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Developmental basis of SHH
medulloblastoma heterogeneity
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Many genes that drive normal cellular development also contribute to onco-
genesis. Medulloblastoma (MB) tumors likely arise from neuronal progenitors
in the cerebellum, and we hypothesized that the heterogeneity observed in
MBs with sonic hedgehog (SHH) activation could be due to differences in
developmental pathways. To investigate this question, hereweperform single-
nucleus RNA sequencing on highly differentiated SHH MBs with extensively
nodular histology and observed malignant cells resembling each stage of
canonical granule neuron development. Through innovative computational
approaches, we connect these results to published datasets and find that some
established molecular subtypes of SHH MB appear arrested at different
developmental stages. Additionally, usingmultiplexed proteomic imaging and
MALDI imaging mass spectrometry, we identify distinct histological and
metabolic profiles for highly differentiated tumors. Our approaches are
applicable to understanding the interplay between heterogeneity and differ-
entiation in other cancers and can provide important insights for the design of
targeted therapies.

Medulloblastoma (MB) is one of the most common malignant pedia-
tric brain tumors. The standard treatment regimen of surgical resec-
tion, radiation, and chemotherapy has led to favorable short-term
outcomes in aggregate1,2, but unfortunately these therapies can cause
neurological side effects and increased risks of secondary cancers3,4.
Thus, there is an urgent need for more targeted, less toxic therapies,
which requires a better understanding of the heterogeneity within and
between MB tumors5–8.

The World Health Organization recognizes both histological and
molecular heterogeneity in MB9,10. The four primary histological cate-
gories are classic, large cell anaplastic (LCA), desmoplastic/nodular

(DNMB), and medulloblastomas with extensive nodularity (MBEN).
DNMBhistology is characterized by tightly packed cells interrupted by
nodules filled with a lower density of differentiated neuron-like cells.
Tumors with widespread nodularity are designated as MBENs.

In addition to histological heterogeneity, there are four consensus
molecular subgroups recognized by the MB research community11:
WNT, SHH,Group3, andGroup4. SHHMBs represent 30%of cases and
have an overactive sonic hedgehog pathway caused by germline or
acquiredmutations12. Granule cell precursors (GCPs) of the cerebellum
are the proposed cell of origin for these tumors13–15. During normal
development, the GCPs proliferate in response to SHH in the external
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granule layer (EGL)16,17 before differentiating into granule neurons
(GNs)18, which then migrate to their final location in the internal
granule layer (IGL)19–21.

Many groups have characterized the molecular heterogeneity of
SHH MBs. Analysis of methylation and transcriptional data revealed
four consensus subtypes: SHH-1 (β), SHH-2 (ɣ), SHH-3 (α), and SHH-4
(δ)5,22. Additionally, Archer et al. found proteomic clusters of SHH MB
tumors23 and Korshunov et al. identified a transcriptional subtype of
SHH MBEN tumors with exceptionally good outcomes24. Single-cell
RNA sequencing (scRNA-seq) studies have also characterized the cell
types in SHH MBs6–8, where they observed undifferentiated progeni-
tors resembling cerebellar GCPs and differentiated NeuN+ cells.

Since SHH MBs are proposed to originate from GN progenitors,
we hypothesized that the inter- and intra-tumoral heterogeneity in
these samples is related to their developmental origins. Single-cell
clusters andmolecular subtypes havebeendescribed asdifferentiated,
but not associated with specific stages of GN development. Precise
annotations would allow for more biologically informed discussions
about the clinical and therapeutic relevance of specific cell types. For
example, there is great interest in using differentiation therapy to treat
SHH MB by inducing cycling progenitors to differentiate into post-
mitotic neurons25–27, and more knowledge about the drivers of differ-
entiation in these tumors would help inform target identification.

We reason that the relationship between development and intra-
tumoral heterogeneity would be particularly pronounced in tumors
with MBEN histology because they contain widespread differentiated
nodules. Therefore, in this work, we perform single-nucleus RNA
sequencing (snRNA-seq) on seven SHH MBs with the MBEN histology.
We identify cells mimicking every stage of cerebellar GN development
and thenuse computational techniques to relate theseMBENcell types
to previously described examples of SHH MB heterogeneity5–8,23,24.
Specifically, we detail insights about tumor subtypes, copy number
variations, metabolism, and histology. Overall, this work highlights
computational and experimental approaches that can be used to
investigate connections between tumor heterogeneity and known
developmental trajectories.

Results
Tumor cells in Medulloblastomas with Extensive Nodularity
(MBEN) recapitulate granule neuron development
Prior scRNA-seq studies of SHHMBhave not included any tumors with
MBEN histology6–8. While rare, such tumors are of particular interest
due to their occurrence in very young patients and their unusual
morphology, characterized by large regions of differentiated cells. We
reasoned that a deeper analysis of MBEN samples might provide
insight into the relationship between normal GN development and
tumor differentiation, so we performed snRNA-seq on seven MBEN
tumors (Supplementary Data 1).

First, we clustered the data and annotated the corresponding cell
types (Fig. 1a). Tumor cells represent 92% of the high-quality nuclei,
while the remaining nuclei are from cell types that commonly infiltrate
SHHMBs, such asmacrophages andmicroglia (Fig. 1a, Supplementary
Fig. 1A). The malignant nuclei are heterogeneous and Louvain clus-
tering revealed eight groups of cells (Supplementary Fig. 1B). Our data
confirm previous reports of tumor cells resembling non-cycling GCPs
(GLI2 + /TOP2A-), cycling GCPs (GLI2 + /TOP2A + ), and differentiated
cells (NeuN + ) (Fig. 1b). Additionally, we performed pseudotime ana-
lysis on the malignant nuclei and identified a clear trajectory from
cycling GCPs to differentiated cells (Fig. 1b).

Despite these patterns, pseudotime and UMAP plots are not
necessarily reflective of genuine biological differentiation. For-
tunately, canonical GN differentiation is well studied in both humans
and rodents, and there are known marker genes for each develop-
mental stage (Fig. 1c). GCPs express the SHH pathwaymarker GLI2 and
proliferate in the EGL. In the normal developing cerebellum, the

actively cycling GCPs (TOP2A +) are located in the outer EGL, while the
non-cycling GCPs reside in the inner EGL16,17,28. The GCPs can differ-
entiate into GN, where they are SEMA6A+ for the short time they are
migrating tangentially within the EGL29. The GN then express the
GRIN2B glutamate receptor as they migrate radially across the mole-
cular layer (ML)30–32. Once they reach the IGL and start to mature,
GRIN2B is replaced by the GRIN2C receptor33–36.

To assess the relationship between the tumor cells and normal GN
differentiation, we re-analyzed the nuclei along the potential GCP-to-
GN trajectory. Remarkably, we observed tumor nuclei expressing key
markers fromevery stage ofGNdifferentiation andmaturation (Fig. 1d,
Supplementary Fig. 2)37–40. These transcriptomic patterns suggest that
some MB tumor cells retain the capacity to recapitulate canonical GN
development.

Since there are known biases in single-cell and single-nucleus
sequencing41, we also performed scRNA-seq on fresh cells from one
MBEN tumor (Supplementary Fig. 3A). The scRNA-seq cells do not
express the same exact markers as the snRNA-seq nuclei, but we still
observe clusters of malignant cells with markers for each stage of GN
development (Supplementary Fig. 3). Additionally, we observed a dif-
ference in cell type proportions between the two assays. For the five
snRNA-seq samples that contain all stages of GN development, 66% of
the tumor cells resemble migrating and postmigratory GNs. In the one
scRNA-seq sample, these late-stage GNs only represent 33% of the
malignant cells. This difference may be due to sample-to-sample
variability or technical differences between cells captured by each
assay42,43

Clustering of gene set signatures reveals connections between
granule neuron development and SHH MB heterogeneity
Since we observed tumor cells expressing markers from each stage of
GN development, we sought to understand how theseMBEN cell types
relate to previously published examples of SHH MB
heterogeneity5,6,8,23,24,44. To accomplish this, we developed the com-
putational approach outlined in Fig. 2a. This method is based on
generating gene signatures from relevant developmental and tumor
datasets and then using a large compendium of expression data from
SHH MBs to identify which signatures are activated in the same
patients.

We considered signatures from six studies related to SHH MB or
GNdevelopment5,6,8,23,24,44 (Supplementary Fig. 4). Cavalli et al.5 defined
four consensus subtypes from bulk RNA and methylation; SHH-3 (α)
and SHH-4 (δ) are associated with older patients, while SHH-1 (β) and
SHH-2 (ɣ) tumors are often more neuronal and come from younger
patients. Archer et al.23 identified proteomic subtypes where SHHa
tumorshave proliferation and ribosomalmarkers,while SHHb samples
have elevated levels of proteins related to synapses and glutamate
signaling. Korshunov et al.24 uncovered the TCL1 and TCL2 transcrip-
tional subtypes of SHH MBEN samples, where TCL2 tumors have high
expressionof neuronal genes and come frompatientswith exceptional
survival rates.

In addition to these three bulk omics experiments, we also
included cell types from three scRNA-seq studies. Riemondy et al.8

analyzed SHH MBs and found six clusters of tumor cells. SHH-A cells
are associated with proliferation (SHH-A1 with S phase and SHH-A2
with G2M phase), while SHH-B cells are progenitors, with SHH-B1
resembling GCPs and SHH-B2 having high ribosomal expression.
Lastly, SHH-C1 cells are enriched for RNAprocessing and axo-dendritic
transport genes, while SHH-C2 cells have high levels of neural devel-
opment markers like STMN2. We also generated signatures for cell
types found during cerebellar GN development and considered stu-
dies from both human44 and mouse6.

For each cell type ormolecular subtype, we generated a signature
of 100 marker genes (see Methods) (Supplementary Data 2). We then
used Gene Set Variation Analysis (GSVA)45 to calculate an activation
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score for each signature in all 223 SHH MBs from the MAGIC cohort5

(Supplementary Data 3). To identify relationships among the sig-
natures, we performed consensus clustering on the signature scores.
Figure 2b summarizes the co-clustering pattern for 1000 trials. We
observe a clear correspondence between the MBEN cell types and the
known stages of GN development and this pattern holds true across
many clustering parameters and gene signature sizes (see Methods,
Supplementary Fig. 6).

Additionally, we analyzed how the signatures of GN development
relate to cell types identified from SHHMBswith non-MBEN histology.
Specifically, we investigated the SHH-A, SHH-B, and SHH-C clusters
fromRiemondy et al.8. We confirmed their findings that the SHH-A and

SHH-B signatures correspond to cycling and non-cycling GCPs
respectively. We also identified an association between the SHH-C2
signature and premigratory GN, which is supported by previous stu-
dies showing that the SHH-C2 cells populate the differentiated nodules
in SHH MBs8.

Consensus subtypes of SHH MB are associated with specific
developmental stages
The signatures we identified from normal GN development andMBEN
tumors provide an opportunity to connect these cell types to other
examples of SHH MB heterogeneity. Clustering of DNA methylation
and transcriptomicsdata revealed four consensus subtypes of SHHMB
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Fig. 1 |MBEN tumor cellsmimic granuleneurondevelopment. a SummaryUMAP
of Seven Tumors with MBEN Histology. Malignant and non-malignant cell types are
labeled in the legend. b Marker Genes and Pseudotime for Malignant Cells. Tumor
cells express markers for cycling GCPs (TOP2A + /GLI2 +), non-cycling progenitors
(TOP2A-/GLI2 +), and differentiated neurons (NeuN +). Feature plots use blue to
highlight all cells above 5th percentile of expression. Bottom right image shows
pseudotime analysis rootedat cycling cells. Pseudotime increases fromdarkblue to
white and then dark red. The black lines represent trajectories identified by
monocle3. c Summary of Canonical Granule Neuron Development. Image adapted
from Consales et al.54. Granule cell precursors (GCPs) proliferate in the outer por-
tion of the external granule layer (EGL), while non-cycling progenitors lie in the

middle portion of the EGL. As the granule neurons (GN) differentiate, they express
SEMA6A as they migrate tangentially across the inner portion of the EGL. The GN
then turn and migrate radially across the molecular layer (ML), during which they
express the glutamate receptor GRIN2B. Once the GN reach their final location in
the internal granule layer (IGL), GRIN2C replaces GRIN2B. d MBEN Tumor Cells
Resemble Stages of Granule Neuron Development. UMAP plot for malignant tumor
cells along potential GCP to GN trajectory. There are tumor cells that express
markers for each stage of GN development: cycling GCPs (TOP2A+), non-cycling
GCPs (TOP2A-/GLI2 +), premigratory GN (SEMA6A+), migrating GN (GRIN2B+),
and postmigratory GN (GRIN2C +). Feature plots use a minimum cutoff at the 90th
percentile for each marker to highlight the cells with the highest expression.
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with distinct clinical andmolecular features: SHH-1 (β), SHH-2 (ɣ), SHH-
3 (α), and SHH-4 (δ)5. The 223 SHH tumors from theMAGIC cohort are
annotated with a SHH subtype, so we re-analyzed the GSVA activation
scores for our MBEN cell types to investigate potential associations
(Fig. 3a). The SHH-3 samples have the highest average cycling GCP
signature scores (0.34 in SHH-3 vs. −0.11 in others), while the SHH-4
tumors are associated with the GCP signature (0.26 vs. −0.10). Both

infant subtypes (SHH-1 and SHH-2) have high scores for differentiated
cells but are enriched for specific developmental stages; SHH-1 sam-
ples have the highest premigratory GN scores (0.43 vs. −0.08), while
SHH-2 tumors have significant upregulation of the postmigratory GN
signature (0.50 vs. −0.21). It is noteworthy that the subtype with the
least favorable outcomes (SHH-3) also has the highest cycling GCP
scores (Fig. 3a).
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Fig. 2 | Clustering of gene signature activation scores. a Clustering of Gene Sig-
nature Scores Approach.The first step in thismethod is collecting the bulk or single-
cell datasets of interest (Supplementary Fig. 4). For each dataset, clustering was
used to identify relevant cell types ormolecular subtypes. Then the top 100marker
genes were identified for each cluster to generate gene signatures. Those marker
genes were used as gene sets for Gene Set Variation Analysis (GSVA), which was run
on bulk transcriptomics data from 223 SHH tumors in the MAGIC cohort. This
method converts the genes by samples matrix into a signatures by samples matrix
by scoring eachgene set signature for eachof the 223 tumors. Consensus clustering
was then run on those signature scores to identify which signatures are activated in

the same SHH tumors.b Signature Score Consensus Clustering Summary. Consensus
clustering results of 1000 trials using the signatures by samples output dataset. For
each individual clustering, 50% of the SHH MBs were randomly chosen. Beige sig-
nifies signatures that never cluster together, and stronger red coloring indicates
signatures that cluster togethermore often. The legend at the bottom indicates the
dataset of origin, the species of the cells (human or mouse), the data type (scRNA-
seq, snRNA-seq, or bulk), andmaterial type (SHHMB tumoror healthy cerebellum).
The groups of signatures on the right were manually annotated using the known
cerebellar cell types from human and P14 mouse samples.

a b

c d

*
**

**

*

**
ns

ns ns

Fig. 3 | Genomic and transcriptomic associations between SHH MB and GN
development. aMean Cell Type Activation Per Tumor Subtype. Each box shows the
mean GSVA activation for a given consensus subtype and an MBEN cell type. Red
indicates a higher GSVA score, while blue signals a lower one. b Associations
Between Progenitor Score and Differentiated Cell Types. For both plots, each dot
indicates a single sample from the MAGIC cohort and is colored by consensus
subtype. The left figure shows the postmigratory GN score on the y axis and the
progenitor score (cycling GCP + GCP) on the x axis. These two features have a
significant negative correlation. The right plot uses the same x axis, but the y axis
indicates the premigratory GN score and these two variables are not significantly
correlated. c Boxplot of Association Between Chromosome 10q and Proliferation
Score. Boxplots reflect GSVA scores for SHHMB tumors fromMAGIC cohort. Y axis
is the proliferation score (cycling GCP - GCP). The x axis is separated by consensus
subtype and further divided by 10q status (loss in blue, WT or gain in orange). For

all subtypes, sampleswith 10q loss showhigher averageproliferation score than the
other tumors. The respective p values for two-sidedMannWhitneyU tests from left
to right are 0.027, 0.0005, 0.009, and 0.026. * and ** indicate two-sided Mann-
Whitney p values less than 0.05 and 0.01 respectively. The boxplots from left to
right show the following number of samples: 6, 29, 5, 42, 29, 36, 6, and 70. Each
boxplot displays data quartiles, excluding outliers beyond 1.5 x IQR. d Boxplot of
Association Between Chromosome 9q and Late-Stage GNs. Y axis is the late-stage GN
score (migrating GN + postmigratory GN). The x axis is separated by consensus
subtype and further divided by 9q status (loss in light blue, WT or gain in light
orange). SHH-2 samples show a substantial difference in postmigratory GN sig-
nature based on 9q status. ** indicates two-sided Mann-Whitney p value < 0.01
(p = 6.5E-6). The boxplots from left to right show the following number of samples:
6, 29, 11, 36, 44, 21, 22, 54. Each boxplot displays data quartiles, excluding outliers
beyond 1.5 x IQR.
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We then analyzed the correlations among the MBEN cell type
signatures and found that the postmigratory GN signature has a strong
negative correlation (r = −0.57) with the progenitor score (i.e., sum of
cycling GCP score and GCP score) (Fig. 3b). This suggests that tumors
with more postmigratory GNs may have fewer progenitor cells. How-
ever, this pattern does not exist for the premigratory GN signature,
which has no significant relationship with the progenitor score GN
(r = −0.02) (Fig. 3b).

Genomic associations with specific developmental stages
SHH MB tumors frequently contain copy number variations (CNVs),
where large parts of chromosomal arms are lost or gained46. Since
these chromosomal alterations are quite common and affect many
genes at once, we hypothesized some CNVs could affect tumor cell
differentiation. We investigated potential associations between large
chromosomal CNVs and the MBEN cell types using data from the
MAGIC cohort5. We considered individual cell type signatures and
aggregate features that combine related developmental
stages5,6,8,23,24,44 (see Methods). The strongest association is between a
lossof chromosome10q and theproliferation score (cyclingGCP score
minus the GCP score) (Mann Whitney U test p <0.01) (Fig. 3c, Sup-
plementary Data 4). This pattern of 10q loss leading to higher cycling
GCP scores is consistent for every subtype, suggesting that loss of
chromosome 10q, which contains the SUFU and PTEN genes,may drive
progenitor cells to remain proliferative.

Moreover, there is a strongnegative relationship between a lossof
chromosome 9q, which contains the PTCH1 and ELP1 genes, and the
signature for late-stage GNs (i.e. sum of migrating and postmigratory
GN scores) (Mann Whitney U test p <0.01) (Fig. 3d). This pattern is
most prominent in the SHH-2 patients, where the samples with high
activation scores for late-stage GNs rarely have loss of chromosome
9q. This trend is not observed for other common CNVs or pre-
migratory GNs (Supplementary Fig. 7), suggesting that loss of chro-
mosome 9q may inhibit tumor cells from progressing to the later
stages of GN differentiation.

The SHHb proteomic subtype is associated with tumor cells
mimicking late-stage granule neurons
Archer et al. identified proteomic subtypes of SHH MB that are not
observed when clustering RNA or methylation data23. The SHHb sub-
type is characterized by proteins related to specific neuronal functions
like glutamatergic synapses and axon guidance. We re-analyzed the
Archer proteomics data and found that even though synaptic proteins,
like PCLO and DLG4, are upregulated in SHHb tumors, many markers
of neuronal differentiation, such as NEUROD147 and SEMA6A29, show
similar expression across the groups (Fig. 4a). This suggests that the
SHHb proteomic subtype is not simply a proxy for tumors with dif-
ferentiated cells.

To better understand the relationship between the snRNA-seq
results and the SHHb phenotype, we used the SHHb proteomic mar-
kers (Supplementary Data 2) to calculate an activation score for each
MBEN nucleus (see Methods). The highest activation occurs in tumor
cells mimicking the migrating and postmigratory stages of granule
neuron development (Fig. 4b). We then analyzed the cell type com-
position of each tumor individually and observed a striking pattern:
most MBEN tumors contain all GN cell types, but two samples only
contain nuclei resembling GCPs and premigratory GN (Fig. 4c).

These results suggest that the SHHb subtype is driven by the
presence of cells resembling the latest stages of GN differentiation.
This would explain why early differentiation markers have similar
expression between SHHa and SHHb tumors, while proteins related to
late-stage developmental processes (e.g. synaptogenesis) are sig-
nificantly enriched in SHHb samples. To further investigate this trend,
we performed additional snRNA-seq on six SHH MBs tumor that have
known proteomic subtypes and do not have MBEN histology. In this

cohort, the three SHHa tumors (MB002, MB009, and MB019) are
primarily composed of GLI2+ cells and SEMA6A+ cells resembling
earlier stages of GN development, whereas all three SHHb tumors
(MB005, MB015, and MB084) contain a large proportion of GABRD+
cells that resemble late-stage GNs (Supplementary Fig. 8).

We then sought to investigate how common these late-stage GN
cells are in non-MBEN tumors using previously published scRNA-seq
data from 14 SHH MBs6–8. In this cohort, no sample contains a cluster
with high expression of the postmigratory GN markers GABRD and
VSNL1 (Supplementary Figs. 9–14). This lack of expression is unlikely to
be due to the differences between scRNA-seq and snRNA-seq because
theoneMBEN tumor in our cohortwith scRNA-seqdata clearly shows a
group of GABRD+ /VSNL1+ cells (Supplementary Fig. 15). It is note-
worthy that even though the published non-MBEN tumors do not
contain cells mimicking late-stage GNs, every sample has a cluster of
SFRP1+ cells resembling undifferentiated progenitors. Additionally,
many tumors have cells expressing the premigratory GN markers
STMN2 and SEMA6A. These findings suggest that non-MBEN SHHMBs
still contain cells resembling the earliest stages of GN development,
but MBEN tumors are more likely to have cells mimicking late-stage
GNs that are associated with the SHHb subtype.

FMRP-induced post-transcriptional regulation helps explain
SHHb proteomic phenotype
The association between the proteomic SHHb subtype and late-stage
GNs raises another question: why does the presence of late-stage GNs
result in clear clustering in the proteomic data, while havingmuch less
of an impact on RNA or methylation data? We hypothesized that this
could be due to post-transcriptional regulation occurring in the SHHb-
specific cell types. To test this theory, we re-analyzed 8674 genes from
the Archer cohort by rank-normalizing the protein and RNA data for
each sample and then calculating a rankdifference (protein rank–RNA
rank) for each gene to get a rough proxy for post-transcriptional reg-
ulation (see Methods).

We explored many gene sets and found that synaptic genes have
especially high rank differences in the SHHb tumors, but not the SHHa
tumors (Supplementary Fig. 16). We then specifically analyzed targets
of FMRP, a protein encoded by the FMR1 gene that regulates the
nuclear export and translation of RNAs related to neuron develop-
ment, synaptic plasticity, and axon guidance48–50 (Supplementary
Fig. 17). In SHHb tumors, synaptic genes targeted by FMRP have sig-
nificantly higher rank differences than all other genes and even show
higher rank differences than the other synaptic genes (Fig. 4d). No
such trend occurs in SHHa tumors where all four gene sets show
similar rank differences around 0. Thus, positive rank differences for
both synaptic genes and FMRP targets suggest that the SHHb pheno-
type may be especially strong in proteomic data due to post-
transcriptional regulation specific to functions of late-stage GNs.

Desmoplastic/Nodular (DNMB) histology in SHH MB reflects
granule neuron development
We sought to understand how the neuronal MBEN cells from our
snRNA-seq data relate to the differentiated nodular regions observed
in some SHH MBs. Eberhart et al. compared DNMB histology to the
layers of the developing cerebellum (Fig. 1c)51, hypothesizing that the
cycling internodular regions represent the progenitor cells of the EGL
and that the nodules themselves represent the differentiatedGNof the
IGL. Thismodel has been a useful framework for understanding DNMB
histology, but our snRNA-seq data suggests it can be improved since
our cohort includes twoMBEN tumors that containno cells resembling
the postmigratory GN that populate the IGL (Fig. 3c).

Thus, we propose an alternative model where most SHH MB
tumors with DNMB histology are composed of nodules containing
NeuN+ cells mimicking premigratory GN; these regions most closely
correspond to the most internal part of the EGL, rather than the IGL
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(Fig. 1c). Additionally, we posit that a subset of SHH MBs contain
nodules that recapitulate the later migrating and postmigratory stages
of GN development.

To test this hypothesis, we performed multiplexed immunohis-
tochemistry (mIHC)52,53 on SHH MBs to detect relative protein levels
for fourmarkers related toGNdevelopment: Ki67 (cycling cells),MAP2

(all GNs),CNTN1 (late-stageGNaxons), andVSNL1 (late-stageGNaxons
and dendrites). These proteins allow us to distinguish premigratory
GNs (MAP2 + /VSNL1-) from late-stage GNs (MAP2 + /VSNL1 +) (Sup-
plementary Fig. 18). We ran this experiment on sections from eight
tumors with known SHHa/SHHb proteomic subtypes23. All nodular
tumors contain cells resembling premigratory GN (MAP2 + /VSNL1-),
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while only the SHHb samples have areas resembling late-stage GNs
(MAP2 + /VSNL1 +) (Fig. 5a). Three of the four SHHb tumors have large
VSNL1+ regions, while MB206 only contains a small area of VSNL1+
cells. These findings support our proposed model and highlight that
MB nodules vary in their developmental stage.

Significant variability in VSNL1 staining between and
within tumors
Korshunov et al. found that the TCL2 transcriptional subtype of MBEN
tumors contains diffuse VSNL1 staining and has exceptional
outcomes24. Based on our snRNA-seq data, VSNL1 is only expressed in
tumor cells mimicking migrating and postmigratory GNs (Supple-
mentary Fig. 18). This suggests that the TCL2 subtype may be identi-
fying samples that are primarily composed of late-stageGNs. Given the
potential clinical relevance of VSNL1 staining, we wanted to better
understand the variability of VSNL1+ cells in SHH MBs. We performed
immunohistochemistry targeting VSNL1 on FFPE slides from an addi-
tional seven MB with DNMB or MBEN histology and observed sig-
nificant heterogeneity between and within tumors (Supplementary
Fig. 19). Samples likeCHLA-3 contain noVSNL1, while others likeCHLA-
10 are almost entirely composed of VSNL1+ regions.

We further investigated this heterogeneity by running our mIHC
panel on CHLA-5, which showed significant regional variability in
VSNL1 staining between sections (Fig. 5b).One region is almost entirely
composed of MAP2 + /VSNL1- nodules, while another area contains
mostly MAP2 + /VSNL1+ cells. This suggests that local microenviron-
ment may affect the differentiation stage in distinct regions of the
same tumor.

Tumor cell spatial organization can recapitulate the developing
cerebellum
Since we observed tumor cells mimicking the expression patterns of
differentiating GNs, we also wanted to investigate whether these cells
spatially organize like the developing cerebellum. First, we con-
firmed the established phenomenon that Ki67+ cells are primarily
located in internodular areas (Fig. 5b). In multiple samples, we
noticed that this pattern is particularly extreme for the VSNL1+
nodules (Supplementary Fig. 20). For example, CHLA-5 and MB287
both show significant variability in the Ki67 positivity rate between
VSNL1+ and VSNL1- regions (Fisher’s exact p value < 0.01). For CHLA-
5, only 1.5% of the cells in the VSNL1+ areas are Ki67 + , comparedwith
23.2% of the cells in the VSNL1- areas. The same trend is observed in
MB287, where the Ki67+ positivity rate is 0.3% in VSNL1+ areas and
8.2% in VSNL1- areas.

Additionally, in CHLA-10, there are regions of tumor cells that
appear to organize like the developing cerebellum (Fig. 5c, d). The
most external layer resembles the EGL; it contains Ki67+ cells at the
outer edge andmarkers for premigratory GNs (MAP2 + /VSNL1-) at the
inner edge. Within that area is a region analogous to the molecular
layer, as it contains almost no cells and many CNTN1 + /VNSL1+ axonal

processes. Lastly, the central region corresponds to the IGL and con-
tains VSNL1+ cells mimicking postmigratory GNs. It is noteworthy that
this pseudo-cerebellar structure lacks a Purkinje cell layer as Purkinje
neurons cannot differentiate from GCP stem cells.

We also investigated mIHC results for cellular patterns known to
occur in MBEN tumors, such as parallel rows of nuclei surrounded by
neuropil. These smaller structures also resemble the developing cer-
ebellum by having central VSNL1+ cells surrounded by their VSNL1 + /
CNTN1+ axons (Supplementary Fig. 21). In summary, these findings
suggest that both simple and complex nodular structures routinely
observed in SHHMBcanbe explainedbymalignant cells recapitulating
specific stages GN development.

Tumors with late-stage granule neurons have distinctmetabolic
profiles
We are particularly interested in SHH MB metabolism because
many metabolites, like glutamate, are drivers of GN migration and
differentiation54,55. Genomic and transcriptomic heterogeneity of
SHH MBs has been well studied, but there are very few published
papers analyzing SHH MB metabolism and these projects typically
focus on tumor type or subtype classification using bulk
metabolomics56,57.

We used MALDI imaging mass spectrometry (MALDI-IMS)58 to
collect spatial metabolomics data on ten tumor sections collected
from nine individual SHH MB patients (Supplementary Fig. 22). Seven
of the nine patients were included in the snRNA-seq cohort (Fig. 1),
while the other two samples are from tumors with DNMB histology.
From the snRNA-seq data, we know that five samples contain tumor
cells resembling late-stage GNs and we sought to understand the
metabolic differences between these tumors and the others. First, we
calculated the meanmetabolite levels for each section and performed
differential analysis. The most upregulated metabolite in tumors with
late-stage GNs is N-acetylaspartic acid (NAA), which is synthesized by
neurons and has high concentrations in the brain59,60. The most
downregulated metabolites are related to nucleic acids, like UDP and
adenine.

We then implemented joint graphical lasso61 (see Methods) to
generate networks of conditionally dependent metabolites in each
tumor to better understand how metabolite co-expression patterns
change across samples. Some core metabolite relationships, like glu-
tamate-glutamine, were observed in the networks from every sample.
We used betweenness centrality, ametric of a node’s influencewithin a
network, to identify metabolites that are especially important for each
tumor. When comparing the networks from samples with late-stage
GNs to the other networks, taurine has the largest mean centrality
difference. Figure 6a shows select metabolite edges and highlights
relationships with taurine that are overrepresented in the tumors with
late-stage GNs. The prominence of taurine in these tumor networks is
noteworthy because of prior literature linking the molecule to GCP
differentiation andGNmigration62,63. One study specifically shows that

Fig. 4 | SHHb proteomic subtype associated with late-stage GNs. a Neuronal
Protein Expression in SHH MB. Relative protein expression from Archer et al.23 data
for markers of early differentiation (NEUROD1 and SEMA6A) and synapses (DLG4
and PCLO). DLG4 and PCLO are significantly different between SHHa and SHHb
(two-sided t-test p values of 1.8E-6 and 1.1E-5). NEUROD1 and SEMA6A are not
significantly different between subtypes. Each paired boxplot represents 10 SHHa
tumors (red) and 5 SHHb tumors (purple) and shows data quartiles, excluding
outliers beyond 1.5 x IQR. b SHHb Signature Scores for MBEN Nuclei. Activation
scores for each MBEN nucleus using the top 100 SHHb marker proteins. Scores
were filtered using a minimum cutoff of zero to highlight nuclei with the highest
SHHb activation, which are the nuclei resemblingmigrating and postmigratoryGN.
c Tumor Cell Types per Sample. Five MBEN samples contain all types of cells. Two
MBEN tumors do not contain late-stage GNs (migrating and postmigratory GN).
d Rank Differences by Synapse and FMRP status. For each SHH tumor from Archer

et al.23, RNA and protein data were rank normalized and a rank difference (protein
rank - RNA rank) was calculated for each gene. For each gene in every SHHa tumor,
the mean rank difference was calculated across samples and then the same pro-
cedure was applied to SHHb tumors. The genes were then divided into four cate-
gories: non-synaptic genes not targeted by FMRP (Non-SYN, 7392 genes), non-
synaptic genes targeted by FMRP (Non-SYN FMRP, 454 genes), synaptic genes not
targeted by FMRP (SYN, 628 genes) and synaptic genes targeted by FMRP (SYN
FMRP, 200 genes). For SHHb tumors, SYN and SYN FMRP genes have high rank
differences. For SHHa tumors, all categories show rank differences around zero. **
indicates thatSYNFMRPgeneshave significantly different rankdifferences than the
other gene groups. Two-sidedMannWhitney U test p values are 9.1E-7, 6.6E-13, and
8.7E-29 when comparing the SYN FMRP group to the SYN, NON-SYN FMRP, and
Non-SYN groups respectively. Each boxplot shows data quartiles, excluding out-
liers beyond 1.5 x IQR.
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depleting dietary taurine in mother cats impedes GN development in
newborn kittens, a phenotype that can be abrogated by directly
feeding taurine to the kittens63.

Given the significance of taurine in our network analysis and
canonical GN development, we further analyzed the spatial distribu-
tion of taurine. We used the bivariate Moran’s I statistic to assess what

metabolites correlate or anticorrelate with taurine expression in a
given cellular neighborhood (see Methods). We found that there is a
strong negative association between taurine and guanine in tumors
with late-stage GNs (Fig. 6b). This anticorrelation is visually striking in
the tumors with late-stage GNs, but is not observed in other sam-
ples (Fig. 6c).
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These results suggest that taurine may be playing a specific role in
tumors with late-stage GNs. We assessed this hypothesis by performing
immunohistochemistry on eleven pediatric medulloblastoma tumors.
In each case, we measured fluorescence levels for MAP2, VSNL1, and
taurine, and found four samples that contain both MAP2 + /VSNL1- and
MAP2+ /VSNL1+ regions for comparison. Within each tumor, we
observed that taurine intensities were significantly higher in the more
differentiated MAP2+ /VSNL1+ regions compared to the MAP2 + /
VSNL1- areas (t-test p value <0.01) (Fig. 6d, Supplementary Fig. 24).

Additionally, we re-stained the pseudo-cerebellar structure from
CHLA-10 with another mIHC panel including taurine and observed
high taurine staining in the central region mimicking the IGL and
around the edges of the structure (Supplementary Fig. 25). There
appears to be a region with strong taurine staining between the
pseudo-ML and the pseudo-EGL (Fig. 6e). Collectively, these imaging
experiments further support that taurine is associatedwith tumor cells
mimicking late-stage GNs.

Discussion
We performed snRNA-seq on seven MBEN tumors and found malig-
nant cell types mimicking every stage of cerebellar granule neuron
development. By re-analyzingpublicMBdatawith this newknowledge,
we were able to elucidate connections between GN development and
established molecular and histological phenomena (Fig. 7). Specifi-
cally, we found that each consensus subtype of SHHMB is enriched for
a specific developmental stage and that the proteomic SHHb subtype
is likely caused by the presence of tumor cells resembling late-stage
GNs. Additionally, a spectrumof recognizedhistological patterns, such
as layered nodules and linear arrays of tumor nuclei in MBEN tumors,
can now be understood as tumor cells mimicking the structure of the
IGL of the developing cerebellum.

This work describes tumor cells mimicking late-stage GNs and
presents significant progress in our understanding of the biological
causes of tumor differentiation in SHH MBs. While preparing our
manuscript, we became aware of a parallel study carried out by Gha-
semi et al. (2023). Strikingly, they identify the same cell types that we
do and observe similar spatial patterns. Additionally, Ghasemi et al.
collected snRNA-seq data from three tumors from the Archer et al.
proteomics cohort23 and consistent with our predictions, these SHHb
tumors (MB088, MB266, and MB287) all contain cells resembling late-
stage GNs.

It is still not well understood why some SHH MBs are primarily
composed of differentiated cells and other tumors have none. Based
on this study, we believe that tumor microenvironment and genomics
are important factors. Tumors with extensive nodularity rarely contain
large CNVs and frequently occur in infants, whose brains are actively
developing. We hypothesize the tumor microenvironment in these
young patients may contain pro-development factors that can induce
some malignant cells to escape the progenitor state and follow GN
differentiation. If these tumor cells truly recapitulate GNdevelopment,
they could promote the differentiation of nearby malignant cells
through the release or expression of factors like glutamate and
CNTN130,64–66. This could potentially induce a feed-forward loop

whereby more maturation leads to more cells producing pro-
differentiation molecules.

We also observed that CNVs are associated with distinct devel-
opmental stages. We highlighted alterations to chromosome 9q and
10q, which are significant because they contain the key SHH pathway
genes PTCH1 and SUFU. Loss of 9q or 10q can activate the SHH path-
way, but these CNVs may also promote tumorigenesis by inhibiting
differentiation. PTEN and NEURL1 are both located on chromosome
10q and negatively regulate GCP cycling67–69. Additionally, chromo-
some 9q contains NTRK2, which plays a vital role in granule cell
migration70,71 and maturation38. There are many SNPs and CNVs with
unknown effects on SHH MBs and it is worth further exploration to
determine the potential developmental impact of those mutations.

Our work reinforces the importance of understanding differ-
entiation state for prognosis. Korshunov et al.24 showed that MBENs
with diffuse VSNL1 staining have excellent outcomes, while the other
MBEN tumors have similar survival rates to samples with DNMB
histology24. Our snRNA-seq data demonstrates that VSNL1 is exclu-
sively expressed in cells resembling late-stage GNs, suggesting these
cell typesmay have greater clinical relevance than other differentiated
cells. This hypothesis is supported by our GSVA analysis, which shows
that the late-stage GN score negatively correlates with the progenitor
score; by contrast, the score for premigratory GNs, an earlier stage of
differentiation, has no relationship with the progenitor score (Fig. 3b).
Together, these results suggest that not all SHHMBdifferentiation has
the same prognostic relevance, and that differentiation stage could
potentially be used to stratify individual patient risk more accurately.

These molecular and prognostic insights are important for the
development of therapeutics. The similarities we observe between
tumor cells and GN development suggest that the current under-
standing of human cerebellar development canbe leveraged for target
identification for differentiation therapies. Extracellular factors like
CNTN1, glutamate, and taurine promote differentiation and migration
during canonical GN development. Unfortunately, there are no
established models of MBEN tumors for us to use in this study, but
future experiments can test whether these molecules can also induce
differentiation in SHH MBs.

In summary, this work characterizes the differentiated cells in
SHH MBs, establishes the key transcriptomic and metabolomic pat-
terns of those cells, and uses these findings to help explain the biolo-
gical basis of observedmolecular subtypes and histological patterns. It
is unlikely that this study includes every malignant cell type related to
SHH MB biology, but we do show that most tumor cells in pediatric
SHH MBs can be associated with some stage of GN development. We
hope that these findings promote further research into connections
between SHH MB tumorigenesis and cerebellar GN development and
that a deeper understanding of this relationship will ultimately enable
novel therapeutic approaches.

Methods
Material data collection, inclusion, and ethics
All experiments in this study involving human tissue or data were
conducted in accordance with the Declaration of Helsinki. All tissues

Fig. 5 | SHHMB nodules recapitulate granule neuron development. a Examples
of VSNL1- and VSNL1+ Nodules. Staining for DAPI (blue), MAP2 (red), and VSNL1
(white). Each image shows a nodular region from an individual sample. The top row
shows nodules with MAP2+ /VSNL1- cells resembling premigratory GN in tumors
with SHHaproteomic subtype. The three tumorswith the SHHbproteomic subtype
are on the bottom row and contain differentiated regions that are MAP2 + /VSNL1+
mimicking the later stages of GN development. Scale bars indicate 100 μm. b Ki67
and VSNL1 Anticorrelate in CHLA-5. mIHC staining for tissue section from one
sample (CHLA-5). Ki67 (yellow), MAP2 (red) and VSNL1 (white). Tissue section on
bottom left is primarily composed ofMAP2+ /VSNL1+ cells and has very few cycling
cells. The larger tissue on the right contains many Ki67+ cells and MAP2+ /VSNL1-

nodules. Scale bars indicate 1mm. c Tumor Cells Mimic Cerebellar Structure inCHLA-
10. mIHC staining for one tissue region from CHLA-10 tumor. Left image contains
H&E stain from pseudo-cerebellar region in CHLA-10. Right image shows mIHC
staining same region. Scale bars indicate 100μm. d Zoomed in Region Highlights
Cerebellar Layers. Left image is H&E stain from a healthy developing cerebellum.
The right images contain the boxed section from Fig. 5c, which highlights one
tumor region from sample CHLA-10. Outer layer resembles the EGL and contains
Ki67+ cycling cells and MAP2 + /VSNL1- cells mimicking premigratory GN. The next
layer is like the molecular layer (ML), which has few nuclei and CNTN1 + /VSNL1+
axons. The white interior region represents the internal granule layer (IGL) and is
filled with VSNL1+ cells mimicking postmigratory GN. Scale bars indicate 100 μm.
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used in this study were obtained with properly informed written
consent of patients or their legal representatives.

For MBEN single-cell transcriptomics analysis, all collection
and experimental procedures were performed after approval by
the institutional review board at The Hospital for Sick Children
(Toronto, Canada). For snRNA-seq of samples with known

proteomic subtypes, this study was approved by the Institutional
Clinical Research Board of Gustave Roussy, and complied with the
reference methodology MR-004 (IRB number: 2022-125). For
mIHC and imaging analysis of samples from CHLA, all samples
were deidentified and obtained with properly informed consent.
This study was approved by the Institutional Review Board at
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Children’s Hospital Los Angeles (CHLA-20-00588). FFPE material
for the other samples used for mIHC analysis was obtained with
informed consent based on the International Cancer Genome
Consortium (ICGC) guidelines. This was approved by the Ethics
Committee of the Medical Faculty at Heidelberg University and by
the Institutional Review Board of Contributing Center Nikolay
Nilovich Burdenko Neurosurgical Institute in Moscow.

Preparation of single-cell suspensions
Fresh patient tumors were collected at the time of surgical resection.
Tumor tissue was mechanically dissociated followed by collagenase-
based enzymatic dissociation as previously described in ref. 6.

Preparation of single-nuclei suspensions
Nuclei were isolated from fresh, snap frozen tumor tissues as pre-
viously described in ref. 72. Frozen tissues were dounced in 1ml of
chilled lysis buffer (lysis buffer; 10mM Tris-HCl (pH 7.4), 10mMNaCl,
3mM MgCl2, 0.05% NP-40 detergent) 5 times with a loose pestle, 10
times with a tight pestle and lysed for 10min on ice. 5ml of chilled
wash buffer (wash buffer; 5% BSA, 0.04U/µL RNase inhibitor, 0.25%
glycerol) was added to the sample, passed through a 40 µm cell strai-
ner and centrifuged at 500 x g for 5min at 4 °C. After pelleting, the
nuclei were resuspended in 5–10ml of wash buffer. After two washes,
single-nuclei suspensions were passed through a 20 µm cell strainer,
pelleted, and resuspended in PBS with 0.05% BSA.

Single-cell and single-nuclei RNA library preparation and
sequencing
Single-cell and single-nuclei suspensions were assessed with a trypan
blue count. For each sample, 10,000–15,000 cells or nuclei were loa-
ded using the Chromium Controller in combination with the Chro-
miumSingle Cell 3’V3 and V3.1 Gel Bead andChip kits (10XGenomics).
Individual cells or nuclei were partitioned into gel beads-in-emulsion
(GEMS), followed by reverse transcription of barcoded RNA and cDNA
amplification. Individual single-cell libraries with indices and Illumina
P5/P7 adapters were generated with the Chromium Single Cell 3’
Library kit and Chromium Multiplex kit. The libraries were sequenced
on an Illumina Novaseq6000 sequencer. The six additional snRNA-seq
samples from the validation cohort were processed using the same
protocol and were also run on an Illumina Novaseq6000 sequencer.

Human medulloblastoma tissue collection (CHLA)
De-identified medulloblastoma samples were retrieved from the Chil-
dren’s Hospital Los Angeles Pediatric Research Biorepository with
adherence to the institutional ethical regulations of Children’sHospital
Los Angeles Institutional Review Board. Samples retrieved were ori-
ginally obtained from surgical resection specimens and either frozen
or fixed in formalinwithin 30minutes of procurement. Frozen samples
were embedded in OCT (Tissue Tek) and maintained in monitored
freezers at −80C. All specimens were evaluated by a neuropathologist
(J.A.C.) prior to preparation for experimental use.

Fig. 6 |Metabolic features of differentiation in SHHMBs. a Select Edges from Joint
Graphical Lasso Analysis. Purple edges appear in at least 50% of the networks from
tumors with late-stage GNs, but not for the other samples. Green edges are in at
least 50% of other tumor networks, but not samples with late-stage GNs. Black
edges appear in networks from 50% of both groups. b Swarmplot of Bivariate
Moran’s I Between Taurine and Guanine. Bivariate Moran’s I statistic was calculated
between the guanine and the spatial lag of taurine for each section. Tumors with
late-stage GNs (purple) have a strong negative relationship not consistently
observed in the other samples (green). c Taurine and Guanine Anticorrelate in
Tumors with Late-Stage GNs. For four sections, the relative expression values are
plotted for guanine and taurine. Each plot shows the metabolite values, clipped at
the 3rd and 97th percentiles. The tumors with late-stage GNs show clear spatial
anticorrelation between guanine and taurine, which is not consistently observed in
the other tumors. d Taurine Intensity by Region Type. For each of the four samples

(CHLA-5, CHLA-9, CHLA-13, and CHLA-14), the imaged area was divided into three
region types: MAP2 + /VSNL1 + , MAP2 + /VSNL1-, and MAP2-/VSNL1-. The height of
each bar indicates themean taurine fluorescence intensity for pixels in each region
of that sample. In all four samples, the mean taurine intensity is highest in the
MAP2 + /VSNL1+ regions, followed by MAP2 + /VSNL1- and then MAP2-/VSNL1-.
Error bars indicate standard error. Data distributions can be found in Supplemen-
tary Fig. 24. e Vertical Layers of Pseudo-Cerebellar Structure from CHLA-10. mIHC
from one tumor region from sample CHLA-10. Zoomed in region from orange box
in Supplementary Fig. 25. Furthest left region resembles EGL with MAP2+ /VSNL1-
cells. On the far right is a region similar the IGL that contains MAP2, VSNL1, and
taurine. In between is a region divided in two, where the right section contains
VSNL1+ axons and the left one stains for taurine. There appears to be a layer with
high taurine levels between the pseudo-ML and pseudo-EGL. Scale bars
represent 50μm.
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Fig. 7 | SummaryofSHHMBassociationswithGCPdevelopment. Image adapted
from Consales et al.54. Image of canonical GCP development with GCPs differ-
entiating in the external granule layer (EGL), migrating through themolecular layer

(ML) until they reach their final location in the internal granule layer (IGL). The right
side shows medulloblastoma subtypes or IHC staining patterns and their associa-
tions with specific regions of the developing cerebellum.
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VSNL1 immunohistochemistry
VSNL1 stainingwas performedon a Ventana BenchMarkUltra (Ventana
Medical Systems, Tuscon, AZ) on 4-micron sections of paraffin-
embedded medulloblastoma tissue. Briefly, slides were depar-
affinized and underwent antigen retrieval protocol with cell con-
ditioning 1 (CC1), followed by application of primary antibody (VSNL1,
mouse monoclonal, OTI4A6, #MA5-26516, Thermo Fisher Scientific
Inc.), at a dilution of 1:1600. 3,3’-diaminobenzidine (DAB) chromogen
(ultraView Universal DAB detection kit, Ventana Medical Systems,
Tucson, AZ) was used for visualization and counterstaining with
hematoxylin was performed.

Multiplexed immunohistochemistry
FFPE slides of medulloblastoma samples were processed before anti-
body staining by performing baking, deparaffinization, antigen
retrieval, tissue permeabilization, autofluorescence photobleaching,
and background imaging with DAPI staining. Slides were baked at
60 °C for one hour. Deparaffinization was completed with the follow-
ing washes, each at three minutes: xylene (2x), 1:1 ratio of xylene to
ethanol, ethanol (2x), 95% ethanol, 70% ethanol, 50% ethanol, RODI
water (2x). Slides were submerged in 1x Tris-EDTA and heated in
boiling water under pressure of a pressure cooker, then washed in 1x
PBS for 10min. The tissue was permeabilized with 1x PBS+0.1%
TritonX-100 for 10min. Slides were washed in three changes of 1x
PBS +0.1% Tween20 for 10minutes/wash.

Autofluorescence photobleaching was carried out by submerging
slides in a solution of 4.5% hydrogen peroxide, 25mM sodium hydro-
xide, and 1x PBS, while heating the samples and solution to 37 °C and
exposing the tissue to direct full visible spectrumLED light. Slideswere
then washed three times in 1x PBS + 0.1% Tween20 for 10min-
utes/wash.

Endogenous non-target proteins were blocked with a one-hour
wash of Odyssey Blocking Buffer (PBS). Slides were then washed (1x
PBS +0.1% Tween20, 10min), incubated in DAPI for 10min, and then
washed again (1x PBS + 0.1% Tween20, 10min).

Glycerol (10% in 1x PBS) was used to mount coverslips onto the
slides for imaging. Background imaging was captured with the same
excitation and emission settings as was later used for fluorescent
antibody imaging: (ex,em); D360/40x, ET460/50M; HQ480/40X, 535/
50M; 560/40X, D630/60M; 628/40X, 692/40M.

Following background autofluorescence imaging with DAPI
staining for registration, samples were incubated in the unconjugated
primary antibodies AB1, AB2, AB3 overnight at 4 °C. Sampleswere then
washed three times in 1x PBS +0.1% Tween20 for 10minutes/wash.
Secondary antibodies with their respective fluorophores were added
for one hour at room temperature in a dark humidity chamber.

Fluorescently-labeled tissue slides were imaged on a TE2000
inverted microscope using the excitation emission filters described
above with 10x magnification and 0.30 NA lens with a resolution of
1.546 pixels/µm.

After the final round of IHC imaging, slides were photobleached
and then stained with hematoxylin and eosin. The slides stained with
H&Ewere imaged on anAperio AT2 slide scanner at 40xmagnification.

Antibody validation and panels
Antibodies were validated using reference tissues (Supplementary
Fig. 26). Two mIHC panels were used for this study and are described
below. Panel 1 includes taurine and was run on FFPE tissue from
CHLA-5 and CHLA-10. The other mIHC images were generated using
Panel 2. MAP2, VSNL1, and Taurine were detected using secondary
antibodies. Ki67 was directly conjugated to AF647 before purchasing,
while CNTN1 was directly conjugated after purchase using the AF555
kit from Abcam (ab269820).

These antibodies allow for detecting stages of GN development.
Ki67 is marker of the cycling progenitor cells73,74 and MAP2 is

expressed by postmitotic granule neurons75. CNTN1 is a cell surface
marker localized the GN dendrites and axons during development, but
the dendritic expression is lost as theGNsmature76. VSNL1 is a calcium-
sensor expressed in GNs77 and the snRNA-seq data indicates it
expressed exclusively in late-stage GNs.

The antibodies and their dilutions are as follows:
CNTN1: Novus-AF904 (15μg/ml)
Ki67: Cell Signaling 12075, directly conjugated AF-647 by

manufacturer (1:50)
MAP2: Abcam ab92434 (1:100)
Taurine: Sigma-Aldrich AB5022 (1:100)
VSNL1: Invitrogen MA5-26516 (1:100)
The two panels used are as follows:
Panel 1:
Round 1: DAPI, MAP2 (488), VSNL1 (555), Taurine (647)
Round 2: DAPI, CNTN1 (555), Ki67 (647)
Panel 2:
Round 1: DAPI, MAP2 (488), VSNL1 (647)
Round 2: DAPI, CNTN1 (555), Ki67 (647)

MALDI slide preparation and matrix coating
Fresh tissueswere harvested and flash-frozen on dry ice, then stored at
80 °C. 10 µm-thin tissue sections were cut on a cryostat (Leica
CM3050S, Wetzlar, Germany) in serial sections for MALDI and IF. Tis-
sue sections were thaw-mounted on indium tin oxide (ITO)-coated
glass slides (Bruker Daltonics, Bremen, Germany) and desiccated
under vacuum for 10min before matrix coating.

Slides were subsequently sprayed with negative ionizationmatrix
N-(1-Naphthyl) ethylenediamine dihydrochloride (NEDC, Sigma
#222488) using an HTX TM-Sprayer (HTX Technologies, LLC). Con-
centration of 10mg/mlwas used in 70%MeOH. The sprayer parameter
used was 80 °C temperature, 0.1ml/min flow rate, 1000mm/min
velocity, 2mm track spacing, 10 psi pressure, and 3 liters/min gas flow
rate. Slides were coated on the same day as MALDI imaging.

MALDI imaging
ForMALDI-FTICR scanning, thematrix-coated slideswere immediately
loaded into a slide adapter (Bruker Daltonics, Bremen, Germany) and
then into a solariX XR FTICR mass spectrometer with a 9.4 T magnet
(Bruker Daltonics, Bremen, Germany)with resolving power of 120,000
atm/z 500. The laser focus was set to ‘small,’ and the x-y raster stepsize
of 50 µm was used using Smartbeam-II laser optics. A spectrum was
accumulated from 200 laser shots at 1000Hz. The ions were accu-
mulated using the cumulative accumulation of selected ions mode
(CASI)within anm/z range of 70–300Daltons beforebeing transferred
to the ICR cell for a single scan.

Hematoxylin and Eosin (H&E) staining for MALDI slides
Histological staining was performed on the same slides after MALDI
using Meyer and Briggs’ Hematoxylin (Sigma #MHS32) and Eosin
(Sigma #HT110332). Matrix was washed off and slide was fixed with
cold MeOH for 5min, washed with PBS 3 times and water, then sub-
merged in hematoxylin for 15min. Slides were transferred into warm
water for 15min, then dehydrated in 95% EtOH for 30 s, incubatedwith
eosin for 1min, then dehydrated again stepwise with 95% for 1min and
100% EtOH for 1min, and cleared using Xylene for 2min. Slides were
mounted using Cytoseal 60 mounting media (Thermo Scientific
#8310-4) and imaged and visualized using a Hamamatsu Nanozoomer
with NDP.view2 software (Hamamatsu).

Statistics and reproducibility
Choosing samples for this study was limited by the fact that medul-
loblastoma tumors are exceedingly rare. Therefore, no statistical tests
were used to determine the sample sizes for this study. The samples
used for snRNA-seq, MALDI, and mIHC were chosen purposefully
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basedon their knownhistological subtypes and tumor availability. Due
to the scarcity of tumor tissue and our focus on histological variability,
sex/gender was not considered in sample selection.

Statistical tests performed on the generated omics data are
described in the sections below. All code and data used to perform
these analyses can be found at https://github.com/fraenkel-lab/
shh-mben.

mIHC was run on 8 samples with known proteomic subtypes (4
SHHa and 4 SHHb) and Fig. 5a shows one featured region from 6
tumorswith clear nodular structures highlighting the VSNL1 + /− trend.
The raw images contain many additional examples for each tumor.
Figures 5c, d, & 6d highlight a single region in one sample (CHLA-10)
that strongly resembles the developing cerebellum. There aremultiple
other instances of similar structures within this sample.

Sample summary
Tumors analyzed for single-cell or imaging analysis are summarized in
Supplementary Data 1. Histology information from tumors from
Archer et al.23 was updated based on personal communication with
Andrey Korshunov.

snRNA-seq and scRNA-seq data processing
Quality control was performed for each tumor individually. The fil-
tered countsmatrix was used to create a Seurat object (version 4.1.0)78,
removing any genes present in less than five nuclei and any nuclei that
contain less than 300 features. Nuclei were removed from the dataset
if theymet any of the following criteria: below 5th percentile of UMI or
features detected, above 95th percentile of UMI or features detected,
mitochondrial genes represent more than 5% of the counts, or in the
top 10% of DoubletScore determined by Scrublet79. These strong filters
left 71,008 high-quality nuclei for analysis.

For the seven snRNA-seq samples, the filtered objects were
merged and log-normalized using a scale factor of 10,000. The top
2500 variable genes were identified and the number of UMI counts
were regressed out during scaling. Integration was performed using
harmony80 and the top 50 dimensions were used for UMAP plotting
and Louvain clustering (resolution = 0.25). Non-malignant cells were
annotated using marker genes (Supplementary Fig. 1A). Tumor cells
were identified by their clustering pattern and expression of known
SHHMBgenes8. Additionally, Gashemi et al. observed similar cell types
in their cohort and detected copy number variations in these cells
providing further evidence of their malignant status (personal com-
munication). Clusters 6 and 12 were not included in re-clustering of
malignant cells because each cluster was primarily associated with a
single sample (MB4113 for 6 and MB2112 for 12) (Supplemen-
tary Fig. 1B).

Supplementary Fig. 2 details the re-clustering of the snRNA-seq
MBEN samples. To generate this plot, nuclei in clusters 0,1,2,3,4 or 5
were selected and the first 50 harmony dimensions were used to cal-
culate nearest neighbors and aUMAPplot. Louvain clusteringwas then
performed on these cells with a resolution of 0.25. Almost every new
cluster could be associated with a developmental stage using known
marker genes (Fig. 1d). Cluster 6 was merged with cluster 0 to repre-
sent the postmigratory GN. For cluster 4, the top marker genes are
related to ribosomes. It is unknown whether this cluster corresponds
to stage of GN development, so it was excluded from development-
related figures. The high ribosomal content indicates these cells could
be a sequencing artifact, but similar ribosomal cells are found in our
scRNA-seq MBEN sample, the SHH-B2 cells from the Riemondy
cohort8, and the P14 mouse cerebella6 (Supplementary Fig. 5) sug-
gesting they may be biologically relevant.

The scRNA-seq datasets were processed using similar filters and
parameters. The same quality control metrics were used, except the
mitochondrial percentage filter was set to 25%. The two scRNA-seq
datasets (one MBEN tumor and the P14 mouse dataset from

GSE118068) were each analyzed by themselves, so no integration
methods were used. Instead, these samples were log-normalized using
a factor 10,000 and scaled, and then dimensionality reduction was
performed using Principal Component Analysis on the 2500 most
variable genes. The top 40 PCs were used for clustering and UMAP
plots. For the SHH MBEN tumor, malignant cells were identified by
their clustering pattern and expression of SHHMBmarkers, and these
cells were re-clustered using a resolution of 0.2 (Supplementary
Fig. 3B). For the P14 mouse, the granule neuron lineage was identified
using marker genes and these cells were re-clustered with a resolution
of 0.3 and annotated using known markers of GN development (Sup-
plementary Fig. 5).

Pseudotime analysis
Pseudotime analysis was performed using monocle381 with a minimal
branch length of 15 cells. The root node was set by selecting the nuclei
from the cycling GCP cluster (cluster 5) with the highest value for
UMAP component 2.

Plotting with Seurat
Plots from Seurat were made using the DimPlot and FeaturePlot
functions, adding on specific parameters from ggplot282 that are
described in the code. Formany feature plots, the baseline plot was re-
made with a custom function that orders the cells by their expression
of the relevant gene to help ensure that cells expressing a givenmarker
are visible in the plot. Some feature plots use a minimum cutoff to
highlight cells with high expression and these instances are described
in the figure legends.

Clustering of gene set signature scores
Gene set signatureswere created for 8datasets (Supplementary Fig. 4):
Archer proteomic subtypes23, Consensus SHH MB subtypes5, Kor-
shunov MBEN transcriptional subtypes24, human GN development83,
MBEN snRNA-seq, MBEN scRNA-seq, P14 Mouse scRNA-seq6 and Rie-
mondy SHHMB scRNA-seq8. For the snRNA-seq and scRNA-seq MBEN
datasets, marker genes were identified using the Seurat FindMarkers
function with default parameters. For these cases, down-sampling was
performed before differential analysis so that each cluster was repre-
sented by an equal number of cells. The same procedure was used for
the P14 mouse to identify the top differential genes for each stage of
granule neuron development. Mouse genes were mapped to human
orthologs using the biomartR package84. In a small number of instan-
ces, genes were not in the BioMart database. In those cases, if the
capitalized version of the mouse gene was present in the MAGIC
cohort transcriptomic data, that gene was also included. Otherwise,
the gene was not included and the next highest-ranking gene took its
place in the signature.

For the consensus subtypes, the transcriptomic microarray data
from Cavalli et al.5 was rank normalized and marker genes were iden-
tified by performing t-tests between the subtype of interest and the
other SHH tumors5. For the Archer et al. subtypes, t-tests were used to
identify the differential proteins between SHHa and SHHb23. The
markers for the Riemondy single-cell clusters and Korshunov et al.
MBEN subtypes were taken from their respective supplemental
materials (Supplementary Table 3 for Riemondy et al.8 and Supple-
mentary Tables 1 & 2 for Korshunov et al.24).

From these marker gene lists, a gene signature was created by
taking the topngenes (50, 100, 150, & 200). In some cases, nwas larger
than the number of marker genes for published datasets. When this
occurred, all marker genes were included for the given signature.
These signatures are summarized in Supplementary Data 2.

All genes sets of size n were used together as inputs for Gene Set
VariationAnalysis (GSVA), which takes in gene-level data and calculates
enrichment scores for each gene set45. GSVAwas runon transcriptomic
data from the 223 SHH tumors of the MAGIC cohort5. This approach
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allows for investigating the relationships between many gene sets
because activation scores are generated on a single cohort of repre-
sentative SHH tumors.

ConsensusClusterPluswas used to run consensus clustering on the
activation scores to better understand what signatures are activated in
the same samples85. This method repeatedly subsamples items (i.e.
gene signatures) and features (i.e. SHH tumors) and clusters thedata to
determine which signatures cluster together. 1000 sub-samplings
were run using the k-means algorithm and Euclidean distance metric.
For each run, all of the gene signatureswere used, but the SHH samples
(i.e. features) were subsampled for the following percentages: 30%,
50%, 70%, and 90%. For each parameter set, the method was run from
k = 2 to k = 10 and the optimal k was found to be 5 clusters for all
parameter sets using an elbow plot.

The consensus clustering plots were made using the clustermap
function in seaborn86 using correlation as the distancemetric. All gene
set sizes and subsampling percentages revealed similar high-level
trends (Supplementary Fig. 6) with four primary groups representing
developmental stages: cycling progenitors, non-cycling progenitors,
premigratory GN, and migrating/postmigratory GN (late-stage GNs).

Copy number variation (CNV) analysis
Copy number variation data for chromosomal arms was included in
theMAGIC cohort data fromCavalli et al.5. Two-sidedMann-Whitney U
tests were performed to determine associations between CNVs and
GSVAgene set signatures fromMBEN snRNA-seq cohort. The following
gene sets were considered: Cycling GCP, GCP, Ribosomal, Pre-
migratory GN, Migrating GN, Postmigratory GN, Proliferation (Cycling
GCP score – GCP score), Progenitor (Cycling GCP score + GCP score),
and Late-Stage GN (Migrating GN score + PostmigratoryGN score). For
each CNV/signature pair, two Mann-Whitney U tests were performed.
First, all samples with a loss of the chromosome arm were compared
with tumors having a wildtype or gain status, and then a second test
was performed to compare the samples with a gain to the other
tumors. If no tumors had a loss or gain, that test was not performed,
leaving 657 comparisons. Multiple associations were significant using
the Bonferroni-corrected alpha of 1.52 E −5. These analyses were per-
formed using gene set signature scores based on 100 genes, but the
relationships shown in Fig. 3c are also significant for signatures of size
50, 150, and 200. All comparisons are detailed in Supplemen-
tary Data 4.

Post-transcriptional regulation analysis
Proteomic and transcriptomic data from Archer et al.23 were re-ana-
lyzed, considering the 8674 genes identified in all tumors for both
assays. For each sample, the protein and RNA values were rank-
normalized from −0.5 to 0.5 and a rank difference (protein rank – RNA
rank) was calculated for each gene as a proxy for post-transcriptional
regulation. Thus, a gene with a high protein rank in a given sample and
a low RNA rank would have a strong positive rank difference, sug-
gesting possible post-transcriptional upregulation. Genes were cate-
gorized as synaptic if they appear in the GO_SYNAPSE gene set from
MSigDB87 and as FMRP targets if they appear in the stringent list in
Supplementary Fig. 2A from Darnell et al.48.

For SHHb analysis, the mean protein rank, RNA rank, and rank
difference were calculated for every gene by taking the average value
for the five SHHb tumors. The same procedurewas applied to the nine
SHHa tumors for SHHa analysis. Synaptic and non-synaptic gene ranks
were compared using a two sample t-test in scipy88. To determine
potential post-transcriptional regulation, rank differences were com-
pared to mean of 0 using a one-sample t-test.

snRNA-seq analysis for validation cohort
snRNA-seq was performed on six additional tumors with known pro-
teomic subtypes (personal communication with Olivier Ayrault).

MB002,MB009, andMB019 are classified as SHHaproteomic subtype,
whileMB005,MB015, andMB084 are called as SHHb. The output data
was processed using the same parameters and quality control as the
original MBEN cohort and then combined with the original MBEN
cohort to perform clustering and feature analysis on one large cohort.
Harmony80 was used for integration and Supplementary Fig. 8 shows
the resulting UMAP plots for the new samples.

Processing of published scRNA-seq and snRNA-seq
Data for figure for Supplementary Figs. 9, 10, 11 and 14 were generated
by reprocessing data from published scRNA-seq studies7,8. In each
case, UMAP plots were generated by reprocessing the counts data
from each study and displayed using the FeaturePlot function from
Seurat. Supplementary Figs. 12 and 13 were generated using R data
objects provided by the authors from Vladoiu et al. (2019)6.

Image registration and processing
Individual images were taken with 10% horizontal and vertical overlap
and then stitched together with the Microscopy Image Stitching Tool
(MIST)89 through FIJI90. Image registration between mIHC rounds was
performed using the MultiStackReg plugin in FIJI90 using the DAPI
channels and the rigid body transformation. When the two images
were not identical sizes, the two images were cropped slightly around
the edges to enforce identical sizing. In a small number of select
images, there were clear visual artifacts with extremely high fluores-
cence. In such cases, these regions were not considered for down-
stream analysis.

MALDI data processing
MALDI intensity data was analyzed for 4677 consensus m/z peaks
identified by the Isoscope package91. For eachm/z value in each MALDI
spot, the intensity was assigned to the maximum intensity of peaks
within 2 PPM of the m/z value. These data were then loaded into a
scanpy object92, and each spot was normalized using the total ion
count (TIC)method, whereby everym/z intensity is divided by the sum
of the intensities for that spot. The data was then scaled, and dimen-
sionality reduction was performed using PCA. The spots were clus-
tering using Leiden clustering with a resolution of 0.2 and considering
the 10 nearest neighbors and first 10 PCs. Some clusters
(2,4,9,10,11,12,13, &14) were primarily around the edges and thus
removed as they were likely artifacts. Additionally, there were clusters
of spots in each sample that were visible artifacts compared to H&E
staining and these clusters were removed as well. This resulted in
52,393 high-quality spots that strongly resemble the tissue structure
from H&E stains (Supplementary Fig. 22).

Our analysis was focused on high-quality annotated metabolites.
First, m/z peaks were associated with known metabolites using the
database from Supplementary Data 5 and a window of 2 PPM. These
features were then further filtered to only include metabolites that
have an intensity greater than 100,000 inmore than 50% of theMALDI
spots. These cutoffs produced 56high-qualitymetabolites for network
and correlation analysis. To assess the robustness of these results, this
analysis was repeated using RMS normalization in the Cardinal
package93. This investigation showed the same trend between taurine
and guanine (Supplementary Fig. 23) and that taurine had a stronger
centrality in tumors with LSGNs compared to others.

Joint graphical lasso
Joint graphical lasso61 analysis was performed using the gglasso94

python package (version 0.1.9). Graphical lasso95 uses observational
data to learn a sparse approximation of the precision matrix, where
each 0 represents two metabolites whose expression levels are inde-
pendent of each other when considering the intensities of the other
metabolites. This leaves of matrix of non-zero values, which can be
represented as a networkwith edges between conditionally dependent
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metabolites. Joint graphical lasso allows for approximating multiple
precisionmatrices at one time, while sharing information between the
related datasets.

The group graphical lasso algorithm was used for the TIC-
normalized MALDI for the 56 annotated metabolites. A parameter
sweep was performed for lambda1, which controls sparsity, and
lambda2, which promotes similarity across networks, using the fol-
lowing parameters: lambda1 (0.05, 0.1, 0.15, 0.2, 0.25) and lambda2
(0.01, 0,02, 0,03, 0,04 and 0.05). The optimal parameters
(lambda1 = 0.1, and lambda2 =0.01) were the minimal empirical bayes
score, which was calculated using the ebic function from the gglasso
package with a gamma parameter of 20 to promote sparser networks.
Betweenness centrality was calculated for the output network for each
sample using the networkx python package (version 2.6.3). Cytoscape
(version 3.7.2)96 was used to create Fig. 6a, showing edges present in
particular samples.

Bivariate Moran’s I analysis
Bivariate Moran’s I analysis was performed using the pysal (version
2.4.0) package to analyze what metabolites correlate with the spatial
lag of taurine.Weights were determined using the 24 nearest spots (i.e.
two levels out on the MALDI spot grid) and then row normalized. The
bivariate Moran’s I statistic was calculated between guanine and taur-
ine for each spot using the Moran_BV function.

Taurine focused immunohistochemistry experiment
To investigate how taurine staining relates to MAP2 and VSNL1,
immunohistochemistry was performed on 11 SHH MBs from CHLA
(Supplementary Data 1). Visual examination revealed four samples
with significant variability in VSNL1 andMAP2 staining: CHLA-5, CHLA-
9, CHLA-13, and CHLA-14. For these cases, a small 3 × 3 or 4 × 4 region
was chosen for imaging because it contained MAP2 + /VSNL1 + ,
MAP2 + /VSNL1-, and MAP2-/VSNL1- areas.

Imaging was performed on a Zeiss LSM980microscope using the
Zen 3.6 software package. For each sample, a 10548 × 10548-pixel tiled
image representing 1.57mm2 was captured (4 × 4 tiles, 10% overlap, 1
px = 0.149μm2). A Plan-Apochromat 20x/0.8 M27 air objective was
used for all images with a GaAsP-PMT detector. Stitching of tiles was
performing using the default settings in the Zen 3.6 software (10% tile
overlap, 488 channel used as reference).

Taurine focused image processing
Nuclei were identified in the DAPI channel for each image by using
CellProfiler (version 4.2.4)97. CellProfiler was also used to quantify the
intensity of nuclear markers, like Ki67, and to generate coordinates
for each cell. To identify regions that have positive signal for the non-
nuclear markers (i.e. VSNL1 and MAP2), each channel was first gated
using Gaussian mixture models (GMMs) from scikit-learn (version
1.2.1)98. For each channel, the GMM was applied to the log-
transformed images to identify three components: background,
negative signal, and positive signal. The initial gating threshold was
calculated as the average of the means of the second and third
components. Based on visual inspection, the gates were manually
adjusted to reflect the positive signal. To capture continuous regions
of positive signal, three scikit-image99 (version 0.21.0) functions were
implemented to generate masks: isotropic_closing, remove_small_-
holes, and remove_small_objects.

Ki67 quantitative analysis
Cells were labeled as positive or negative for Ki67 expression using the
quantification values fromCellProfiler (version4.2.4)97. The valueswere
gated using thresholds calculated using Gaussian mixture models
(GMMs). The GMMs were applied to log transformed Ki67 values to
identify positive and negative signal and this gate was manually
adjusted to match visual inspection of the images. To compare the

Ki67 positivity rate in VSNL1+ and VSNL1- areas, masks were generated
for VSNL1 staining in MB287 and CHLA-5 using the same procedure
described for the taurine-focused analysis (Supplementary Fig. 27).
Any cell located within the boundaries of a givenmaskwas considered
positive for that marker. A Fisher’s exact test was applied to determine
whether Ki67 status was independent of VSNL1 status.

Taurine quantitative analysis
Region masks were created for each image so that nodules could be
classified as VSNL1 + /MAP2 + , MAP2 + /VSNL1-, or negative for both
markers. Additionally, each mask was intersected with a tissue mask,
generated from DAPI positive regions. In each image, the taurine
intensity was calculated for every pixel in each region type. Differential
analysis was performed by comparing the intensity of taurine in the
MAP2 + /VSNL1+ regions with the MAP2 + /VSNL1- nodules.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw scRNA-seq and snRNA-seq data generated for this manuscript
have been deposited in GEO under the accession number GSE214469.
The previously published data used for this work can be accessed
through the following GEO accession numbers: scRNA-seq data from
Riemondy et al.8 GSE156053, scRNA-seq data from Hovestadt et al.7

GSE119926, scRNA-seq data from Vladoiu et al.6 GSE118068, and bulk
RNA transcriptomics from Cavalli et al.5 GSE85218.

mIHC imaging data can be found at https://zenodo.org/records/
10257144 and taurine-focused IHC imaging can be found at https://
zenodo.org/records/10256482. Processed omics data can be found
with the corresponding code at https://github.com/fraenkel-lab/shh-
mben. The remaining data are available within the Article, Supple-
mentary Information, or the Source Data file. Source data are provided
with this paper.

Code availability
Custom R and python scripts for data processing, analysis, and pre-
sentation can be found on github at https://github.com/fraenkel-lab/
shh-mben.
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