of the SGBs and summarizing the per-SGB values into a sample-
level abundance of functional annotations. Ultimately, functional
abundances of individual KOs represent the cumulative TPM abun-
dance of SGBs carrying the respective KO.

Alpha and beta diversity
Faith’s phylogenetic diversity (PD)95 was used as measure of alpha
diversity, calculated from the phylogenetic tree based on GTDBtk
marker genes using the pd() function of the picante package for R96.
Genus-level increase of PD from previously undetected SGBs was cal-
culated from the differences of PDs with and without these SGBs
annotated as the respective genus. Sample level PDs were calculated
from the SGB presence/absence patterns. Beta diversity was assessed
as unweighted and weighted UniFrac distances97 using the UniFrac()
function of the phyloseq package for R98 and SGB abundances and the
phylogenetic tree based on GTDBtk marker genes as input. Aitchison
distance99 was calculated from the CLR-transformed genus-level TPM
abundances obtained from the clr() function from the compositions
package for R100 and adding a pseudocount of 1 to all abundances,
setting all CLR-transformed abundances below zero to zero. Jaccard
distances101 were also calculated on genus-level presence/absence
patterns using the vegdist() function from the vegan package for R102.
Genus-level abundances were chosen for Aitchison and Jaccard dis-
tance, as SGBs are highly host-specific, thus would lead to high beta-
diversities simply due to host exclusive SGBs, grouping at genus-level
prevents from this and UniFrac distances use phylogenetic relations
between SGBs. Beta-diversity on functional abundances were calcu-
lated from the Euclidian distances of the log-transformed KO abun-
dances adding a pseudocount of 1 to avoid undefined values. Presence-
absencevalues ofKOswere treated in the samewayasdescribed above
and using Jaccard distance to infer pairwise distances.

Cross-host sharing analysis
Permutation-based analysis of excessive and reduced sharing of SGBs
between host groups were based on the mean SGB abundances of the
five rarefaction of 1M mapped reads to account for differences in
library depth impacting SGB richness and per-group sample sizes. For
each host group, 100-fold sampling of five samples from this group
were drawn and the SGBs found in the host were analyzed for their
presence in five random samples of each of the other host groups,
calculating the relative amount of shared SGBs as Relshared = nSGB,shared
/ nSGB,host. The mean of all 100 samplings was used as relative sharing
coefficient for all host pairs in both directions. Excess and reduced
sharing was analyzed by 1000-fold drawing of five random samples
accounting for differences of host groups and the repetition of above
calculations for relative sharing with all host groups. P-values were
calculated from the proportions of random samplings exceeding/fall-
ing below the true sharing coefficients.

Phylosymbiosis analysis
Phylosymbiosis was assessed using five measures for community level
diversity, unweighted and weighted UniFrac, genus-level Aitchison,
and Jaccarddistances, aswell as KEGGortholog (KO) abundance based
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Aitchison distance, and following the approach described in Brooks
et al. (2016). Briefly, host group differences were used to infer micro-
biome dendrograms by UPGMA clustering. Branch support was cal-
culated from 1000-fold jackknife sampling. Robinson-Foulds distances
between microbiome trees and host phylogeny were calculated using
the RF.dist() function from the phangorn package for R103. Significance
of phylosymbiosiswas assessedusing thehostphylogeny and 100,000
random trees as comparison for the microbiome trees. Tanglegrams
were created with the ggtree and cowplot packages for R104.

Assessment of between-group abundance differences
Taxonomic abundance differences betweenHumans andNHAs, aswell
as between humans living outside and within industrialized systems
were based on CLR-transformed abundances to account for the com-
positionality of microbiome data105. Included in the calculations were
all genera with a prevalence >20% and relative abundance (before CLR-
transformation) of >0.1% in at least of the host groups and all KO
abundances with a prevalence >20% and CLR-transformed abundance
of >1 in at least one of the host groups.

KO abundances were filtered accordingly and subsequently
(log+1)-transformed to achieve a less skewed distribution. Log-
transformation was chosen, as CLR-transformation assumes com-
positionality of the data, which is – unlike for taxonomic abundances
- not fulfilled for functional abundances. Abundance differenceswere
assessed in a linear regression in R93 using abundances as dependent
variable and human/NHA and European/African dichotomies as
explanatory variables in a single model for each taxon (or function),
assessing associations with all groups at once, themodel was defined
as lm(abundance ~ Human + European). P-values were calculated
from the t-values of the resulting models using the summary.lm()
function. Log-fold differences were calculated using group mean
abundances and a pseudocount of 0.01. P-values were adjusted for
multiple testing using Bonferroni correction. Features with sig-
nificant (Q < 0.05) positive association with NHAs were grouped as
“NHA associated”. Features associating with geographic differences
(Europe/Africa) were grouped into the respective group they were
positively associated with. Remaining genera with significant differ-
ences between humans andNHAs, but not with a particular subgroup
were grouped as “human associated”. Genera without abundance
differences in any of these comparisons were grouped as “unchan-
ged” or “other”.

Functional pangenome differences between groups
Pangenome catalogs of human-associated SGBs were compared
within microbial families between SGBs in taxonomic groups found
enriched in European communities compared to other human-
associated taxa, independent of a strong associationwith geography.
KEGG Ontology (KO) term annotations were used as functional
groups and their prevalence differences between groups were
assessed using Fisher’s exact test. Per-family effect sizes (Z-Scores) of
KOs were calculated from PFisher-values and the direction of the
effects which were assessed using the log2 of the ratio of prevalences
in the two groups and a pseudo count of 0.01. The sum of the
Z-Scores were added and divided by the square-root of the total
number of families the respective KOswere found in to obtain a ZMeta

for each KO term, used to calculated PMeta. PMeta-values were adjus-
ted for multiple testing using Holm-correction. KO terms with
Q < 0.05 and present in at least two of the microbial families in the
analysis were considered as functions with differential prevalence. A
similar approach was employed to assess functional differences
between NHP- and Human-associated SGBs, however in this case,
SGB pangenome differences were compared on genus level and the
meta-analysis was performed combining signals from all genera, and
specifically across the genera within particular phyla.

Tree reconciliation analysis
Proteins from the representative SGBs of the genus Prevotella anno-
tatedwith the annotation “cydA” (cytochrome bd oxidase subunit 1) as
“Preferred name” in the emapper/eggNOG annotation were extracted
from the unclustered protein sequence catalog. The same procedure
was followed for Paraprevotella clara, which was included as an out-
group. Incomplete cydA sequences were removed using a length
threshold of 200. Protein sequences were aligned using Clustal
Omega106. The alignment was used to reconstruct the phylogenetic
tree using IQTREE2107 and a automatic model selection, which resulted
in an LG + F + R8model to be chosen as best-fitmodel according to the
Bayesian information criterion (BIC). Branch support values were cal-
culated usingUFBoot108 and performing SH-aLRT test109. Alignments of
GTDBtk marker protein sequences for Prevotella SGBs and Para-
prevotella clara were used to reconstruct a genome-level species
phylogeny in the same respective way as described above for the cydA
sequences (BIC best-fit: LG + I + I + R5). Low confident branches (<30%
bootstrap support) in the cydA phylogenywere resolved togetherwith
the species tree using the OptResolutions supplementary program of
theRANGER-DTL2.0 software110 resulting in 495 equally probable trees
with optimized duplication-transfer-loss costs using default values
(duplication: 2, loss: 1, transfer: 3). A randomly chosen output tree was
using in the reconciliation analysis with the species tree in RANGER-
DTL 2.0 using default values and 1000 random starting seeds in
parallel111 to assess robustness. Resulting sampling outcomes were
summarized using the AggregateRanger tool of the RANGER-DTL
2.0 software package. For a global comparison of loss and transfer
events, allPrevotellageneswere selected that had (1) a ‘PreferredName’
annotation, (2) were found in at least 20% of Prevotella SGBs, and (3)
occurred only as single copy per genome, resulting in 751 genes to
which the workflow described above was applied analogously. As loss
and transfer events are influenced by gene prevalence, mean loss and
transfer frequencies were standardized by dividing them by the total
number of SGBs they were found in.

Co-phylogeny analysis
Host phylogenetic trees were obtained from the 10kTrees website (112;
https://10ktrees.nunn-lab.org/). To assure high-quality microbial phy-
logenies for the co-phylogeny analysis, family-level maximum-like-
lihood trees were reconstructed from the GTDBtk marker gene
alignments with the IQTREE2 software107 and aWAGmodel including a
random SGB outside the respective families as outgroups. Family level
trees were rooted and for each SGB traced from tip to root to identify
for each SGB the smallest subtree which covered 4, 5, 6, and 7 host
groups. Combining information from all SGBs, the overall set of
smallest trees to be included in the co-phylogeny analysis were iden-
tified, discarding subtrees forwhich the inclusion criterionwas fulfilled
already for a smaller tree starting from a different tip. In addition,
subtrees spanning more than a single genus were excluded from the
analysis, as divergence times of microbial genera predate divergence
of the included hosts71. For all subgroups included in the analysis,
maximum-likelihood distances and trees using a WAG model in
IQTREE2 were inferred from the marker gene alignment of all MAGs
assigned to the SGBs in the respective subgroups. Co-phylogeny of the
subgroup was assessed by randomly selecting one MAG per host,
calculating congruence with the host tree by Robinson-Foulds metric
and byMantel-test42. Tiplabels were permutated 999-fold and P-values
calculated. This process starting from the random selection of one
MAG per host was repeated 999 times to obtain final P-values. Family-
level co-phylogeny ratios were calculated based on the ratio of SGBs
within subtrees with co-phylogeny signal and total SGBs in the
respective family that were included in the analysis. Enrichment of co-
phylogeny for each microbial family was calculated by using Fisher’s
exact test on the SGBs in the analysis dividing them into four groups
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based on familymembership and being in a subtreewith co-phylogeny
signal. All P-values were adjusted using FDR correction.

Correlation of microbial phenotypes with cophylogeny signals
SGB representative genome sequenceswere analyzed using the Traitar
tool113 to infer up to 67 microbial traits. A total of 43 inferred traits
present in more than 50 and less than 1017-50 = 967 of the 1017 SGBs
included in the cophylogeny analysis were analyzed for their associa-
tion with cophylogeny signals. Using the R package lme4qtl114, for each
of the traits a mixed logistic regressionmodel was fitted across for the
1017 SGBs, using signal of cophylogeny (binary trait) as dependent
variable and the trait as bineray fixed effect explanatory variable,
accounting for phylogenetic and taxonomic relatedness between SGBs
by including a relatedness matrix and phylum-level categories as ran-
dom effects in the model and using a binomal function with probit as
link. The relationship matrix was calculated by using the cophenetic
distance matrix from the SGB phylogeny, scaled to values between 0
and 1 by dividing by its largeste distance. Accordingly, genome size in
megabases and gene counts derived from the number of genes in the
prodigal output were included as fixed-effect continuous traits. Effect
sizes and P-values of the individual models were taken from the sum-
mary() function in R. P-values were adjusted for multiple testing by
Bonferroni correction. Exemplary phylum-level differences in D-xylose
utilization and gene counts between SGBs with and without cophylo-
geny signals were calculated using non-parametric Fisher’s exact and
Wilcoxon rank sum test, respectively.

Statistics & Reprodicibility
All statistic computing was performed in R v4.293 and using the
tidyverse library94. The used statistical tests are given in the respec-
tive subsections. No statistical method was used to predetermine
sample size. Samples were excluded from the analysis based on low
mapping rate to the library of species-level microbial representatives
(below 1,000,000 reads). P-values < 0.05 were considered statisti-
cally significant, either adjusted or unadjusted depending on the
analysis. The experiments were not randomized. The Investigators
were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All metagenomic sequencing data is available via the NCBI BioProject
accession IDs PRJNA692042, PRJNA539933, and PRJNA491335. The
collection of 7700 metagenome-assembled genomes has been
deposited in the European Nucleotide Archive, Accession:
PRJEB68160. Source data are provided with this paper.

Code availability
All code to process sequencing files to generate the presented results
and manuscript figures is available via https://github.com/
mruehlemann/greatapes_mgx_scripts.
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