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Structural plasticity for neuromorphic
networks with electropolymerized dendritic
PEDOT connections

Kamila Janzakova1,5, Ismael Balafrej 2,3,5, Ankush Kumar 1,5, Nikhil Garg1,2,4,
Corentin Scholaert1, Jean Rouat 2,3, Dominique Drouin 2,4, Yannick Coffinier1,
Sébastien Pecqueur 1 & Fabien Alibart 1,2,4

Neural networks are powerful tools for solving complex problems, but finding
the right network topology for a given task remains an open question. Biology
uses neurogenesis and structural plasticity to solve this problem. Advanced
neural network algorithms are mostly relying on synaptic plasticity and
learning. Themain limitation in reconciling these two approaches is the lack of
a viable hardware solution that could reproduce the bottom-up development
of biological neural networks. Here, we show how the dendritic growth of
PEDOT:PSS-based fibers through AC electropolymerization can implement
structural plasticity during network development. We find that this strategy
followsHebbian principles and is able to define topologies that leverage better
computing performances with sparse synaptic connectivity for solving non-
trivial tasks. This approach is validated in software simulation, and offers up to
61% better network sparsity on classification and 50% in signal reconstruc-
tion tasks.

Replicating brain computing principles remains today an unachievable
puzzle, in spite of the recent progresses in our understanding of the
various mechanisms at work in the brain machinery. Even if machine
learning has reached several milestones in terms of performances,
surpassing human level scores on tasks such as image recognition or
strategic game playing, our ability to reproduce a true generalized
artificial intelligence is still lacking. This is pointing toward the fact that
there are still somemissing ingredients to add to existing bio-inspired
computing solutions in order to reach the next level. Without a com-
plete computational model of the problem in hand, reverse engi-
neering of the brain is an attractive option to identify some of the
missing pieces of the puzzle. Toward this quest, neuromorphic engi-
neering and computing have extensively capitalized on bio-inspiration
for defining the key components of hardware implementation and
algorithms for learning. On the one hand, material implementation of
neurons and synapses has been proposed based on conventional

complementary metal-oxide-semiconductor (CMOS) technology1 and
emerging nanotechnologies2,3, with various degrees of resemblance
with their biological counterpart. Notably, synaptic plasticity imple-
mentation has been revolutionized by the concept of memristor and
crossbar integration to enable ultra-high density of synaptic connec-
tions. On the other hand, learning algorithms have been deeply influ-
enced by Hebbian learning and backpropagation derivatives to
provide efficient bio-inspired synaptic plasticity rules4–6. But if neuro-
morphic engineering is today recognized as a viable computing para-
digm that could bring machine learning to its next level, notably in
terms of energy efficiency, we are still lacking a clear strategy for
defining neural networks topologies, which is realized mostly through
costly optimization rules7. This issue becomes evenmore critical when
considering the hardware substrate to implement a given algorithm,
since nodes and connections of the network have to be mapped on
physical devices and components. It turns out that hardware
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substrates have to be over-sized in order to fit any topologies, which
are a priori unknown. This aspect impacts directly the power efficiency
of neuromorphic hardware and is a strong limitation toward the
development of ultra-low power neuromorphic circuits.

In fact, this question is pointing out a fundamental difference
between biological neural networks and artificial ones. The hardware
implementation of ANNs follows a top-down approach imposed by
conventional technology, meaning that topologies need to be a priori
known. On the opposite, biology is largely bottom-up. Homogeneous
cells differentiate into neurons and project their dendritic connections
duringnetwork genesis to reacha topology that provides theorganism
with its specific abilities8. This structural plasticity is one of the keys to
biological efficiency in terms of (i) energy since material resources are
employed only when required and (ii) computational performances
since it provides the architectural foundation for the expression of all
cognitive tasks occurring during lifetime9. In this article, we show how
organic materials and devices can reproduce this feature and how
bottom-up engineering of ANNs can be used to find topologies with
better computing performances. We use bipolar electropolymeriza-
tion of conducting dendritic PEDOT:PSS fibers in water-based elec-
trolyte to engineer neurons’ genesis. We propose Hebbian-like
scenarios for dendritic growth and network topologies definition in
associative memory, classification and auto-encoding tasks. We show
that engineering structural plasticity allows for finding effective
topologies for these computing tasks with a massive reduction in
connection density.

Finding the right topology of ANNs for a given application
remains today an open question. Biology has coped with this issue
through millions of years of evolution to encode in the genome of
living species the optimal network topologies10. Nevertheless, such
genetic evolution is not applicable to current deep ANNs and becomes
quickly too costly in terms of time and computing resources for large
networks11. In addition, genotypic approach are not considering the
influence of the environment on the network development, which is
believed to play a key role in the definition of optimal topologies12–14.
Suchphenotypicplasticity helps the network tofind the right topology
based on activity induced by the external environment and to leverage
resource utilization with higher performances. The lottery ticket
hypothesis states that every ANN contains a subnetwork of pruned
weights that can achieve results comparable to the initial dense
representation, even if trained from random weights, as long as the
connectivity matrix is known15. Connectivity pruning techniques are
not hardware friendly since the starting network before learning needs
to be over-sized and connections are removed during or after learning.
An attractive option to relax the topologies definition requirement has
been to consider random topologies for computing, such as in reser-
voir computing approaches16. However, all reservoirs do not perform
equivalently well, and topologies have a strong impact on their per-
formances. Various rules have optimized reservoirs by providing
constrained topologies (small world topologies) reflecting the topol-
ogies of biological networks17. Others have focused on adding local
learning rules at the synaptic level in order to adapt the reservoir to its
task, which corresponds to translating the topology search space at
the synaptic plasticity level18. But, there is evidence pointing toward
the fact that structural plasticity, or wiring of the network, can bear
more profound memory effects19 and noise resilience20 than synaptic
plasticity does. It is still a missing piece of the puzzle to know how to
incorporate structural plasticity into hardware implementations of
ANNs. Answering this question cannot be straightforward, and one
needs to reconsider profoundly what hardware implementations and
technologies should be used to this end.

Interestingly, organic materials and devices have been proposed
recently with the ability to realize truly evolvable structures21. Bipolar
AC electropolymerization of monomers has been investigated in
the context of conductive dendritic polymer fibers formation22,23.

First works have demonstrated that dendritic PEDOT fibers can also
be considered as active devices (i.e., organic electrochemical tran-
sistor) and can reproduce neuromorphic features such as short-term
and long-termmemory effects24. These innovative devices, which are
offering an interesting bottom-up framework for neuromorphic
hardware engineering are also offering unique computing features
that have been exploited in the context of reservoir computing. For
instance, the iono-electronic coupling in dendrites was used for
computing in the context of reservoir25. First experiments on simple
3-nodes problem such as Pavlov’s dog learning21,26 or binary
classification23 were also proposed and were pointing toward the
benefit of using structural plasticity to realize actual computing
functions. This concept marked a clear departure from conventional
approaches, which were only relying on synaptic plasticity for
learning. But it was still unclear to what extent the structural plasti-
city could contribute to improve computing efficiency at the net-
work level. The next challenge toward the realization of fully
evolvable neuromorphic networks with structural plasticity is to
show that growth of dendritic connections can reproduce neurons’
genesis on more complex networks and to demonstrate that the
resulting networks are optimal topologies for computing. This would
offer new perspectives from both materials and devices engineering,
but more fundamentally to the progresses toward brain-inspired
computing systems.

Results
Hebbian-like structural plasticity with time correlation
Bipolar AC electropolymerization of PEDOT:PSS fibers is realized in
water-based electrolyte containing 10 mM of 3,4-ethylenediox-
ythiophene (EDOT) and 10 mM of benzoquinone as oxidizing and
reducing species, respectively. The electrolyte also contains 1 mM of
NaPSS as a supporting salt. Dendritic growthof PEDOT:PSS conducting
fibers is obtained through application of bipolar AC voltages in
between two gold wires immersed in the electrolyte. Such electro-
polymerization process has been reported to depend strongly on
electrical parameters of the AC input signals such as peak-to-peak
amplitude and frequency23. Thesedependencieswerecorrelated to the
voltage potential oxidation threshold of EDOT monomers into poly-
mers and to thedynamicsof charged species in the electrolyte through
the influence of drift and diffusion27. The structural aspect and growth
dynamics of dendritric fibers are reminiscent of neurons genesis dur-
ing development of biological neural networks (see Supplementary
Video 1). During biological network genesis, multiple parameters
influence the topological organization of dendritic connections in
between pre- and post-neurons layers. The coupling of various
mechanisms is the key to defining the optimal, or at least efficient,
topology for computing. While the details of biological processes are
still not completely understood, we propose using a simplified
description of these processes and turning them into a hardware
implementation.

The first parameter is the geometrical organization of cells, which
will determine how close two cells are to each other. Cells being closer
will inevitably have a higher probability of connecting together.
A second parameter is the correlated activity in between cells that
influence their probability of connection. This aspect could be realized
through diffusion of chemical molecules and ions in between pre- and
post-neurons favoring directional dendritic projection and leading to a
specific interconnection pattern14. This idea was the central point of
Hebb’s theory andwas extensively used for deriving synaptic plasticity
rules28. In a first step, we propose to reproduce with conducting den-
dritic fibers the implementation of this second parameter through
an adaptation of Hebb’s principle to structural plasticity rules.
The implementationof thefirstparameterwill bediscussed later in this
article with two-dimensional topologies. A schematic overview of the
concept is presented in Fig. 1.
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PEDOT:PSS dendritic fibers growth results from the electrical
potential at the interfacebetween the Au electrode and the electrolyte.
In a simple two-wire setup, where each electrode is respectively asso-
ciated with the pre- and post-neuron, the effective voltage driving
electropolymerization is the difference in between Vpre and Vpost, the
electrical voltage of each electrode. Pre- and post-neuron activities are
emulated in our setup as bipolar pulses of width TW= 2.5ms, amplitude
Vpre=Vpost=Vp=5V, and mean frequency F=f pre=fpost. A first convenient
implementation of correlated activity in between two neurons is to
consider spike-timing difference in between the pre- and post-cells.
Short time difference in spike timing is associated with a strong cor-
relation of activity while large time difference is associated to low
correlation. Bipolar pulses can be conveniently designed to reproduce
this correlation through the effective voltage overlap resulting from
the potential difference Vpre � Vpost (Fig. 2a). Pulses overlapping
results in overpotential leading to electropolymerization. The larger
the correlation, the larger the duration of the overpotential (see sup-
plementary information, Fig. 1). Note that nooverlap in betweenpulses
didn’t lead to any dendritic growth in the time scale of our experiment.
Figure 2b presents the evolution of the dendritic network for different
correlations of activity associated with time difference ΔT from 0 ms
(strong correlation) to 2 ms (low correlation). Multiple pulses at mean
frequency f pre = f post were applied continuously in between the two
nodes and lead to dendritic growth (see Supplementary Video 1).
Several mean frequency values of 20 Hz, 80 Hz, and 130 Hz were
tested. Note that the bipolar pulses remain the same for the different
frequencies (width and amplitude remain constant), only the time
difference in between two pulses is modified. Higher activity correla-
tion (i.e. decrease ofΔT and increase of overpotential duration) clearly
led to denser dendritic trees, creating more connections in between
PEDOT:PSS fibers. This is supported by the measurement of the elec-
trical conductance after pre- and post-dendrites connect each other.
Higher correlation of activity between neurons leads to more synaptic
connections established in between the dendritic branches, and con-
sequently higher synaptic weight (i.e. higher conductance). This effect
is in agreement with previous report23 that associated the number of

branches with the voltage amplitude and frequency of the bipolar
pulses in AC electropolymerization experiments. In our experiment,
increasing the correlation in between pre- and post-pulses lead to a
highermean voltage experienced by the dendrites and amore branchy
structure. On the contrary, structures with fewer synaptic connections
and correspondingly lower conductance are observed at lower signal
correlation. Note that this conductance can be further modulated by
short- and long-term plasticity processes (STP and LTP) as in
refs. 24,29.

Additionally, final conductance shows some moderate depen-
dency onpulses frequency, except for the 20Hz case. This latter effect
could be explained by the reduced relaxation time between two elec-
tropolymerization events. In between pre- and post- pulses over-
lapping, the electrodes are grounded and charged species in the
vicinity of the electrodes diffuse back into the electrolyte. Thus, at low
frequency (20 Hz), this phenomenon results in fewer species available
for electropolymerization, hence fewer brunches and lower con-
ductance. Finally, the growth rate of the dendritic branches does not
depend on time correlation but mostly on pulse frequency. By con-
sidering the variability of the dendritic growth process, a quasi-linear
relationship in between growth rate and frequency could be con-
sidered. This would imply that each electropolymerization event (i.e.
pulse overlapping) would contribute to longitudinal growth while ΔT
affects the number of branches (i.e. the final conductance).

Associative learning with structural plasticity
We illustrate the interest of such time-based structural plasticity for
defining network topology with Pavlov’s dog associative learning
example. In this demonstration of associativememory, the objective is
to show how correlated activity in between multiple nodes can induce
selective neuron’s recruitment. In Pavlov’s conditioning experiment,
the correlation of neuron’s activity between the sight of food and
salivation is first established. Note that this correlation is the result of
association between food and saliva in the dog’s physiology during
feeding.We are limiting our demonstration to the essential association
step and not reproducing the full conditioning task that would require

b

Strong correlation

a

Fig. 1 | Structural plasticity emulationwithPEDOT:PSS dendriticfibers. aAs the
activity correlates between every pair of neurons, the dendrites between them
grows, creating a physical topology of artificial neural networks. b Dendritic elec-
tropolymerization is obtained by applying AC electrical signal in between

conducting Au wires. Electrical potential at each node drives oxidation of EDOT
molecules into PEDOT and reduction of benzoquinone (BQ) into hydroquinone
(HQ). A pulse of voltage on each terminal represents node activity that can corre-
late to create overpotential (blue star), leading to electropolymerization.
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demonstration of memory extinction and memory recovery. These
additional effects could be implemented via additional synaptic plas-
ticity mechanisms that have been demonstrated in PEDOT:PSS-based
dendritic fibers24. The full conditioning task would therefore result
from a combination of structural plasticity (association) and synaptic
plasticity (i.e. forgetting and recall). In our experiment, during the first
phase of association, time-correlated signals between food (pre-neu-
ron) and saliva (post-neuron) result in dendritic growth and the crea-
tion of synaptic junction, while the uncorrelated bell neuron doesn’t
connect (Fig. 3a). This correlation is physically represented through
the overlaps of bipolar pulses from pre- and post-neurons. The dif-
ference of potential between the electrodes during correlated activity
(in comparison with the potential difference between electrodes dur-
ing uncorrelated activity) is maximal and eventually leads to electro-
polymerization and dendrites’ growth. This strategy has been adopted
in other works for reproducing biological spike timing dependent
plasticity30. In the second phase, the bell’s signal is now correlated to
both sight of food and salivation. Additional dendritic branches grow
in between correlated nodes, resulting in the recruitment of the bell
signal to salivation (Fig. 3b). Note that the time to bridge the bell and
food electrodes is twice larger than the time to initially bridge the food
and saliva electrodes. This effect corresponds to the growth of den-
drites occurring only from the bell electrode dendrite. This effect
could substantially increase the completion time during network for-
mation but could be mitigating by engineering the electrode shapes
and dendritic projection as in ref. 31. This associative mechanism is
expected to play an important role in learning in biology with unla-
beleddata32,33. The association between neurons is based on correlated
activities, and it occurs when neurons are recruiting other neurons to
establish functional neuronal circuits. In the context of learning, such
self-organized neural topologies could explain the ability of biological
networks to generalize on very few examples, while fully-connected
ANNs require extensive training examples to learn through synaptic
plasticity. The network topology could define a general memory

content (i.e, coarse-grain tuning) and synaptic plasticity can be used as
a specialization on few examples (fine-grain tuning) leading to fast
learning process. When synaptic plasticity alone is used, fine-grain
tuning requiresmuchmore examples for learning. Froma higher level,
combining structural plasticity with fine-grain synaptic plasticity tun-
ing could be a corner stone to solve the binding problem9, which try to
reconcile symbolic approaches (i.e., hierarchical structure in the data
representation) with the neural representation (i.e., elementary sym-
bol representation on each node of the network). Structural plasticity
could be seen as the general architecture of the network bearing
symbolic rules expression, while synaptic plasticity could be asso-
ciated to the learning of specific representations.

Generalization of structural plasticity with Poisson-sampled
spike trains
A more generalized formulation of the structural plasticity through
dendrites’ electropolymerization is proposed in Fig. 4. Instead of
considering pulse timing between pre- and post-neurons with fixed
frequencies, we investigated the dendritic growth mechanism with
Poisson-sampled spike trains. Now, the activity of a neuron is defined
as the mean frequency of a Poisson distribution of bipolar pulses. This
signal representation is often chosen to describe biological neuronal
activity. The correlation of activity between two neurons i and j is
proportional to the product between the two mean normalized fre-
quencies:

ρai ,aj
= corrðai,ajÞ / Fi � Fj ð1Þ

This product describes the probability of having correlated pulse
events between the two neurons when the pulse shape is fixed. The
exact relationship between the correlation and thisproduct is available
in the Supplementary information, Fig. 6. Note that this expression is
well adapted to describe Hebbian-likemechanisms, where the product
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Fig. 2 | Dendrites electropolymerization induced by spike timing modulation.
a Setup for dendrites electropolymerization induced by spike-timing activity of
applied signals. Bipolar pulses with opposite polarity were applied from both
electrodes to emulate activity of neurons with time difference in between both of
ΔT. b Optical microscope images of completed dendritic branches obtained when
ΔT time shift increases. Bipolar pulses are repeated at frequency f pre = f post 2 {20
Hz, 80 Hz and 130 Hz}. No connections occurred at ΔT = 1.5 ms and 2 ms for F = 20
Hz. c Longitudinal growth rate evaluation andd conductance evolutionofdendritic

connections synthesized at different ΔT values and at f pre = f post 2 {20 Hz, 80 Hz
and 130Hz}. Growth rate is evaluatedby considering a gapdistanceof 240μmanda
completion time corresponding to the timewhen dendrites of both electrodes first
connect to each other. Note that after bridging branches with each other, the
dendritic growth saturates, and no further significant changes in the number of
branches and branches diameter were observed (see supplementary, Figs. S11
and S12). Error bars in c are represented by the standard deviation expressed in
percentage.
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of both pre-and post-neuron activity is required to induce wiring.
In this more general situation, the same pulse overlappingmechanism
as described previously is the driving force to induce dendritic growth
in between two neurons, except pre- and post-neurons do not need to
be specified (see Supplementary information, Fig. 5). Figure 4a shows
an example of a 4-wires setup with one input neuron and three output
neurons spiking with four different frequencies. The three output
terminals are equidistant from the input terminal. Again, dendritic
branching is obtained first in between input neuron and the most
active output neuron. We performed multiple experiments with dif-
ferent ρai ,aj

to extract a representation of dendritic branching in
Fig. 4b-c. Consistently with the previous results, higher ρai ,aj

results in
larger conductance due to denser dendrites and more synaptic con-
nections in between nodes.

These measurements were used to extract a dendritic growth
model with overlapping pulses. In the model, a connection appears at
time tconn when the Euclidean distance d between a pair of neurons i, j
spatially positioned in two-dimensional space is equal to the integra-
tion of the overlaps between the two spike trains encoded as binary
pulses Pi(t) and Pj(t):

Z tconn

0
PiðtÞ � PjðtÞdt =dðni,njÞ ð2Þ

Moreover, the conductance G of the connection is dependent on
the spike rate, which is modeled through synaptic traces ki and kj. These
traces are exponentially decaying with time constant τ and are incre-
mented by a constant value Δk during a spike: τ _k = � k +Δkδðt � tspikeÞ
with δ representing the Dirac delta function. This results in a similar
integration where the conductance is equal to:

G=
Z tconn

0
PiðtÞ � PjðtÞ � kiðtÞ � kjðtÞdt ð3Þ

Figure 4b, c presents the model’s growth rate and conductance
evolution with random Poisson-sampled spike trains of various fre-
quencies as a function of ρai ,aj

.

Structural plasticity for classification task
Structural plasticity can be advantageously employed to solve the key
issue of finding the sparse connectivity of neural networks. One of the
important characteristics of biological networks’ energy efficiency is
their spatial sparsity (i.e., number of connections), which is difficult to
obtain in conventional hardware implementations with dense fully-
connected interconnections in between layers. We evaluate this
property on a simple classification task presented in Fig. 5a. Surface
electromyography (EMG) signals were recorded from the arm with
three different movements of the hand corresponding to rock, paper
and scissor in ref. 34. The eight temporal analog signals from each
sensor are converted into 16 spike trains following the methodology
described in ref. 35. The objective is to classify into three classes (i.e.,
rock, paper and scissor) the input spiking signals. The training dataset
is composedof 300multi-user samples and a testing set of 150 samples
of the same users during a different session.

We tested two different network topologies where structural
plasticity can be advantageously employed (Fig. 5c). Both networks are
first wired using the structural plasticity model to create connections
wij in between the 16 input neurons xi(t)∈ x(t) and 3 output neurons
nj(t)∈n(t). For each sample in the dataset, the output neuron corre-
sponding to the correct class spikes with a Poisson-distributed signal
of high frequency, while the other output neurons are subject to a
lower frequency activity (Fig. 5a), i.e., a soft one-hot encoding scheme.
Correlated activity in between the 16 input and three output neurons is
calculated on the entire training dataset by integrating over time the
overlapping pulse duration. Heat map reveals that some nodes have
higher correlations thanothers, see Supplementary information, Fig. 7.
If we consider 16 input nodes equidistant from three output nodes, the
cumulative effect of input/output signal correlation leads to gradual
wiring in between nodes. This evolution over time is presented in
Fig. 5b and is consistent with ref. 36. The dendrites propagate, and
create connections with a given initial synaptic strength (Winit). Nodes
with stronger correlation tend to connect earlier and define inter-
mediate topologies with a gradual decrease in sparsity. Various levels
of sparsity can be obtained in between the layers by stopping struc-
tural plasticity at different stages.
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Once the connectivity is set, the synaptic strength wij of the
existing connections is adjusted through synaptic plasticity, which is
dependent on the network topology and the objective performance of
the task. During this second step, no structural plasticity occurs. The
learning strategy is split into two cases:

Case 1: The initial weightsWinit are first binarized. Synaptic plasticity
occurs in between the spike counts∑tn and a new atemporal output
layero. Synaptic weights inbetween∑tn ando are obtained through
a linear support vector machine (SVM) classifier37.
Case 2: The spikes are counted directly in the first layer ∑tx, and the
sparse weight matrix W is trained with an adaptive gradient
method38.

From literature, a fully connected non-spiking SVM classifier in
between the input and output layer for this particular task can reach
85% recognition accuracy. Classification requires in this case 16 ⋅ 3 = 48
connections with floating point accuracy. Other work with reservoir-
based architecture and high density of nodes performed in between
70% and 88%35,39. From Fig. 5d, we evaluate that > 80% recognition
accuracy can be achieved with as few as 13 plastic connections in case
2. Interestingly, case 1 reaches an 81% peak performance with
9 + 13 = 22 connections, showing that better connectivity matrices
exist for this network configuration.We estimate the network accuracy
onboth the training and testingdataset in Fig. S13. The samemaximum
accuracy is observed on both datasets, thus ruling out the hypothesis
of overfitting by increasing the number of connections. All cases of
structural plasticity-backed networks demonstrate that activity-
dependent topologies can outperform random or full connectivity,
with a strong benefit on the number of total connections required for
this classification task. An additional benefit that can be evidenced

from Fig. 5d is the better performances from synaptic weight with
values Winit in comparison to random initial weight, even with fully
connected network. This aspect is highlighting the interest of defining
initial weight values based on structural plasticity mechanism.

The network topology presented in Fig. 4b cannot be transposed
directly to an actual hardware implementation of the single layer with
grown connections. 3D implementation of the different nodes would
advantageously enable parallel interconnections in between the input
and output layers as proposed in ref. 31 but 2D integration remains the
most straightforwardmapping. Figure S9 presents a possiblemapping
of the single layer into a 2D problem that preserves the all-to-all con-
nectivity. This integration of the different nodes also only requires
growth of connections in between neighboring nodes, which is in line
with the hardware constraint imposed by 2D dendritic growth (i.e.
avoiding overlapping of dendrites).

Structural plasticity for auto-encoder
Previous sections put the emphasis on the role of structural plasticity
to obtain better performing topologies. In hardware implementations
of structural plasticity, not only the activity in between nodes needs to
be considered, but also the distance in between nodes, since neurons
close to each other have initially a higher probability to connect
together. The initial distribution of nodes poses a clear challenge, as
this choicewill stronglydetermine thefinal topology.Wepropose here
to test the structural plasticity in the context of reservoir network. In
the general reservoir framework, topologies are random.Nevertheless,
it has been shown that some topologies performed better than others
and strategies tofind these topologies are still highlydesired.Webegin
with a two-dimensional network of nodes organized into a square
mesh topology (Fig. 6b). The objective of the task is to perform an
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accurate reconstruction x̂ðtÞ of a two channels analog signal x(t)
(Fig. 6a). Each input channel of the analog input signal x(t) is randomly
connected to 3 of the 25 reservoir LIF neurons, and their direct
neighboring neurons. The input weights are fixed, and randomly
sampled from a normal distribution η(0, 0.25). The reconstructed
signal x̂ðtÞ is read from a linear fully-connected read-out layer with two
output neurons trained from the filtered spike train of the reservoir.
The network learns to encode the input signal with a compressed
spike-based representation, following the work of ref. 40. By doing so,
the compressed representation can be transmitted with a lower
bandwidth, or used in conjunction with a low-power neuromorphic
device to solve a downstream task. The baseline for this task is pre-
sented in Fig. 6c. In the baseline experiment, connections in the
reservoir are selected randomly. Then, synaptic plasticity is activated
following the learning rule derived in ref. 40 and described in
the supplementary materials. Augmenting the connection density in
the reservoir increases the performance continuously until the fully
connected network is reached. In the structural plasticity experiment,
each neuron receives a random combination of the input signals and
grow dendritic connections based on the correlation of activity in
between nodes. Naturally, neurons closer to each other have a higher

initial probability of connecting. Figure 6b shows the gradual evolution
of the network topology. Various levels of sparsity are evaluated for
the reconstruction task using the structural plasticity rule with differ-
ent parameters, followed by a synaptic plasticity rule for weight
training. The performances show again a much quicker convergence
toward the lowest mean squared error with as few as 50% of total
connections.

The resulting topologies obtained in Fig. 6b are nevertheless not
achievable in practice when mapping the reservoir network onto a 2D
substrate since overlapping of dendrites cannot guarantee integrity of
the connection in between twonodes (dendrites arenot insulated).We
conduct in Fig. S10 the same experiment as in Fig. 6 but with an
additional constraint on the possibility of connection in between
nodes. In this experiment, nodes can only connect to neighboring
nodes, thus alleviating dendrites overlap. This choice is also limiting
the projection space of the reservoir since not all the nodes are visible
for a given input. Interestingly, Fig. S10 shows that the benefit of
structural plasticity is preserved even with a much higher constraint
imposed by the hardware mapping of dendrites. Future works should
consider how scaling more complex networks on 2D hardware and
how integrating additional constraints (i.e. small-world topologies,
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on the 16 inputs, and a sparse weighted tensor is trained with stochastic gradient
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corresponding curve.
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etc.) In fact, the choice of nodes distribution on a 2D substrate is pre-
defining the connectivity matrices that could be obtained after struc-
tural plasticity learning. This effect could mirror the combination of
genetic and phenotypic evolution observed in biological networks.

Discussion
In this work, we propose a novel structural plasticity rule associated
with a hardware strategy for its implementation. Different tasks, which
are representative of ANN and spiking neural network (SNN) applica-
tions, are demonstrating the benefit of structural plasticity for defining
better topologies. Notably, we show that structural plasticity can
define better-performing topologies with high level of sparsity in the

number of connections when implemented in various machine learn-
ing tasks. From a general hardware perspective, this is a clear benefit
since it could minimize the memory requirement of learning systems.
This aspect is beneficial from both a hardware complexity perspective
(less memory is required) and from an energy consumption perspec-
tive, since memory access is still a major challenge for ANN and SNN
implementations. Fromanalgorithmic point of view, it is interesting to
note that a simplified version of network genesis during development
is able to reach a significantly higher performance than synaptic
plasticity alone. This result suggests that there is a high potential of
ANN and SNNoptimization by integrating structural plasticity learning
and to explore combination of synaptic plasticity rules with structural
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spikes of the reservoir are filtered and decoded by an output layer to retrieve the
original signal. The input layer isfixed and sparsely connected to the recurrent layer
called the reservoir. The reservoir layer connectivity matrix is generated by either
the structural plasticity method, or with random connectivity. b Two-dimensional
lattice graph of spiking neurons at different point in time during the growth of
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nections, and gold-colored links are fully created connections. c Sparse unsu-
pervised spike encoding error as a function of the connection density. The
connection density represents the number of connections divided by the total
possible number of connections. Self-connections are not included. The resulting
mean squared error for encoding a random white-noise signal is reported. In the
left plot, random connectivity matrices are generated for various target densities.
In the right plot, the structural plasticity software model was used with different
parameters (pulse duration and interneuron distance) with a fixed two-second
duration as to create topologies with various densities.
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ones. It is also highly beneficial to iterate only once over the synaptic
plasticity training phase and avoid testing a huge set of random or
semi-random topologies. An interesting issue that we didn’t address in
this paper is to consider the deployment of structural plasticity in
multi-layer network. One of the key principles of Hebbian structural
plasticity is that the presynaptic and postsynaptic node activity must
be correlated for dendritic growth. In traditional ANNs, for con-
nectivity to occur, there must be some kind of initial connectivity
between the layers to have postsynaptic activity and enable dendritic
growth. Otherwise, the input activity must be fed to all the layers to
force some kind of initial activity. This is why in the EMG task the
output neurons are stimulated with Poisson noise. In a multi-layer
setting, it would be hard to decide which hidden neuron should fire
and when, as they are not directly associated with the output labels.
It would be possible to have spontaneous activity in the hidden layers
to allow the creationof connections in a standardmulti-layer ANN. This
would be some departure from the Hebbian principle, and the effect
on performance would need further study.

In terms of hardware implementations, engineering of conductive
dendritic connections based on PEDOT electropolymerization is pro-
viding a new strategy for bio-inspired hardware design. Firstly, den-
dritic connections are realized into liquid environment and are
opening the door to wetware engineering rather than conventional
hardware (i.e., CMOS-based technologies). This could have a strong
implication at the hardware level since it could offer the possibility to
use multiple carriers for information representation such as ions and
molecules and not being limited to standard electronic-based hard-
ware design that are prone to high energy consumption. Secondly, this
strategy could reinforce the analogy with biology for implementing
multiple computing mechanisms that are hard to realize with con-
ventional hardware, such as long time constant during learning or
representation of various traces of information for learning imple-
mentation.While structural plasticity requires some amount of data to
connect neurons together, the lower parameter count of the resulting
network should enhance its ability to learn with fewer data samples.
One-shot or few-shot synaptic plasticity techniques could go well with
this approach to enable devices to be trained at low energy and latency
cost on-the-fly. Combined with other biocompatible devices such as
optical memristors41, such fast-learning systems could be imple-
mented and trained directly in vivo.

Methods
Materials and instrumentation
Dendrites formation was carried out in an aqueous electrolyte con-
taining 1 mM of poly (sodium- 4- styrene sulfonate) (NaPSS), 10 mM
of 3,4-ethylenedioxythiophene (EDOT) and 10 mM of 1,4- benzoqui-
none (BQ). All chemicals were used without any prior modification
and purchased from Sigma Aldrich. 25 μm-diameter gold wires
(purchased from GoodFellow, Cambridge, UK) were employed as
electrodes. Gold (Au) wires were immersed into a 20 μl electrolyte
drop and placed onto a parylene C covered glass substrate. In all the
experiments, electrodes were equally lifted at a controlled height
from the substrate. Each dendrite growth was conducted with a new
pair of gold wires and daily prepared solutions. Recording of den-
drites’ formation process was captured with a VGA CCD color Cam-
era (HITACHI Kokusai Electric Inc).

Electrical characterization
Signals were generated in Waveform Generator/Fast Measurement
Units (WGFMU), which were coupled with Agilent B1500A Semi-
conductor Device Analyzer and B2201A Switching Matrix.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the Supplementary Materials.

Code availability
All the codes are available from the authors upon request.
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